1
|
Li H, Song A, Qiu L, Liang S, Chi Z. Deep groundwater irrigation altered microbial community and increased anammox and methane oxidation in paddy wetlands of Sanjiang Plain, China. Front Microbiol 2024; 15:1354279. [PMID: 38450168 PMCID: PMC10915080 DOI: 10.3389/fmicb.2024.1354279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
The over-utilizing of nitrogen fertilizers in paddy wetlands potentially threatens to the surrounding waterbody, and a deep understanding of the community and function of microorganisms is crucial for paddy non-point source pollution control. In this study, top soil samples (0-15 cm) of paddy wetlands under groundwater's irrigation at different depths (H1: 6.8 m, H2: 13.7 m, H3: 14.8 m, H4: 15.6 m, H5: 17.0 m, and H6: 17.8 m) were collected to investigate microbial community and function differences and their interrelation with soil properties. Results suggested some soil factor differences for groundwater's irrigation at different depths. Deep-groundwater's irrigation (H2-H6) was beneficial to the accumulation of various electron acceptors. Nitrifying-bacteria Ellin6067 had high abundance under deep groundwater irrigation, which was consistent with its diverse metabolic capacity. Meanwhile, denitrifying bacteria had diverse distribution patterns. Iron-reducing bacteria Geobacter was abundant in H1, and Anaeromyxobacter was abundant under deep groundwater irrigation; both species could participate in Fe-anammox. Furthermore, Geobacter could perform dissimilatory nitrate reduction to ammonia using divalent iron and provide substrate supply for anammox. Intrasporangium and norank_f_Gemmatimonadacea had good chromium- and vanadium-reducting potentials and could promote the occurrence of anammox. Low abundances of methanotrophs Methylocystis and norank_f_Methyloligellaceae were associated with the relatively anoxic environment of paddy wetlands, and the presence of aerobic methane oxidation was favorable for in-situ methane abatement. Moisture, pH, and TP had crucial effects on microbial community under phylum- and genus-levels. Microorganisms under shallow groundwater irrigation were highly sensitive to environmental changes, and Fe-anammox, nitrification, and methane oxidation were favorable under deep groundwater irrigation. This study highlights the importance of comprehensively revealing the microbial community and function of paddy wetlands under groundwater's irrigation and reveals the underlying function of indigenous microorganisms in agricultural non-point pollution control and greenhouse gas abatement.
Collapse
Affiliation(s)
- Huai Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Aiwen Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Qiu
- Second Hospital of Jilin University, Changchun, China
| | - Shen Liang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
2
|
Buscaglia M, Iriarte JL, Schulz F, Díez B. Adaptation strategies of giant viruses to low-temperature marine ecosystems. THE ISME JOURNAL 2024; 18:wrae162. [PMID: 39178288 PMCID: PMC11512752 DOI: 10.1093/ismejo/wrae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
Microbes in marine ecosystems have evolved their gene content to thrive successfully in the cold. Although this process has been reasonably well studied in bacteria and selected eukaryotes, less is known about the impact of cold environments on the genomes of viruses that infect eukaryotes. Here, we analyzed cold adaptations in giant viruses (Nucleocytoviricota and Mirusviricota) from austral marine environments and compared them with their Arctic and temperate counterparts. We recovered giant virus metagenome-assembled genomes (98 Nucleocytoviricota and 12 Mirusviricota MAGs) from 61 newly sequenced metagenomes and metaviromes from sub-Antarctic Patagonian fjords and Antarctic seawater samples. When analyzing our data set alongside Antarctic and Arctic giant viruses MAGs already deposited in the Global Ocean Eukaryotic Viral database, we found that Antarctic and Arctic giant viruses predominantly inhabit sub-10°C environments, featuring a high proportion of unique phylotypes in each ecosystem. In contrast, giant viruses in Patagonian fjords were subject to broader temperature ranges and showed a lower degree of endemicity. However, despite differences in their distribution, giant viruses inhabiting low-temperature marine ecosystems evolved genomic cold-adaptation strategies that led to changes in genetic functions and amino acid frequencies that ultimately affect both gene content and protein structure. Such changes seem to be absent in their mesophilic counterparts. The uniqueness of these cold-adapted marine giant viruses may now be threatened by climate change, leading to a potential reduction in their biodiversity.
Collapse
Affiliation(s)
- Marianne Buscaglia
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| | - José Luis Iriarte
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Avda. El Bosque 01789, Punta Arenas 6210445, Chile
- Instituto de Acuicultura y Medio Ambiente, Universidad Austral de Chile, Los Pinos s/n Balneario Pelluco, Puerto Montt 5500000, Chile
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Beatriz Díez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| |
Collapse
|
3
|
Ramasamy KP, Mahawar L, Rajasabapathy R, Rajeshwari K, Miceli C, Pucciarelli S. Comprehensive insights on environmental adaptation strategies in Antarctic bacteria and biotechnological applications of cold adapted molecules. Front Microbiol 2023; 14:1197797. [PMID: 37396361 PMCID: PMC10312091 DOI: 10.3389/fmicb.2023.1197797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Climate change and the induced environmental disturbances is one of the major threats that have a strong impact on bacterial communities in the Antarctic environment. To cope with the persistent extreme environment and inhospitable conditions, psychrophilic bacteria are thriving and displaying striking adaptive characteristics towards severe external factors including freezing temperature, sea ice, high radiation and salinity which indicates their potential in regulating climate change's environmental impacts. The review illustrates the different adaptation strategies of Antarctic microbes to changing climate factors at the structural, physiological and molecular level. Moreover, we discuss the recent developments in "omics" approaches to reveal polar "blackbox" of psychrophiles in order to gain a comprehensive picture of bacterial communities. The psychrophilic bacteria synthesize distinctive cold-adapted enzymes and molecules that have many more industrial applications than mesophilic ones in biotechnological industries. Hence, the review also emphasizes on the biotechnological potential of psychrophilic enzymes in different sectors and suggests the machine learning approach to study cold-adapted bacteria and engineering the industrially important enzymes for sustainable bioeconomy.
Collapse
Affiliation(s)
| | - Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| | - Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | | | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
4
|
Teoh CP, Lavin P, Yusof NA, González-Aravena M, Najimudin N, Cheah YK, Wong CMVL. Transcriptomics analysis provides insights into the heat adaptation strategies of an Antarctic bacterium, Cryobacterium sp. SO1. Polar Biol 2023. [DOI: 10.1007/s00300-023-03115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
5
|
Masnoddin M, Ling CMWV, Yusof NA. Functional Analysis of Conserved Hypothetical Proteins from the Antarctic Bacterium, Pedobacter cryoconitis Strain BG5 Reveals Protein Cold Adaptation and Thermal Tolerance Strategies. Microorganisms 2022; 10:microorganisms10081654. [PMID: 36014072 PMCID: PMC9415557 DOI: 10.3390/microorganisms10081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Pedobacter cryoconitis BG5 is an obligate psychrophilic bacterium that was first isolated on King George Island, Antarctica. Over the last 50 years, the West Antarctic, including King George Island, has been one of the most rapidly warming places on Earth, hence making it an excellent area to measure the resilience of living species in warmed areas exposed to the constantly changing environment due to climate change. This bacterium encodes a genome of approximately 5694 protein-coding genes. However, 35% of the gene models for this species are found to be hypothetical proteins (HP). In this study, three conserved HP genes of P. cryoconitis, designated pcbg5hp1, pcbg5hp2 and pcbg5hp12, were cloned and the proteins were expressed, purified and their functions and structures were evaluated. Real-time quantitative PCR analysis revealed that these genes were expressed constitutively, suggesting a potentially important role where the expression of these genes under an almost constant demand might have some regulatory functions in thermal stress tolerance. Functional analysis showed that these proteins maintained their activities at low and moderate temperatures. Meanwhile, a low citrate synthase aggregation at 43 °C in the presence of PCBG5HP1 suggested the characteristics of chaperone activity. Furthermore, our comparative structural analysis demonstrated that the HPs exhibited cold-adapted traits, most notably increased flexibility in their 3D structures compared to their counterparts. Concurrently, the presence of a disulphide bridge and aromatic clusters was attributed to PCBG5HP1’s unusual protein stability and chaperone activity. Thus, this suggested that the HPs examined in this study acquired strategies to maintain a balance between molecular stability and structural flexibility. Conclusively, this study has established the structure–function relationships of the HPs produced by P. cryoconitis and provided crucial experimental evidence indicating their importance in thermal stress response.
Collapse
Affiliation(s)
- Makdi Masnoddin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | | | - Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence:
| |
Collapse
|
6
|
Stoyancheva G, Dishliyska V, Miteva‐Staleva J, Kostadinova N, Abrashev R, Angelova M, Krumova E. Sequencing and gene expression analysis of catalase genes in Antarctic fungal strain Penicillium griseofulvum P29. Polar Biol 2022. [DOI: 10.1007/s00300-021-03001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|