1
|
Xin X, Xu H, Jian J, Lv W, Zhao Y, Li Y, Zhao X, Hu C. A method of three-dimensional branching geometry to differentiate the intrahepatic vascular type in early-stage liver fibrosis using X-ray phase-contrast CT. Eur J Radiol 2022; 148:110178. [DOI: 10.1016/j.ejrad.2022.110178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
|
2
|
Wagner WL, Föhst S, Hock J, Kim YO, Popov Y, Schuppan D, Schladitz K, Redenbach C, Ackermann M. 3D analysis of microvasculature in murine liver fibrosis models using synchrotron radiation-based microtomography. Angiogenesis 2021; 24:57-65. [PMID: 33037487 PMCID: PMC7920893 DOI: 10.1007/s10456-020-09751-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Cirrhosis describes the development of excess fibrous tissue around regenerative nodules in response to chronic liver injury and usually leads to irreversible organ damage and end-stage liver disease. During the development of cirrhosis, the formation of collagenous scar tissue is paralleled by a reorganization and remodeling of the hepatic vascular system. To date, macrovascular remodeling in various cirrhosis models has been examined using three-dimensional (3D) imaging modalities, while microvascular changes have been studied mainly by two-dimensional (2D) light microscopic and electron microscopic imaging. Here, we report on the application of high-resolution 3D synchrotron radiation-based microtomography (SRμCT) for the study of the sinusoidal and capillary blood vessel system in three murine models of advanced parenchymal and biliary hepatic fibrosis. SRμCT facilitates the characterization of microvascular architecture and identifies features of intussusceptive angiogenesis in progressive liver fibrosis in a non-destructive 3D manner.
Collapse
Affiliation(s)
- Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Sonja Föhst
- Mathematics Department, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Jessica Hock
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Yury Popov
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Katja Schladitz
- Image Processing Department, Fraunhofer ITWM, Kaiserslautern, Germany
| | - Claudia Redenbach
- Mathematics Department, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, Wuppertal, Germany.
| |
Collapse
|
3
|
Zadorozhna M, Di Gioia S, Conese M, Mangieri D. Neovascularization is a key feature of liver fibrosis progression: anti-angiogenesis as an innovative way of liver fibrosis treatment. Mol Biol Rep 2020; 47:2279-2288. [PMID: 32040707 DOI: 10.1007/s11033-020-05290-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis affects over 100 million people in the world; it represents a multifactorial, fibro-inflammatory disorder characterized by exacerbated production of extracellular matrix with consequent aberration of hepatic tissue. The aetiology of this disease is very complex and seems to involve a broad spectrum of factors including the lifestyle, environment factors, genes and epigenetic changes. More evidences indicate that angiogenesis, a process consisting in the formation of new blood vessels from pre-existing vessels, plays a crucial role in the progression of liver fibrosis. Central to the pathogenesis of liver fibrosis is the hepatic stellate cells (HSCs) which represent a crossroad among inflammation, fibrosis and angiogenesis. Quiescent HSCs can be stimulated by a host of growth factors, pro-inflammatory mediators produced by damaged resident liver cell types, as well as by hypoxia, contributing to neoangiogenesis, which in turn can be a bridge between acute and chronic inflammation. As matter of fact, studies demonstrated that neutralization of vascular endothelial growth factor as well as other proangiogenic agents can attenuate the progression of liver fibrosis. With this review, our intent is to discuss the cause and the role of angiogenesis in liver fibrosis focusing on the current knowledge about the impact of anti-angiogenetic therapies in this pathology.
Collapse
Affiliation(s)
- Mariia Zadorozhna
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Domenica Mangieri
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
4
|
Sun M, Lv W, Zhao X, Qin L, Zhao Y, Xin X, Jian J, Chen X, Hu C. Vascular branching geometry relating to portal hypertension: a study of liver microvasculature in cirrhotic rats by X-ray phase-contrast computed tomography. Quant Imaging Med Surg 2020; 10:116-127. [PMID: 31956535 DOI: 10.21037/qims.2019.11.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Portal hypertension is one of the major complications of cirrhosis. The changes in hepatic microvasculature are considered as critical pathophysiological characteristics of portal hypertension. X-ray phase-contrast computed tomography (PCCT) is a new imaging technique that can detect liver vessels at a micrometric level without contrast agents. Methods In this study, male Sprague-Dawley rats with liver cirrhosis induced by carbon tetrachloride (CCl4) or bile duct ligation (BDL) were investigated with PCCT. The portal pressures of rats were recorded before euthanasia. The branch angle and Murray's deviation (MD) were measured based on the branching geometry of the three-dimensional (3D) microvasculature of liver cirrhosis in rats. Statistical analyses were performed to determine the correlation between branching geometry and portal pressure in liver fibrosis. Results The results demonstrated that the branch angle and MD significantly increased in the CCl4 model and BDL model compared with their corresponding normal group or sham group. The portal pressure was significantly correlated with the branching morphologic features (all R≥0.761 and P<0.01). Conclusions The branch angle and MD could accurately distinguish portal pressure in cirrhotic rats, suggesting that branching geometric characteristics of the microvasculature may be a promising marker in the prognosis of portal hypertension in liver cirrhosis.
Collapse
Affiliation(s)
- Mengyu Sun
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Wenjuan Lv
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lili Qin
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yuqing Zhao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xiaohong Xin
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Jianbo Jian
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Xiaodong Chen
- Key Laboratory of Optoelectronic Information Technology, Ministry of Education (Tianjin University), Tianjin 300072, China
| | - Chunhong Hu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
5
|
Phase-contrast computed tomography: A correlation study between portal pressure and three dimensional microvasculature of ex vivo liver samples from carbon tetrachloride-induced liver fibrosis in rats. Microvasc Res 2019; 125:103884. [DOI: 10.1016/j.mvr.2019.103884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 12/17/2022]
|
6
|
Jian J, Zhao X, Qin L, Zhao Y, Sun M, Lv W, Hu C. Three-dimensional visualization of fibrous tissues in cirrhotic rats via X-ray phase-contrast computed tomography with iodine staining. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1354-1360. [PMID: 31274464 DOI: 10.1107/s1600577519006064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
To accurately characterize cirrhosis, knowledge of the 3D fibrous structures is essential. Histology is the gold standard in cirrhosis screening, but it mainly provides structural information in 2D planes and destroys the 3D samples in the process. The aim of this study was to evaluate the potential of X-ray phase-contrast computed tomography (PCCT) with iodine staining for the 3D nondestructive visualization of internal structural details in entire cirrhotic livers with histopathologic correlation. In this study, cirrhotic livers induced by carbon tetrachloride (CCl4) in rats were imaged via PCCT and then histopathologically processed. Characteristics of the cirrhosis, i.e. abnormal nodules surrounded by annular fibrosis, were established and a 3D reconstruction of these structures was also performed via PCCT. Fibrosis area, septal width and nodular size were measured and the correlation for these quantitative measurements between PCCT and histopathologic findings was analyzed. The results showed that fibrous bands, small nodules and angio-architecture in cirrhosis were clearly presented in the PCCT images, with histopathologic findings as standard reference. In comparison with histopathology, PCCT was associated with a very close value for fibrosis area, septal width and nodular size. The quantitative measurements showed a strong correlation between PCCT and histopathology. Additionally, the 3D structures of fibrous bands and microvasculature were presented simultaneously. PCCT provides excellent results in the assessment of cirrhosis characteristics and 3D presentation of these feature structures compared with histopathology. Thus, the technique may serve as an adjunct nondestructive 3D modality for cirrhosis characterization.
Collapse
Affiliation(s)
- Jianbo Jian
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Lili Qin
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yuqing Zhao
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Mengyu Sun
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Wenjuan Lv
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Chunhong Hu
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, People's Republic of China
| |
Collapse
|
7
|
Duan J, Hu C, Qiu Q, Zhang J, Meng H, Wang K, Dong H, Wei H, Yin Y. Characterization of microvessels and parenchyma in in-line phase contrast imaging CT: healthy liver, cirrhosis and hepatocellular carcinoma. Quant Imaging Med Surg 2019; 9:1037-1046. [PMID: 31367557 DOI: 10.21037/qims.2019.06.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a cancer with a poor prognosis, and approximately 80% of HCC cases develop from cirrhosis. Imaging techniques in the clinic seem to be insufficient for revealing the microstructures of liver disease. In recent years, phase contrast imaging CT (PCI-CT) has opened new avenues for biomedical applications owing to its unprecedented spatial and contrast resolution. The aim of this study was to present three-dimensional (3D) visualization of human healthy liver, cirrhosis and HCC using a PCI-CT technique called in-line phase contrast imaging CT (ILPCI-CT) and to quantitatively evaluate the variations of these tissues, focusing on the liver parenchyma and microvasculature. Methods Tissue samples from 9 surgical specimens of normal liver (n=3), cirrhotic liver (n=2), and HCC (n=4) were imaged using ILPCI-CT at the Shanghai Synchrotron Radiation Facility (SSRF) without contrast agents. 3D visualization of all ex vivo liver samples are presented. To quantitatively evaluate the vessel features, the vessel branch angles of each sample were clearly depicted. Additionally, radiomic features of the liver parenchyma extracted from the 3D images were measured. To evaluate the stability of the features, the percent coefficient of variation (%COV) was calculated for each radiomic feature. A %COV <30 was considered to be low variation. Finally, one-way ANOVA, followed by Tukey's test, was used to determine significant changes among the different liver specimens. Results ILPCI-CT allows for a clearer view of the architecture of the vessels and reveals more structural details than does conventional radiography. Combined with the 3D visualization technique, ILPCI-CT enables the acquisition of an accurate description of the 3D vessel morphology in liver samples. Qualitative descriptions and quantitative assessment of microvessels demonstrated clear differences among human healthy liver, cirrhotic liver and HCC. In total, 38 (approximately 51%) radiomic features had low variation, including 11 first-order features, 16 GLCM features, 6 GLRLM features and 5 GLSZM features. The differences in the mean vessel branch angles and 3 radiomic features (first-order entropy, GLCM-inverse variance and GLCM-sum entropy) were statistically significant among the three groups of samples. Conclusions ILPCI-CT may allow for morphologic descriptions and quantitative evaluation of vessel microstructures and parenchyma in human healthy liver, cirrhotic liver and HCC. Vessel branch angles and radiomic features extracted from liver parenchyma images can be used to distinguish the three kinds of liver tissues.
Collapse
Affiliation(s)
- Jinghao Duan
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Chunhong Hu
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Qingtao Qiu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Jing Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Huipeng Meng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Keqiang Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Huajiang Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Hong Wei
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Yong Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| |
Collapse
|
8
|
Luo Y, Yin X, Shi S, Ren X, Zhang H, Wang Z, Cao Y, Tang M, Xiao B, Zhang M. Non-destructive 3D Microtomography of Cerebral Angioarchitecture Changes Following Ischemic Stroke in Rats Using Synchrotron Radiation. Front Neuroanat 2019; 13:5. [PMID: 30766481 PMCID: PMC6365468 DOI: 10.3389/fnana.2019.00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 01/29/2023] Open
Abstract
A better understanding of functional changes in the cerebral microvasculature following ischemic injury is essential to elucidate the pathogenesis of stroke. Up to now, the simultaneous depiction and stereological analysis of 3D micro-architectural changes of brain vasculature with network disorders remains a technical challenge. We aimed to explore the three dimensional (3D) microstructural changes of microvasculature in the rat brain on 4, 6 hours, 3 and 18 days post-ischemia using synchrotron radiation micro-computed tomography (SRμCT) with a per pixel size of 5.2 μm. The plasticity of angioarchitecture was distinctly visualized. Quantitative assessments of time-related trends after focal ischemia, including number of branches, number of nodes, and frequency distribution of vessel diameter, reached a peak at 6 h and significantly decreased at 3 days and initiated to form cavities. The detected pathological changes were also proven by histological tests. We depicted a novel methodology for the 3D analysis of vascular repair in ischemic injury, both qualitatively and quantitatively. Cerebral angioarchitecture sustained 3D remodeling and modification during the healing process. The results might provide a deeper insight into the compensatory mechanisms of microvasculature after injury, suggesting that SRμCT is able to provide a potential new platform for deepening imaging pathological changes in complicated angioarchitecture and evaluating potential therapeutic targets for stroke.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shupeng Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Ren
- Department of Orthopaedics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haoran Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuolu Wang
- Department of Breast Surgery, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Qin L, Zhao X, Jian J, Zhao Y, Sun M, Hu C. High-resolution 3D visualization of ductular proliferation of bile duct ligation-induced liver fibrosis in rats using x-ray phase contrast computed tomography. Sci Rep 2017; 7:4215. [PMID: 28652608 PMCID: PMC5484700 DOI: 10.1038/s41598-017-03993-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
X-ray phase-contrast computed tomography (PCCT) can provide excellent image contrast for soft tissues with small density differences, and it is particularly appropriate for three-dimensional (3D) visualization of accurate microstructures inside biological samples. In this study, the morphological structures of proliferative bile ductules (BDs) were visualized without contrast agents via PCCT with liver fibrosis samples induced by bile duct ligation (BDL) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups: sham operation group, 2-week and 6-week post-BDL groups. All livers were removed after euthanasia for a subsequent imaging. The verification of the ductular structures captured by PCCT was achieved by a careful head-to-head comparison with their corresponding histological images. Our experimental results demonstrated that PCCT images corresponded very well to the proliferative BDs shown by histological staining using cytokeratin 19 (CK19). Furthermore, the 3D density of proliferative BDs increased with the progression of liver fibrosis. In addition, PCCT accurately revealed the architecture of proliferative BDs in a 3D fashion, including the ductular ramification, the elongation and tortuosity of the branches, and the corrugations of the luminal duct surface. Thus, the high-resolution PCCT technique can improve our understanding of the characteristics of ductular proliferation from a new 3D perspective.
Collapse
Affiliation(s)
- Lili Qin
- College of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jianbo Jian
- College of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Yuqing Zhao
- College of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- College of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Chunhong Hu
- College of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|