1
|
Awali M, El Homsi M, Fraum TJ, Shetty AS, Ponisio MR, Gharzeddine K, Mhlanga J, Mallak N, Behr S, Itani M. PET/MRI: pictorial review of hepatobiliary and pancreatic applications. Abdom Radiol (NY) 2025; 50:875-901. [PMID: 39254711 DOI: 10.1007/s00261-024-04548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
PET and MRI both play valuable roles in the management of hepatobiliary and pancreatic (HBP) malignancies. Simultaneous PET/MRI combines the excellent soft-tissue resolution and anatomic details from MRI with functional information from PET in a single comprehensive examination. MRI is the main imaging modality in evaluating HCC, playing important roles in screening, characterization, local extent, and evaluating tumor response, whereas 18F-fluorodeoxyglucose (FDG) PET can help evaluate for lymph node involvement and metastatic disease. In cholangiocarcinoma and pancreatic malignancies, both PET and MRI have excellent utility in initial staging as well as assessing treatment response. In all HBP malignancies, FDG-PET/MRI is a unique problem-solving tool in complex cases and diagnostic challenges, especially after locoregional therapy and when differentiating residual or recurrent viable disease from inflammatory and other benign processes. In this manuscript, we review the role of PET/MRI in the diagnosis, staging, assessing treatment response, and characterizing post-treatment processes. With the introduction of multiple new tracers, the value of PET/MRI has not yet been fully realized, and more studies are needed to demonstrate the utility and efficacy of PET/MRI in improving patient care in hepatobiliary and pancreatic oncology.
Collapse
Affiliation(s)
- Mohamed Awali
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA
| | - Maria El Homsi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA
| | - Anup S Shetty
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA
| | - Maria R Ponisio
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA
| | - Karem Gharzeddine
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Joyce Mhlanga
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health & Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Spencer Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, Room M 372, Box 0628, San Francisco, CA, 94143, USA
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 South Kingshighway Blvd, Box 8131, St Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Kohan A, Hanneman K, Mirshahvalad SA, Afaq A, Mallak N, Metser U, Veit-Haibach P. Current Applications of PET/MR: Part II: Clinical Applications II. Can Assoc Radiol J 2024; 75:826-837. [PMID: 38836428 DOI: 10.1177/08465371241255904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Due to the major improvements in the hardware and image reconstruction algorithms, positron emission tomography/magnetic resonance imaging (PET/MR) is now a reliable state-of-the-art hybrid modality in medical practice. Currently, it can provide a broad range of advantages in preclinical and clinical imaging compared to single-modality imaging. In the second part of this review, we discussed the further clinical applications of PET/MR. In the chest, PET/MR has particular potential in the oncology setting, especially when utilizing ultrashort/zero echo time MR sequences. Furthermore, cardiac PET/MR can provide reliable information in evaluating myocardial inflammation, cardiac amyloidosis, myocardial perfusion, myocardial viability, atherosclerotic plaque, and cardiac masses. In gastrointestinal and hepato-pancreato-biliary malignancies, PET/MR is able to precisely detect metastases to the liver, being superior over the other imaging modalities. In genitourinary and gynaecology applications, PET/MR is a comprehensive diagnostic method, especially in prostate, endometrial, and cervical cancers. Its simultaneous acquisition has been shown to outperform other imaging techniques for the detection of pelvic nodal metastases and is also a reliable modality in radiation planning. Lastly, in haematologic malignancies, PET/MR can significantly enhance lymphoma diagnosis, particularly in detecting extra-nodal involvement. It can also comprehensively assess treatment-induced changes. Furthermore, PET/MR may soon become a routine in multiple myeloma management, being a one-stop shop for evaluating bone, bone marrow, and soft tissues.
Collapse
Affiliation(s)
- Andres Kohan
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Mirshahvalad
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Asim Afaq
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Ur Metser
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Shi Y, Yu H, Zhang X, Xu X, Tuo H. [ 18F]FDG PET/CT versus [ 18F]FDG PET/MRI in the evaluation of liver metastasis in patients with primary cancer: A head-to-head comparative meta-analysis. Clin Imaging 2024; 112:110209. [PMID: 38833916 DOI: 10.1016/j.clinimag.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE This meta-analysis aimed to compare the diagnostic effectiveness of [18F]FDG PET/CT with that of [18F]FDG PET/MRI in terms of identifying liver metastasis in patients with primary cancer. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were searched, and studies evaluating the diagnostic efficacy of [18F]FDG PET/CT and [18F]FDG PET/MRI in patients with liver metastasis of primary cancer were included. We used a random effects model to analyze their sensitivity and specificity. Subgroup analyses and corresponding meta-regressions focusing on race, image analysis, study design, and analysis methodologies were conducted. Cochrane Q and I2 statistics were used to assess intra-group and inter-group heterogeneity. RESULTS Seven articles with 343 patients were included in this meta-analysis. The sensitivity of [18F]FDG PET/CT was 0.82 (95 % CI: 0.63-0.96), and that of [18F]FDG PET/MRI was 0.91 (95 % CI: 0.82-0.98); there was no significant difference between the two methods (P = 0.32). Similarly, both methods showed equal specificity: 1.00 (95 % CI: 0.95-1.00) for [18F]FDG PET/CT and 1.00 (95 % CI: 0.96-1.00) for [18F]FDG PET/MRI, and thus, there was no significant difference between the methods (P = 0.41). Furthermore, the subgroup analyses revealed no differences. Meta-regression analysis revealed that race was a potential source of heterogeneity for [18F]FDG PET/CT (P = 0.01), while image analysis and contrast agent were found to be potential sources of heterogeneity for [18F]FDG PET/MRI (P = 0.02). CONCLUSIONS [18F]FDG PET/MRI has similar sensitivity and specificity to [18F]FDG PET/CT for detecting liver metastasis of primary cancer in both the general population and in subgroups. [18F]FDG PET/CT may be a more cost-effective option. However, the conclusions of this meta-analysis are tentative due to the limited number of studies included, and further research is necessary for validation.
Collapse
Affiliation(s)
- Yige Shi
- Department of Graduate College, Hebei Medical University, Shijiazhuang 050011, China; Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang 050051, China
| | - Hanxiang Yu
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xiaoyang Zhang
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang 050051, China; Department of Graduate college, North China University of Science and Technology, Tangshan 063210,China
| | - Xing Xu
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang 050051, China; Department of Graduate college, North China University of Science and Technology, Tangshan 063210,China
| | - Hongfang Tuo
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang 050051, China.
| |
Collapse
|
4
|
Sabeghi P, Katal S, Chen M, Taravat F, Werner TJ, Saboury B, Gholamrezanezhad A, Alavi A. Update on Positron Emission Tomography/Magnetic Resonance Imaging: Cancer and Inflammation Imaging in the Clinic. Magn Reson Imaging Clin N Am 2023; 31:517-538. [PMID: 37741639 DOI: 10.1016/j.mric.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid PET/MRI is highly valuable, having made significant strides in overcoming technical challenges and offering unique advantages such as reduced radiation, precise data coregistration, and motion correction. Growing evidence highlights the value of PET/MRI in broad clinical aspects, including inflammatory and oncological imaging in adults, pregnant women, and pediatrics, potentially surpassing PET/CT. This newly integrated solution may be preferred over PET/CT in many clinical conditions. However, further technological advancements are required to facilitate its broader adoption as a routine diagnostic modality.
Collapse
Affiliation(s)
- Paniz Sabeghi
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Sanaz Katal
- Medical Imaging Department of St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Michelle Chen
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Farzaneh Taravat
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Babak Saboury
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Jha A, Civelek AC. Editorial: Global excellence in nuclear medicine: North America. Front Med (Lausanne) 2023; 10:1300179. [PMID: 37954553 PMCID: PMC10635407 DOI: 10.3389/fmed.2023.1300179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 11/14/2023] Open
Affiliation(s)
- Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ali Cahid Civelek
- Nuclear Medicine, Radiology, and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Veit-Haibach P, Ahlström H, Boellaard R, Delgado Bolton RC, Hesse S, Hope T, Huellner MW, Iagaru A, Johnson GB, Kjaer A, Law I, Metser U, Quick HH, Sattler B, Umutlu L, Zaharchuk G, Herrmann K. International EANM-SNMMI-ISMRM consensus recommendation for PET/MRI in oncology. Eur J Nucl Med Mol Imaging 2023; 50:3513-3537. [PMID: 37624384 PMCID: PMC10547645 DOI: 10.1007/s00259-023-06406-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
PREAMBLE The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The merged International Society for Magnetic Resonance in Medicine (ISMRM) is an international, nonprofit, scientific association whose purpose is to promote communication, research, development, and applications in the field of magnetic resonance in medicine and biology and other related topics and to develop and provide channels and facilities for continuing education in the field.The ISMRM was founded in 1994 through the merger of the Society of Magnetic Resonance in Medicine and the Society of Magnetic Resonance Imaging. SNMMI, ISMRM, and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine and/or magnetic resonance imaging. The SNMMI, ISMRM, and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and/or magnetic resonance imaging and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice guideline, representing a policy statement by the SNMMI/EANM/ISMRM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI, ISMRM, and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging and magnetic resonance imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized. These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI, the ISMRM, and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Patrick Veit-Haibach
- Joint Department Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Toronto General Hospital, 1 PMB-275, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, 431 53, Mölndal, Sweden
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Geoffrey B Johnson
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen, Denmark
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Greg Zaharchuk
- Division of Neuroradiology, Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
| |
Collapse
|
7
|
Schnitzer ML, von Münchhausen N, Biechele G, Runtemund J, Grawe F, Geyer T, Kaiser CG, Haag F, Rübenthaler J, Froelich MF. Cost-effectiveness analysis of MRI, CE-CT and 18F-FDG PET/CT for detecting colorectal liver metastases eligible for hepatic resection. Front Oncol 2023; 13:1161738. [PMID: 37554160 PMCID: PMC10405934 DOI: 10.3389/fonc.2023.1161738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVES Colorectal cancer (CRC) is a serious challenge for the health system. In 2022 CRC represented 8% of cancer diagnoses in the United States. 30% of patients already show metastases at the initial tumor staging. The majority of these metastases are sited in the liver. According to their extension and the status of the tumor colorectal liver metastases can be treated in several ways, with hepatic resection being the gold-standard. Contrast-enhanced computed tomography (CE-CT), positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) can be used for evaluation of resectability of these liver metastases. The aim of this study is to assess the most economic imaging modality for detecting liver metastases eligible for hepatic resection by analyzing their cost-effectiveness. MATERIALS AND METHODS In our study, a Markov state transition model was built to calculate the quality-adjusted life years (QALYs) and overall costs for each diagnostic strategy in accord with the stated input values obtained from scientific research. Further, probabilistic sensitivity analyses by means of Monte Carlo simulations were performed to consider possible model uncertainties. For evaluation of the cost-effectiveness on an economic threshold, the Willingness-to-pay (WTP) was set at $ 100,000. The applied values and the calculated results are based on the U.S. healthcare system. RESULTS CE-CT led to overall costs of $ 42,874.02 and 8.47 QALYs, whereas MRI led to $ 40,863.65 and 8.50 QALYs. PET/CT resulted in overall costs of $ 43,216.74 and 8.48 QALYs. Therefore, MRI was determined to be the dominant strategy in the model. According to the performed sensitivity analyses, MRI remained cost-effective over a wide range of WTPs. CONCLUSION In conclusion, according to our analysis, MRI is the dominant strategy for detecting hepatic metastases eligible for hepatic resection in colorectal cancer.
Collapse
Affiliation(s)
- Moritz L. Schnitzer
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Niklas von Münchhausen
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim-University of Heidelberg, Mannheim, Germany
| | - Gloria Biechele
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jasmin Runtemund
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Freba Grawe
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Geyer
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Clemens G. Kaiser
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim-University of Heidelberg, Mannheim, Germany
| | - Florian Haag
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim-University of Heidelberg, Mannheim, Germany
| | - Johannes Rübenthaler
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim-University of Heidelberg, Mannheim, Germany
| |
Collapse
|
8
|
Furtado FS, Mercaldo ND, Vahle T, Benkert T, Bradley WR, Ratanaprasatporn L, Seethamraju RT, Harisinghani MG, Lee S, Suarez-Weiss K, Umutlu L, Catana C, Pomykala KL, Domachevsky L, Bernstine H, Groshar D, Rosen BR, Catalano OA. Simultaneous multislice diffusion-weighted imaging versus standard diffusion-weighted imaging in whole-body PET/MRI. Eur Radiol 2023; 33:2536-2547. [PMID: 36460925 DOI: 10.1007/s00330-022-09275-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE To compare standard (STD-DWI) single-shot echo-planar imaging DWI and simultaneous multislice (SMS) DWI during whole-body positron emission tomography (PET)/MRI regarding acquisition time, image quality, and lesion detection. METHODS Eighty-three adults (47 females, 57%), median age of 64 years (IQR 52-71), were prospectively enrolled from August 2018 to March 2020. Inclusion criteria were (a) abdominal or pelvic tumors and (b) PET/MRI referral from a clinician. Patients were excluded if whole-body acquisition of STD-DWI and SMS-DWI sequences was not completed. The evaluated sequences were axial STD-DWI at b-values 50-400-800 s/mm2 and the apparent diffusion coefficient (ADC), and axial SMS-DWI at b-values 50-300-800 s/mm2 and ADC, acquired with a 3-T PET/MRI scanner. Three radiologists rated each sequence's quality on a five-point scale. Lesion detection was quantified using the anatomic MRI sequences and PET as the reference standard. Regression models were constructed to quantify the association between all imaging outcomes/scores and sequence type. RESULTS The median whole-body STD-DWI acquisition time was 14.8 min (IQR 14.1-16.0) versus 7.0 min (IQR 6.7-7.2) for whole-body SMS-DWI, p < 0.001. SMS-DWI image quality scores were higher than STD-DWI in the abdomen (OR 5.31, 95% CI 2.76-10.22, p < 0.001), but lower in the cervicothoracic junction (OR 0.21, 95% CI 0.10-0.43, p < 0.001). There was no significant difference in the chest, mediastinum, pelvis, and rectum. STD-DWI detected 276/352 (78%) lesions while SMS-DWI located 296/352 (84%, OR 1.46, 95% CI 1.02-2.07, p = 0.038). CONCLUSIONS In cancer staging and restaging, SMS-DWI abbreviates acquisition while maintaining or improving the diagnostic yield in most anatomic regions. KEY POINTS • Simultaneous multislice diffusion-weighted imaging enables faster whole-body image acquisition. • Simultaneous multislice diffusion-weighted imaging maintains or improves image quality when compared to single-shot echo-planar diffusion-weighted imaging in most anatomical regions. • Simultaneous multislice diffusion-weighted imaging leads to superior lesion detection.
Collapse
Affiliation(s)
- Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - Nathaniel D Mercaldo
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Thomas Vahle
- MR Application Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - William R Bradley
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Lisa Ratanaprasatporn
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Ravi Teja Seethamraju
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- MR Collaborations, Siemens Medical Solutions USA, Inc., 30 Jonathan Ln, Malden, MA, 02148, USA
| | - Mukesh G Harisinghani
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Susanna Lee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Krista Suarez-Weiss
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Lale Umutlu
- Universitätsmedizin Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Ciprian Catana
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | | | - Liran Domachevsky
- Sheba Medical Center, Derech Sheba 2, Ramat Gan, Israel
- Tel Aviv University, 6997801, Tel Aviv-Yafo, Israel
| | - Hanna Bernstine
- Tel Aviv University, 6997801, Tel Aviv-Yafo, Israel
- Assuta Medical Center, HaBarzel 20 St, Ramat Hahayal, Tel Aviv, Israel
| | - David Groshar
- Tel Aviv University, 6997801, Tel Aviv-Yafo, Israel
- Assuta Medical Center, HaBarzel 20 St, Ramat Hahayal, Tel Aviv, Israel
| | - Bruse R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - Onofrio Antonio Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
9
|
Zhao L, Pang Y, Sun L, Lin Q, Wu H, Chen H. Fibroblast Activation Protein Inhibitor PET in Pancreatic Cancer. PET Clin 2023:S1556-8598(23)00014-7. [PMID: 37030983 DOI: 10.1016/j.cpet.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Radiolabeled fibroblast activation protein inhibitor (FAPI) has been introduced as a promising PET tracer for imaging of pancreatic cancer. To date, FAPI PET/computed tomography (CT) has generally but not universally yielded higher radiotracer uptake and tumor-to-background contrast than 18F-fluorodeoxyglucose PET/CT in primary tumors, involved lymph nodes, and visceral metastases. It may also be useful for the evaluation of the tumor response to chemotherapy. However, increased FAPI uptake may be observed in benign conditions, including pancreatitis, pancreatic tuberculosis, IgG4-related disease, and serous cystadenoma, and therefore, clinical, radiological, and pathological correlations are required.
Collapse
|
10
|
Ruan D, Sun L. Diagnostic Performance of PET/MRI in Breast Cancer: A Systematic Review and Bayesian Bivariate Meta-analysis. Clin Breast Cancer 2023; 23:108-124. [PMID: 36549970 DOI: 10.1016/j.clbc.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION By performing a systematic review and meta-analysis, the diagnostic value of 18F-FDG PET/MRI in breast lesions, lymph nodes, and distant metastases was assessed, and the merits and demerits of PET/MRI in the application of breast cancer were comprehensively reviewed. METHODS Breast cancer-related studies using 18F-FDG PET/MRI as a diagnostic tool published before September 12, 2022 were included. The pooled sensitivity, specificity, log diagnostic odds ratio (LDOR), and area under the curve (AUC) were calculated using Bayesian bivariate meta-analysis in a lesion-based and patient-based manner. RESULTS We ultimately included 24 studies (including 1723 patients). Whether on a lesion-based or patient-based analysis, PET/MRI showed superior overall pooled sensitivity (0.95 [95% CI: 0.92-0.98] & 0.93 [95% CI: 0.88-0.98]), specificity (0.94 [95% CI: 0.90-0.97] & 0.94 [95% CI: 0.92-0.97]), LDOR (5.79 [95% CI: 4.95-6.86] & 5.64 [95% CI: 4.58-7.03]) and AUC (0.98 [95% CI: 0.94-0.99] & 0.98[95% CI: 0.92-0.99]) for diagnostic applications in breast cancer. In the specific subgroup analysis, PET/MRI had high pooled sensitivity and specificity for the diagnosis of breast lesions and distant metastatic lesions and was especially excellent for bone lesions. PET/MRI performed poorly for diagnosing axillary lymph nodes but was better than for lymph nodes at other sites (pooled sensitivity, specificity, LDOR, AUC: 0.86 vs. 0.58, 0.90 vs. 0.82, 4.09 vs. 1.98, 0.89 vs. 0.84). CONCLUSION 18F-FDG PET/MRI performed excellently in diagnosing breast lesions and distant metastases. It can be applied to the initial diagnosis of suspicious breast lesions, accurate staging of breast cancer patients, and accurate restaging of patients with suspected recurrence.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
11
|
Imaging Diagnosis of Primary Liver Cancer Using Magnetic Resonance Dilated Weighted Imaging and the Treatment Effect of Sorafenib. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8586943. [PMID: 35799672 PMCID: PMC9256338 DOI: 10.1155/2022/8586943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022]
Abstract
Objective This work explores the application value of dilated weighted imaging (DWI) in the diagnosis of primary liver cancer (PLC) and the effect of sorafenib in the treatment of PLC. Methods 88 patients with PLC who were treated in The First Affiliated Hospital of Northwest University from March 2019 to March 2021 were selected and randomly rolled into an experimental group and a control group, with 44 cases in each group. Patients in both groups were treated with transcatheter arterial chemoembolization (TACE), and the patients in the experimental group were treated with oral sorafenib on the basis of TACE. The indicators of complications, short-term efficacy (STE), and long-term efficacy (LTE) of the two groups were observed. All patients received DWI and magnetic resonance (MR) plain scan. The diagnostic accuracy and misdiagnosis rate of the two methods in diagnosing the PLC were compared. Results The accuracy, specificity, and sensitivity of MR plain scan were 68%, 88%, and 89%, respectively, while those of DWI were 96%, 95%, and 94.2%, respectively. It indicated that the accuracy, specificity, and sensitivity of DWI in diagnosing lesions were better than those of MR plain scan, especially the diagnostic accuracy (P < 0.05). The objective response rate (ORR) and disease control rate (DCR) of the STE in the experimental group were 30% and 97%, respectively, and those in the control group were 6% and 54.5%, respectively. The experimental group's mean progression-free survival (mPFS) and mean overall survival (mOS) were 12 and 25 months, respectively, while the control group's were 8 and 19 months, respectively. It was concluded that the mPFS and mOS of patients receiving TACE combined with oral sorafenib were much higher than those receiving TACE only (P < 0.05). Conclusion DWI and TACE combined with sorafenib had high application value in the diagnosis and treatment of PLC.
Collapse
|
12
|
Firestein R, Marcinkiewicz C, Nie L, Chua HK, Velazquez Quesada I, Torelli M, Sternberg M, Gligorijevic B, Shenderova O, Schirhagl R, Feuerstein GZ. Pharmacodynamic Studies of Fluorescent Diamond Carriers of Doxorubicin in Liver Cancer Cells and Colorectal Cancer Organoids. Nanotechnol Sci Appl 2021; 14:139-159. [PMID: 34522092 PMCID: PMC8434926 DOI: 10.2147/nsa.s321725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We recently reported on preferential deposition of bare fluorescent diamond particles FDP-NV-700/800nm (FDP-NV) in the liver following intravenous administration to rats. The pharmacokinetics of FDP-NV in that species indicated short residency in the circulation by rapid clearance by the liver. Retention of FDP-NV in the liver was not associated with any pathology. These observations suggested that cancer therapeutics, such as doxorubicin, linked to FDP-NV, could potentially serve for anti-cancer treatment while sparing toxicities of peripheral organs. PURPOSE To generate proof-of-concept (POC) and detail mechanisms of action of doxorubicin-coated FDP-NV-700/800nm (FDP-DOX) as a prospective chemotherapeutic for metastatic liver cancer. METHODS FDP-DOX was generated by adsorption chemistry. Experimental design included concentration and time-dependent efficacy studies as compared with naïve (baren) FDP-NV in in vitro liver cancer cells models. Uptake of FDP-NV and FDP-DOX by HepG-2, Hep-3B and hCRC organoids were demonstrated by flow-cytometry and fluorescent microscopy. FDP-DOX pharmacodynamic effects included metabolic as well as cell death biomarkers Annexin V, TUNEL and LDH leakage. DOX desorpted from FDP-DOX was assessed by confocal microscopy and chemical assay of cells fractions. RESULTS FDP-DOX efficacy was dose- and time-dependent and manifested in both liver cancer cell lines and human CRC organoids. FDP-DOX was rapidly internalized into cancer cells/organoids leading to cancer growth inhibition and apoptosis. FDP-DOX disrupted cell membrane integrity as evident by LDH release and suppressing mitochondrial metabolic pathways (AlamarBlue assay). Access of free DOX to the nuclei was confirmed by direct UV-Visible fluorescent assay and confocal microscopy of DOX fluorescence. CONCLUSION The rapid uptake and profound cancer inhibition observed using FDP-DOX in clinically relevant cancer models, highlight FDP-DOX promise for cancer chemotherapeutics. We also conclude that the in vitro data justify further investment in in vivo POC studies.
Collapse
Affiliation(s)
- Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Cezary Marcinkiewicz
- Debina Diagnostics Inc., Newtown Square, PA, USA,College of Engineering, Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Linyan Nie
- Groningen University, Groningen, 9727, the Netherlands
| | - Hui Kheng Chua
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Ines Velazquez Quesada
- College of Engineering, Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Marco Torelli
- Adámas Nanotechnologies, Inc., Raleigh, NC, 27617, USA
| | | | - Bojana Gligorijevic
- College of Engineering, Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | | | | | - Giora Z Feuerstein
- Debina Diagnostics Inc., Newtown Square, PA, USA,Correspondence: Giora Z Feuerstein Debina Diagnostics Inc., 33 Bishop Hollow Road, Newtown Square, PA, 19073, USATel +4842221575 Email
| |
Collapse
|
13
|
Abstract
PET/MR imaging is in routine clinical use and is at least as effective as PET/CT for oncologic and neurologic studies with advantages with certain PET radiopharmaceuticals and applications. In addition, whole body PET/MR imaging substantially reduces radiation dosages compared with PET/CT which is particularly relevant to pediatric and young adult population. For cancer imaging, assessment of hepatic, pelvic, and soft-tissue malignancies may benefit from PET/MR imaging. For neurologic imaging, volumetric brain MR imaging can detect regional volume loss relevant to cognitive impairment and epilepsy. In addition, the single-bed position acquisition enables dynamic brain PET imaging without extending the total study length which has the potential to enhance the diagnostic information from PET.
Collapse
Affiliation(s)
- Farshad Moradi
- Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| | - Andrei Iagaru
- Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, JT 773, Birmingham, AL 35249, USA
| |
Collapse
|
14
|
Firework Optimization Algorithm-Based Diagnosis of Hepatocellular Carcinoma and Hepatic Cavernous Hemangioma Using MRI Images. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:3970529. [PMID: 34377104 PMCID: PMC8318739 DOI: 10.1155/2021/3970529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
This study was aimed to explore the diagnostic features of magnetic resonance imaging (MRI) on hepatocellular carcinoma (HCC) and hepatic cavernous hemangioma (HCH). A fireworks algorithm optimization (FAO) was proposed based on the fireworks algorithm (FA), and it was compared with the maximum between-class variance method (OTSU) and the maximum entropy threshold method (KSW) for analysis. In addition, it was applied to the diagnosis of MRI images of 55 HCC patients in the experimental group (group E) and 55 HCH patients in the control group (group C). It was found that the FAO showed a greatly lower difference function (DF) and a shorter running time in contrast to the OTSU and KSW algorithms (P < 0.05); the diagnostic accuracy (DA) of the T1-weighted image (T1WI) for patients in groups E and C was 85.31% and 95.85%, respectively, and the DA of the T2-weighted image (T2WI) was 97.84% (group E) and 89.71% (group C), respectively. In short, FAO showed an excellent performance in segmentation and reconstruction of MRI images for liver tissue, and T1WI and T2WI of MRI images showed high accuracy in diagnosing the HCC and HCH, respectively.
Collapse
|
15
|
Hosono M, Takenaka M, Monzen H, Tamura M, Kudo M, Nishimura Y. Cumulative radiation doses from recurrent PET/CT examinations. Br J Radiol 2021; 94:20210388. [PMID: 34111964 PMCID: PMC9328066 DOI: 10.1259/bjr.20210388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Positron emission tomography (PET–CT) is an essential imaging modality for the management of various diseases. Increasing numbers of PET–CT examinations are carried out across the world and deliver benefits to patients; however, there are concerns about the cumulative radiation doses from these examinations in patients. Compared to the radiation exposure delivered by CT, there have been few reports on the frequency of patients with a cumulative effective radiation dose of ≥100 mSv from repeated PET–CT examinations. The emerging dose tracking system facilitates surveys on patient cumulative doses by PET–CT because it can easily wrap up exposure doses of PET radiopharmaceuticals and CT. Regardless of the use of a dose tracking system, implementation of justification for PET–CT examinations and utilisation of dose reduction measures are key issues in coping with the cumulative dose in patients. Despite all the advantages of PET/MRI such as eliminating radiation exposure from CT and providing good tissue contrast in MRI, it is expensive and cannot be introduced at every facility; thus, it is still necessary to utilise PET–CT with radiation reduction measures in most clinical situations.
Collapse
Affiliation(s)
- Makoto Hosono
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Mamoru Takenaka
- Department of Gastroenterology, Faculty of Medicine, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Hajime Monzen
- . Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Mikoto Tamura
- . Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology, Faculty of Medicine, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
16
|
Singh AK, Rana SS. Endoscopic Ultrasound for Detection of Liver Metastasis: Hope or Hype? JOURNAL OF DIGESTIVE ENDOSCOPY 2021. [DOI: 10.1055/s-0041-1728234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractTransabdominal ultrasonography, contrast-enhanced computed tomography, and magnetic resonance imaging (MRI) are the common diagnostic tests for the detection of hepatic lesions. Use of enhanced and advanced MRI technique, that is, diffusion weighted MRI and hepatocyte-specific contrast agents, has further improved the accuracy of detection of metastatic liver lesions ≤10 mm in diameter. However, even with these advanced imaging modalities sensitivity is low for lesions smaller than 10 mm when compared with standard intraoperative ultrasound. Endoscopic ultrasound (EUS) is an emerging imaging modality with resolution sufficient to detect and sample lesions as small as 5 mm in diameter. In this news and views, we have discussed the role of standard and enhanced EUS for the detection of metastatic liver lesions.
Collapse
Affiliation(s)
- Anupam Kumar Singh
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Surinder S. Rana
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
17
|
PET/MRI of the hepatobiliary system: Review of techniques and applications. Clin Imaging 2020; 71:160-169. [PMID: 33285404 DOI: 10.1016/j.clinimag.2020.10.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Simultaneous positron emission tomography and MRI (PET/MRI) is an emerging technology that offers the benefits of MRI, including excellent soft tissue contrast, lack of ionizing radiation, and functional MRI techniques, with the physiologic information provided by PET. Although most PET/MRI systems are currently installed in tertiary care centers, PET/MRI technology is becoming increasingly widespread. The usefulness of PET/MRI varies by tumor type and organ system and has been shown to have utility in evaluation of primary and secondary hepatic neoplasms. Understanding the appropriate applications, techniques and relevant imaging findings is important for practicing radiologists considering or currently utilizing PET/MR for the evaluation of primary liver neoplasms, including hepatocellular carcinoma (HCC), as well as staging of biliary neoplasms including cholangiocarcinoma and gallbladder cancer, identification of liver metastases, and staging of neuroendocrine tumor.
Collapse
|
18
|
Nguyen NC, Moon CH, Muthukrishnan A, Furlan A. 68Ga-DOTATATE PET/MRI for Neuroendocrine Tumors: A Pictorial Review. Clin Nucl Med 2020; 45:e406-e410. [PMID: 32520493 DOI: 10.1097/rlu.0000000000003085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuroendocrine tumors (NETs) constitute a variety of neoplastic entities and exhibit variable degrees of neuroendocrine differentiation and phenotypes, as well as genetic profiles. Ga-DOTATATE PET is a novel imaging technique for NET. Although PET/CT is commonly utilized for oncologic imaging, PET/MRI is particularly suited for NETs, as MRI provides greater soft tissue contrast than CT, allowing for improved detection and characterization of NETs, particularly when liver metastasis is suspected or needs to be ruled out. The current pictorial review aims to illustrate the complementary advantages, as well as pitfalls of Ga-DOTATATE PET/MRI in the evaluation of NETs.
Collapse
Affiliation(s)
- Nghi C Nguyen
- From the Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | | | | | | |
Collapse
|
19
|
de Mooij CM, Sunen I, Mitea C, Lalji UC, Vanwetswinkel S, Smidt ML, van Nijnatten TJ. Diagnostic performance of PET/computed tomography versus PET/MRI and diffusion-weighted imaging in the N- and M-staging of breast cancer patients. Nucl Med Commun 2020; 41:995-1004. [PMID: 32769814 PMCID: PMC7497599 DOI: 10.1097/mnm.0000000000001254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To provide a systematic review regarding the diagnostic performance of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) and diffusion-weighted imaging (DWI) compared to 18F-FDG PET/computed tomography (CT) focused on nodal and distant staging in breast cancer patients. METHODS The PubMed and Embase databases were searched for relevant publications until April 2020. Two independent reviewers searched for eligible articles based on predefined in- and exclusion criteria, assessed quality and extracted data. RESULTS Eleven eligible studies were selected from 561 publications identified by the search. In seven studies, PET/CT was compared with PET/MRI, and in five, PET/CT with DWI. Significantly higher sensitivity for PET/MRI compared to PET/CT in a lesion-based analysis was reported for all lesions together (77% versus 89%) in one study, osseous metastases (69-99% versus 92-98%) in two studies and hepatic metastases (70-75% versus 80-100%) in one study. Moreover, PET/MRI revealed a significantly higher amount of osseous metastases (90 versus 141) than PET/CT. PET/CT is associated with a statistically higher specificity than PET/MRI in the lesion detection of all lesions together (98% versus 96%) and of osseous metastases (100% versus 95%), both in one study. None of the reviewed studies reported significant differences between PET/CT and DWI for any of the evaluated sites. There is a trend toward higher specificity for PET/CT. CONCLUSION In general, there is a trend toward higher sensitivity and lower specificity of PET/MRI when compared to PET/CT. Results on the diagnostic performance of DWI are conflicting. Rather than evaluating it separate, it seems to have complementary value when combined with other MR sequences.
Collapse
Affiliation(s)
- Cornelis Maarten de Mooij
- Departments of Radiology and Nuclear Medicine
- Surgery
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Inés Sunen
- Departments of Radiology and Nuclear Medicine
- Department of Radiology, Miguel Servet Hospital, Zaragoza, Spain
| | - Cristina Mitea
- Departments of Radiology and Nuclear Medicine
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | - Marjolein L. Smidt
- Surgery
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Thiemo J.A. van Nijnatten
- Departments of Radiology and Nuclear Medicine
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
20
|
Maloney NJ, Nguyen KA, Bach DQ, Zaba LC. Sites of distant metastasis in Merkel cell carcinoma differ by primary tumor site and are of prognostic significance: A population-based study in the Surveillance, Epidemiology, and End Results database from 2010 to 2016. J Am Acad Dermatol 2020; 84:568-570. [PMID: 32781190 DOI: 10.1016/j.jaad.2020.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Nolan J Maloney
- Department of Dermatology, Stanford University School of Medicine, Palo Alto, California.
| | - Kevin A Nguyen
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Daniel Q Bach
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Lisa C Zaba
- Department of Dermatology, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
21
|
Panda A, Goenka AH, Hope TA, Veit-Haibach P. PET/Magnetic Resonance Imaging Applications in Abdomen and Pelvis. Magn Reson Imaging Clin N Am 2020; 28:369-380. [DOI: 10.1016/j.mric.2020.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Yoon JH, Lee JM, Chang W, Kang HJ, Bandos A, Lim HJ, Kang SY, Kang KW, Ryoo SB, Jeong SY, Park KJ. Initial M Staging of Rectal Cancer: FDG PET/MRI with a Hepatocyte-specific Contrast Agent versus Contrast-enhanced CT. Radiology 2019; 294:310-319. [PMID: 31793850 DOI: 10.1148/radiol.2019190794] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BackgroundThe performance of PET/MRI in the determination of distant metastases (M stage) in rectal cancer relative to the current practice with contrast material-enhanced CT is largely unknown.PurposeTo compare the staging of clinical M stage rectal cancer with fluorine 18 fluorodeoxyglucose (FDG) PET/MRI (including dedicated liver and rectal MRI) to that of chest and abdominopelvic CT and dedicated rectal MRI.Materials and MethodsFrom January 2016 to August 2017, patients with newly diagnosed advanced mid to low rectal cancers were recruited for this prospective study (clinicaltrials.gov identifier: NCT0265170). Participants underwent both FDG PET/MRI with dedicated liver and rectal MRI and chest and abdominopelvic CT (the standard-of-care protocol) within 3 weeks of each other. Thereafter, M stage assessment performance was determined by using findings from 6-month clinical follow-up or biopsy as the reference standard. Performance was compared between protocols. Agreement in M stage classification was also assessed. Nonparametric statistical analyses were performed, and P < .05 indicated a significance difference.ResultsSeventy-one participants (28 women; mean age ± standard deviation, 61 years ± 9; age range, 39-79 years) were enrolled. The M stage could not be determined with the standard-of-care protocol in 22 of the 71 participants (31%; 95% confidence interval [CI]: 20.5%, 43.1%) because of indeterminate lesions. However, among these participants, PET/MRI correctly helped identify all 14 (100%; 95% CI: 76.8%, 100%) without metastases and seven of eight (88%; 95% CI: 47.4%, 99.7%) who were later confirmed to have metastases. PET/MRI showed high specificity for ruling out metastatic disease compared with the standard-of-care protocol (98% [54 of 55 participants] vs 72% [40 of 55 participants], respectively; P < .001), without increasing the number of participants with missed metastasis (6% [one of 16 participants] vs 6% [one of 16 participants]; P > .99).ConclusionPET/MRI with dedicated rectal and liver MRI can facilitate the staging work-up of newly diagnosed advanced rectal cancers by helping assess indeterminate lesions, metastases, and incidental findings better than contrast-enhanced CT, obviating for additional imaging work-up.© RSNA, 2019Online supplemental material is available for this article.Clinical trial registration no. NCT02651701.
Collapse
Affiliation(s)
- Jeong Hee Yoon
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| | - Jeong Min Lee
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| | - Won Chang
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| | - Hyo-Jin Kang
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| | - Andriy Bandos
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| | - Hyun-Ju Lim
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| | - Seo Yeong Kang
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| | - Keon Wook Kang
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| | - Seung-Bum Ryoo
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| | - Seung-Yong Jeong
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| | - Kyu Joo Park
- From the Departments of Radiology (J.H.Y., J.M.L., H.J.K.), Nuclear Medicine (S.Y.K., K.W.K.), and Surgery (S.B.R., S.Y.J., K.J.P.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., J.M.L., H.J.K.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (W.C.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa (A.B.); and Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea (H.J.L.)
| |
Collapse
|