1
|
Ciampi-Dopazo JJ, Guirola-Ortiz JA, Garcia-Flores P. Current state of the interventional approach to acute pulmonary embolism. RADIOLOGIA 2025; 67:370-377. [PMID: 40412850 DOI: 10.1016/j.rxeng.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/20/2024] [Indexed: 05/27/2025]
Abstract
Massive pulmonary embolism (PE) is a disease with high mortality, therefore early diagnosis and treatment is essential to save lives. In the absence of contraindications, patients with massive PE (high risk) should be treated immediately with full-dose intravenous systemic thrombolysis. The subset of patients for whom systemic thrombolysis is not successful and who continue to present with haemodynamic compromise or those with contraindications may be candidates for various catheter-directed or surgical therapies. The decision algorithm in intermediate-high/submassive risk patients is complex and must be employed by a multidisciplinary team and success may depend on the experience of the medical specialists involved.
Collapse
Affiliation(s)
- J J Ciampi-Dopazo
- Unidad de Radiología Intervencionista, Servicio de Radiodiagnóstico, Hospital Universitario Virgen de la Nieves, Granada, Spain.
| | - J A Guirola-Ortiz
- Unidad de Radiología Intervencionista, Servicio Radiodiagnóstico, Hospital Universitario Lozano Blesa, Zaragoza, Spain
| | - P Garcia-Flores
- Servicio de Neumología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| |
Collapse
|
2
|
Guerrini S, Zanoni M, Sica C, Bagnacci G, Mancianti N, Galzerano G, Garosi G, Cacioppa LM, Cellina M, Zamboni GA, Minetti G, Floridi C, Mazzei MA. Dual-Energy CT as a Well-Established CT Modality to Reduce Contrast Media Amount: A Systematic Review from the Computed Tomography Subspecialty Section of the Italian Society of Radiology. J Clin Med 2024; 13:6345. [PMID: 39518485 PMCID: PMC11546204 DOI: 10.3390/jcm13216345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Our study aims to provide an overview of existing evidence regarding the image quality of dual-energy CT (DECT) employing reduced contrast media (CM) volumes, in comparison to single-energy CT (SECT) with standard CM loads. The advantages, indications, and possible applications of DECT were investigated from the perspective of providing better patient care, minimizing CM volume and managing CM shortage. Methods: In this systematic review (PRISMA methodology), PubMed and WOS were searched from January 2010 to January 2023 by two independent reviewers. The scan and CM characteristics, radiation dose, and results of quantitative (contrast to noise ratio, CNR, and signal to noise ratio, SNR) and qualitative assessment of image quality were collected. Sixty non-duplicated records eligible for full-text screening were examined. Results: Finally, 22 articles (1818 patients) were included. The average CM reduction with DECT ranged between 43.4 ± 11%. Despite the wide variability in CT scan protocols, no differences were found in radiation doses between DECT and SECT. Conclusions: DECT scanners allow the employment of lower CM volumes with equal or better image quality evaluated by quantitative and qualitative analyses and similar dose radiation compared to SECT. Using image reconstructions at low monochromatic energy levels, DECT increases iodine conspicuity and attenuation contributing to CM containment measures.
Collapse
Affiliation(s)
- Susanna Guerrini
- Unit of Diagnostic Imaging, Department of Medical Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
| | - Matteo Zanoni
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (M.Z.); (C.S.)
| | - Cristian Sica
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (M.Z.); (C.S.)
| | - Giulio Bagnacci
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (M.Z.); (C.S.)
| | - Nicoletta Mancianti
- Unit of Nephrology, Dialysis and Transplantation, Department of Emergency and Transplantation, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (N.M.); (G.G.)
| | - Giuseppe Galzerano
- Unit of Vascular Surgery, Department of Heart, Thorax and Vessels, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Guido Garosi
- Unit of Nephrology, Dialysis and Transplantation, Department of Emergency and Transplantation, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (N.M.); (G.G.)
| | - Laura Maria Cacioppa
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, 60126 Ancona, Italy
| | - Michaela Cellina
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Principessa Clotilde 3, 20121 Milan, Italy
| | - Giulia A. Zamboni
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Institute of Radiology, Department of Diagnostics and Public Health, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy
| | - Giuseppe Minetti
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Radiology Unit, Ospedale Santo Spirito, ASL AL Casale Monferrato, 15121 Alessandria, Italy
| | - Chiara Floridi
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, 60126 Ancona, Italy
| | - Maria Antonietta Mazzei
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (M.Z.); (C.S.)
| |
Collapse
|
3
|
Ghani H, Weir-McCall JR, Ruggiero A, Pepke-Zaba J. Imaging in chronic thromboembolic pulmonary disease: Current practice and advances. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2024; 17:100536. [PMID: 39711768 PMCID: PMC11657945 DOI: 10.1016/j.ijcchd.2024.100536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 12/24/2024] Open
Abstract
Chronic thromboembolic pulmonary disease (CTEPD) with or without pulmonary hypertension (PH) occurs when thromboemboli in pulmonary arteries fail to resolve completely. Pulmonary artery obstructions due to chronic thrombi and secondary microvasculopathy can increase pulmonary arterial pressure and resistance leading to chronic thromboembolic PH (CTEPH). Mechanical interventions and/or PH medications can improve cardiopulmonary haemodynamic, alleviate symptoms, and decrease mortality risk. Imaging is pivotal throughout the CTEPD management journey, spanning diagnosis, treatment planning, and assessing treatment outcome. With just computed tomography (CT) pulmonary angiogram and right heart catheterisation, an experienced multidisciplinary team can determine surgical candidacy in most cases. Dual energy CT, lung subtraction iodine mapping CT, and dynamic contrast-enhanced magnetic resonance imaging (MRI) offer comparable sensitivities with ventilation-perfusion scintigraphy in diagnosing CTEPD. Pulmonary angiogram with digital subtraction angiography although considered the gold standard for assessing thrombi extent and vasculature morphology is now mostly used to assess targets for balloon pulmonary angioplasty. Advancements in CT modalities and innovative MRI metrics offer better insight into CTEPD management but are limited by the availability of technology and expertise. Learning from current artificial intelligence application in medical imaging, there is promise in tapping the wealth of data provided by CTEPD imaging through automating cardiopulmonary and vascular morphology analysis.
Collapse
Affiliation(s)
- Hakim Ghani
- National Pulmonary Hypertension Centre, Royal Papworth Hospital, UK
- Institute of Heart and Lung Research, University of Cambridge, Cambridge, UK
| | - Jonathan R. Weir-McCall
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Royal Papworth Hospital, Cambridge, UK
| | | | - Joanna Pepke-Zaba
- National Pulmonary Hypertension Centre, Royal Papworth Hospital, UK
- Institute of Heart and Lung Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Noda Y, Takai Y, Suto T, Yamada N, Mori T, Kawai N, Kaga T, Hyodo F, Kato H, Matsuo M. Effect of X-ray tube on image quality and pancreatic ductal adenocarcinoma conspicuity in pancreatic protocol dual-energy CT. Clin Radiol 2024; 79:e554-e559. [PMID: 38453389 DOI: 10.1016/j.crad.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/05/2023] [Accepted: 12/31/2023] [Indexed: 03/09/2024]
Abstract
AIM To compare the radiation dose, image quality, and conspicuity of pancreatic ductal adenocarcinoma (PDAC) in pancreatic protocol dual-energy computed tomography (CT) between two X-ray tubes mounted in the same CT machine. MATERIAL AND METHODS This retrospective study comprised 80 patients (median age, 73 years; 45 men) who underwent pancreatic protocol dual-energy CT from January 2019 to March 2022 using either old (Group A, n=41) or new (Group B, n=39) X-ray tubes mounted in the same CT machine. The imaging parameters were completely matched between the two groups, and CT data were reconstructed at 70 and 40 keV. The CT dose-index volume (CTDIvol); CT attenuation of the abdominal aorta, pancreas, and PDAC; background noise; and qualitative scores for the image noise, overall image quality, and PDAC conspicuity were compared between the two groups. RESULTS The CTDIvol was lower in Group B than Group A (7.9 versus 9.2 mGy; p<0.001). The CT attenuation of all anatomical structures at 70 and 40 keV was comparable between the two groups (p=0.06-0.78). The background noise was lower in Group B than Group A (12 versus 14 HU at 70 keV, p=0.046; and 26 versus 30 HU at 40 keV, p<0.001). Qualitative scores for image noise and overall image quality at 70 and 40 keV and PDAC conspicuity at 40 keV were higher in Group B than Group A (p<0.001-0.045). CONCLUSION The latest X-ray tube could reduce the radiation dose and improve image quality in pancreatic protocol dual-energy CT.
Collapse
Affiliation(s)
- Y Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Y Takai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Suto
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - N Yamada
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Mori
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - N Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - F Hyodo
- Department of Pharmacology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - H Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - M Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
5
|
Moore J, Remy J, Altschul E, Chusid J, Flohr T, Raoof S, Remy-Jardin M. Thoracic Applications of Spectral CT Scan. Chest 2024; 165:417-430. [PMID: 37619663 DOI: 10.1016/j.chest.2023.07.4225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
TOPIC IMPORTANCE Thoracic imaging with CT scan has become an essential component in the evaluation of respiratory and thoracic diseases. Providers have historically used conventional single-energy CT; however, prevalence of dual-energy CT (DECT) is increasing, and as such, it is important for thoracic physicians to recognize the utility and limitations of this technology. REVIEW FINDINGS The technical aspects of DECT are presented, and practical approaches to using DECT are provided. Imaging at multiple energy spectra allows for postprocessing of the data and the possibility of creating multiple distinct image reconstructions based on the clinical question being asked. The data regarding utility of DECT in pulmonary vascular disorders, ventilatory defects, and thoracic oncology are presented. A pictorial essay is provided to give examples of the strengths associated with DECT. SUMMARY DECT has been most heavily studied in chronic thromboembolic pulmonary hypertension; however, it is increasingly being used across a wide spectrum of thoracic diseases. DECT combines morphologic and functional assessments in a single imaging acquisition, providing clinicians with a powerful diagnostic tool. Its role in the evaluation and treatment of thoracic diseases will likely continue to expand in the coming years as clinicians become more experienced with the technology.
Collapse
Affiliation(s)
- Jonathan Moore
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY
| | - Jacques Remy
- Univ Lille, Department of Thoracic Imaging, Lille, France
| | - Erica Altschul
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY
| | - Jesse Chusid
- Feinstein Institutes for Medical Research, and Imaging Services, Department of Radiology, Northwell Health, Manhasset, NY
| | - Thomas Flohr
- Department of Computed Tomography Research & Development, Siemens Healthineers, Forchheim, Germany
| | - Suhail Raoof
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY.
| | - Martine Remy-Jardin
- Univ Lille, Department of Thoracic Imaging, Lille, France; Univ Lille, CHU Lille, Evaluation des technologies de santé et des pratiques médicales, Lille, France
| |
Collapse
|
6
|
Kaga T, Noda Y, Nagata S, Kawai N, Miyoshi T, Hyodo F, Kato H, Matsuo M. Comparison of image quality, arterial depiction, and radiation dose between two rapid kVp-switching dual-energy CT scanners in CT angiography at 40-keV. Jpn J Radiol 2023; 41:1298-1307. [PMID: 37212946 PMCID: PMC10613589 DOI: 10.1007/s11604-023-01448-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE To compare the quantitative parameters and qualitative image quality of dual-energy CT angiography (CTA) between two rapid kVp-switching dual-energy CT scanners. MATERIALS AND METHODS Between May 2021 and March 2022, 79 participants underwent whole-body CTA using either Discovery CT750 HD (Group A, n = 38) or Revolution CT Apex (Group B, n = 41). All data were reconstructed at 40-keV and with adaptive statistical iterative reconstruction-Veo of 40%. The two groups were compared in terms of CT numbers of the thoracic and abdominal aorta, and the iliac artery, background noise, signal-to-noise ratio (SNR) of the artery, CT dose-index volume (CTDIvol), and qualitative scores for image noise, sharpness, diagnostic acceptability, and arterial depictions. RESULTS The median CT number of the abdominal aorta (p = 0.04) and SNR of the thoracic aorta (p = 0.02) were higher in Group B than in Group A, while no difference was observed in the other CT numbers and SNRs of the artery (p = 0.09-0.23). The background noises at the thoracic (p = 0.11), abdominal (p = 0.85), and pelvic (p = 0.85) regions were comparable between the two groups. CTDIvol was lower in Group B than in Group A (p = 0.006). All qualitative scores were higher in Group B than in Group A (p < 0.001-0.04). The arterial depictions were nearly identical in both two groups (p = 0.005-1.0). CONCLUSION In dual-energy CTA at 40-keV, Revolution CT Apex improved qualitative image quality and reduced radiation dose.
Collapse
Affiliation(s)
- Tetsuro Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yoshifumi Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Shoma Nagata
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Nobuyuki Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toshiharu Miyoshi
- Department of Radiology Services, Gifu University Hospital, Gifu, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
- Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
7
|
D’Angelo T, Arico FM, Broccio L, Ascenti G, Mazziotti S, Booz C, Martin SS, Yel I, Lanzafame LRM, Blandino A, Sofia C. Multi-Contrast Differentiation by Dual-Energy Spectral CT Angiography in a Patient with Pulmonary Barium Granulomas. Diagnostics (Basel) 2023; 13:diagnostics13050832. [PMID: 36899976 PMCID: PMC10000742 DOI: 10.3390/diagnostics13050832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Barium inhalation usually relates to accidental aspiration during radiological procedures with an oral contrast agent. When present, barium lung deposits are visible as high-density opacities on chest X-ray or CT scan due to high atomic number, and they may be indistinguishable from calcifications. Dual-layer spectral CT has shown good material differentiation capabilities, due to its increased high-Z element range and smaller spectral separation between low- and high-energy spectral data. We present the case of a 17-year-old female with a history of tracheoesophageal fistula, who underwent chest CT angiography on a dual-layer spectral platform. Despite the close Z numbers and K-edge energy levels of the two different contrast materials, spectral CT was able to identify barium lung deposits from a previous swallowing study and to clearly distinguish them from calcium and the surrounding iodine-containing structures.
Collapse
Affiliation(s)
- Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Correspondence: (T.D.); (F.M.A.)
| | - Francesco M. Arico
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
- Correspondence: (T.D.); (F.M.A.)
| | - Lydia Broccio
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simon S. Martin
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| | - Carmelo Sofia
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital “Policlinico G. Martino”, 98124 Messina, Italy
| |
Collapse
|
8
|
Zhao X, Chao W, Shan Y, Li J, Zhao C, Zhang M, Lu J. Comparison of Image Quality and Radiation Dose Between Single-Energy and Dual-Energy Images for the Brain With Stereotactic Frames on Dual-Energy Cerebral CT. FRONTIERS IN RADIOLOGY 2022; 2:899100. [PMID: 37492654 PMCID: PMC10364999 DOI: 10.3389/fradi.2022.899100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 07/27/2023]
Abstract
Background Preoperative stereotactic planning of deep brain stimulation (DBS) using computed tomography (CT) imaging in patients with Parkinson's disease (PD) is of clinical interest. However, frame-induced metal artifacts are common in clinical practice, which can be challenging for neurosurgeons to visualize brain structures. Objectives To evaluate the image quality and radiation exposure of patients with stereotactic frame brain CT acquired using a dual-source CT (DSCT) system in single- and dual-energy modes. Materials and Methods We included 60 consecutive patients with Parkinson's disease (PD) and randomized them into two groups. CT images of the brain were performed using DSCT (Group A, an 80/Sn150 kVp dual-energy mode; Group B, a 120 kVp single-energy mode). One set of single-energy images (120 kVp) and 10 sets of virtual monochromatic images (50-140 keV) were obtained. Subjective image analysis of overall image quality was performed using a five-point Likert scale. For objective image quality evaluation, CT values, image noise, signal-to-noise ratio (SNR), and contrast-to-noise (CNR) were calculated. The radiation dose was recorded for each patient. Results The mean effective radiation dose was reduced in the dual-energy mode (1.73 mSv ± 0.45 mSv) compared to the single-energy mode (3.16 mSv ± 0.64 mSv) (p < 0.001). Image noise was reduced by 46-52% for 120-140 keV VMI compared to 120 kVp images (both p < 0.01). CT values were higher at 100-140 keV than at 120 kVp images. At 120-140 keV, CT values of brain tissue showed significant differences at the level of the most severe metal artifacts (all p < 0.05). SNR was also higher in the dual-energy mode 90-140 keV compared to 120 kVp images, showing a significant difference between the two groups at 120-140 keV (all p < 0.01). The CNR was significantly better in Group A for 60-140 keV VMI compared to Group B (both p < 0.001). The highest subjective image scores were found in the 120 keV images, while 110-140 keV images had significantly higher scores than 120 kVp images (all p < 0.05). Conclusion DSCT images using dual-energy modes provide better objective and subjective image quality for patients with PD at lower radiation doses compared to single-energy modes and facilitate brain tissue visualization with stereotactic frame DBS procedures.
Collapse
Affiliation(s)
- Xiaojing Zhao
- Department of Radiology & Nuclear Medicine, XuanWu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Wang Chao
- Department of Radiology & Nuclear Medicine, XuanWu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yi Shan
- Department of Radiology & Nuclear Medicine, XuanWu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jingkai Li
- Department of Radiology & Nuclear Medicine, XuanWu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Cheng Zhao
- Department of Radiology & Nuclear Medicine, XuanWu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Miao Zhang
- Department of Radiology & Nuclear Medicine, XuanWu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jie Lu
- Department of Radiology & Nuclear Medicine, XuanWu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
9
|
Acute Pulmonary Embolism: Prognostic Role of Computed Tomography Pulmonary Angiography (CTPA). Tomography 2022; 8:529-539. [PMID: 35202207 PMCID: PMC8880178 DOI: 10.3390/tomography8010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Computed Tomography Pulmonary Angiography (CTPA) is considered the gold standard diagnostic technique in patients with suspected acute pulmonary embolism in emergency departments. Several studies have been conducted on the predictive value of CTPA on the outcomes of pulmonary embolism (PE). The purpose of this article is to provide an updated review of the literature reporting imaging parameters and quantitative CT scores to predict the severity of PE.
Collapse
|
10
|
Pinilo J, Hutt A, Labreuche J, Faivre JB, Flohr T, Schmidt B, Duhamel A, Remy J, Remy-Jardin M. Evaluation Of a New Reconstruction Technique for Dual-Energy (DECT) Lung Perfusion: Preliminary Experience In 58 Patients. Acad Radiol 2022; 29 Suppl 2:S202-S214. [PMID: 34446359 DOI: 10.1016/j.acra.2021.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To compare dual-energy (DE) lung perfused blood volume generated by subtraction of virtual monoenergetic images (Lung Mono) with images obtained by three-compartment decomposition (Lung PBV). MATERIAL AND METHODS The study included 58 patients (28 patients with and 30 patients without PE) with reconstruction of Lung PBV images (i.e., the reference standard) and Lung Mono images. The inter-technique comparison was undertaken at a patient and segment level. RESULTS The distribution of scores of subjective image noise (patient level) significantly differed between the two reconstructions (p<0.0001), with mild noise in 58.6% (34/58) of Lung Mono images vs 25.9% (15/58) of Lung PBV images. Detection of perfusion defects (segment level) was concordant in 1104 segments (no defect: n=968; defects present: n=138) and discordant in 2 segments with a PE-related defect only depicted on Lung Mono images. Among the 28 PE patients, the distribution of gradient of attenuation between perfused areas and defects was significantly higher on Lung Mono images compared to Lung PBV (median= 73.5 HU (QI=65.0; Q3=86.0) vs 24.5 HU (22.0; 30.0); p<0.0001). In all patients, fissures were precisely identified in 77.6% of patients (45/58) on Lung Mono images while blurred (30/58; 51.7%) or not detectable (28/58; 48.3%) on Lung PBV images. CONCLUSION Lung Mono perfusion imaging allows significant improvement in the overall image quality and improved detectability of PE-type perfusion defects.
Collapse
|
11
|
D'Angelo T, Albrecht MH, Caudo D, Mazziotti S, Vogl TJ, Wichmann JL, Martin S, Yel I, Ascenti G, Koch V, Cicero G, Blandino A, Booz C. Virtual non-calcium dual-energy CT: clinical applications. Eur Radiol Exp 2021; 5:38. [PMID: 34476640 PMCID: PMC8413416 DOI: 10.1186/s41747-021-00228-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Dual-energy CT (DECT) has emerged into clinical routine as an imaging technique with unique postprocessing utilities that improve the evaluation of different body areas. The virtual non-calcium (VNCa) reconstruction algorithm has shown beneficial effects on the depiction of bone marrow pathologies such as bone marrow edema. Its main advantage is the ability to substantially increase the image contrast of structures that are usually covered with calcium mineral, such as calcified vessels or bone marrow, and to depict a large number of traumatic, inflammatory, infiltrative, and degenerative disorders affecting either the spine or the appendicular skeleton. Therefore, VNCa imaging represents another step forward for DECT to image conditions and disorders that usually require the use of more expensive and time-consuming techniques such as magnetic resonance imaging, positron emission tomography/CT, or bone scintigraphy. The aim of this review article is to explain the technical background of VNCa imaging, showcase its applicability in the different body regions, and provide an updated outlook on the clinical impact of this technique, which goes beyond the sole improvement in image quality.
Collapse
Affiliation(s)
- Tommaso D'Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Moritz H Albrecht
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Danilo Caudo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Silvio Mazziotti
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Thomas J Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julian L Wichmann
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Simon Martin
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Giorgio Ascenti
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Giuseppe Cicero
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Alfredo Blandino
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Hong YJ, Shim J, Lee SM, Im DJ, Hur J. Dual-Energy CT for Pulmonary Embolism: Current and Evolving Clinical Applications. Korean J Radiol 2021; 22:1555-1568. [PMID: 34448383 PMCID: PMC8390816 DOI: 10.3348/kjr.2020.1512] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary embolism (PE) is a potentially fatal disease if the diagnosis or treatment is delayed. Currently, multidetector computed tomography (MDCT) is considered the standard imaging method for diagnosing PE. Dual-energy CT (DECT) has the advantages of MDCT and can provide functional information for patients with PE. The aim of this review is to present the potential clinical applications of DECT in PE, focusing on the diagnosis and risk stratification of PE.
Collapse
Affiliation(s)
- Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jina Shim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Jin Im
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Hur
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Does dual-energy abdominal computed tomography increase the radiation dose to patients: a prospective observational study. Pol J Radiol 2021; 86:e208-e216. [PMID: 34093917 PMCID: PMC8147716 DOI: 10.5114/pjr.2021.105594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 02/03/2023] Open
Abstract
Purpose The aim of our study was to compare single-energy (SECT) and dual-energy (DECT) abdominal computed tomography (CT) examinations in matched patient cohorts regarding the differences in effective radiation dose (ERD) and image quality performed in a third-generation dual-source computed tomography (DSCT) scanner. Material and methods Our study included 100 patients, who were divided randomly into 2 groups. The patients included in Group A were scanned by SECT, and Group B members were scanned by DECT. Volume CT dose index (CTDIvol), dose length product (DLP), and ERD for venous phase acquisition were recorded in each patient and were normalised for 40 cm. Analyses were performed by using statistical software (SPSS version 20.0 for windows), and Bonferroni correction for multiple comparisons was applied for p-values and confidence intervals. Results Average ERD based on DLP values normalised for 40 cm acquisition were obtained for both Group A and Group B. The mean ERD for Group A was 11.89 mSv, and for group B it was 6.87 mSv. There was a significant difference in these values between Group A and Group B as shown by a p-value of < 0.001. On subjective and objective analysis, there was no statistically significant difference in image quality between the 2 groups. Conclusions The protocols in third-generation DSCT using dual-energy mode resulted in significant reductions in the effective radiation dose (by approximately 58%) compared to SECT in routine abdominal examination in matched cohorts. Therefore, the quantitative imaging potential of DECT can be utilised in needed patients with decreased radiation dose in third-generation DSCT.
Collapse
|
14
|
Lenga L, Lange M, Martin SS, Albrecht MH, Booz C, Yel I, Arendt CT, Vogl TJ, Leithner D. Head and neck single- and dual-energy CT: differences in radiation dose and image quality of 2nd and 3rd generation dual-source CT. Br J Radiol 2021; 94:20210069. [PMID: 33914613 PMCID: PMC8173672 DOI: 10.1259/bjr.20210069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To compare radiation dose and image quality of single-energy (SECT) and dual-energy (DECT) head and neck CT examinations performed with second- and third-generation dual-source CT (DSCT) in matched patient cohorts. METHODS 200 patients (mean age 55.1 ± 16.9 years) who underwent venous phase head and neck CT with a vendor-preset protocol were retrospectively divided into four equal groups (n = 50) matched by gender and BMI: second (Group A, SECT, 100-kV; Group B, DECT, 80/Sn140-kV), and third-generation DSCT (Group C, SECT, 100-kV; Group D, DECT, 90/Sn150-kV). Assessment of radiation dose was performed for an average scan length of 27 cm. Contrast-to-noise ratio measurements and dose-independent figure-of-merit calculations of the submandibular gland, thyroid, internal jugular vein, and common carotid artery were analyzed quantitatively. Qualitative image parameters were evaluated regarding overall image quality, artifacts and reader confidence using 5-point Likert scales. RESULTS Effective radiation dose (ED) was not significantly different between SECT and DECT acquisition for each scanner generation (p = 0.10). Significantly lower effective radiation dose (p < 0.01) values were observed for third-generation DSCT groups C (1.1 ± 0.2 mSv) and D (1.0 ± 0.3 mSv) compared to second-generation DSCT groups A (1.8 ± 0.1 mSv) and B (1.6 ± 0.2 mSv). Figure-of-merit/contrast-to-noise ratio analysis revealed superior results for third-generation DECT Group D compared to all other groups. Qualitative image parameters showed non-significant differences between all groups (p > 0.06). CONCLUSION Contrast-enhanced head and neck DECT can be performed with second- and third-generation DSCT systems without radiation penalty or impaired image quality compared with SECT, while third-generation DSCT is the most dose efficient acquisition method. ADVANCES IN KNOWLEDGE Differences in radiation dose between SECT and DECT of the dose-vulnerable head and neck region using DSCT systems have not been evaluated so far. Therefore, this study directly compares radiation dose and image quality of standard SECT and DECT protocols of second- and third-generation DSCT platforms.
Collapse
Affiliation(s)
- Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Marvin Lange
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christophe T Arendt
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
15
|
Rousseau H, Del Giudice C, Sanchez O, Ferrari E, Sapoval M, Marek P, Delmas C, Zadro C, Revel-Mouroz P. Endovascular therapies for pulmonary embolism. Heliyon 2021; 7:e06574. [PMID: 33889762 PMCID: PMC8047492 DOI: 10.1016/j.heliyon.2021.e06574] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/18/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose The aim of this article is to define the place of new endovascular methods for the management of pulmonary embolisms (PE), on the basis of a multidisciplinary consensus. Method and results Briefly, from the recent literature, for high-risk PE presenting with shock or cardiac arrest, systemic thrombolysis or embolectomy is recommended, while for lowrisk PE, anticoagulation alone is proposed. Normo-tense patients with PE but with biological or imaging signs of right heart dysfunction constitute a group known as “at intermediate risk” for which the therapeutic strategy remains controversial. In fact, some patients may require more aggressive treatment in addition to the anticoagulant treatment, because approximately 10% will decompensate hemodynamically with a high risk of mortality. Systemic thrombolysis may be an option, but with hemorrhagic risks, particularly intra cranial. Various hybrid pharmacomechanical approaches are proposed to maintain the benefits of thrombolysis while reducing its risks, but the overall clinical experience of these different techniques remains limited. Patients with high intermediate and high risk pulmonary embolism should be managed by a multidisciplinary team combining the skills of cardiologists, resuscitators, pneumologists, interventional radiologists and cardiac surgeons. Such a team can determine which intervention – thrombolysis alone or assisted, percutaneous mechanical fragmentation of the thrombus or surgical embolectomy – is best suited to a particular patient. Conclusions This consensus document define the place of endovascular thrombectomy based on an appropriate risk stratification of PE.
Collapse
Affiliation(s)
| | | | - Olivier Sanchez
- Service de Pneumologie et soins intensifs HEGP Paris, France
| | | | - Marc Sapoval
- Service de Radiologie interventionnelle HEGP Paris, France
| | - Pierre Marek
- Service d'imagerie CHU Toulouse, Rangueil, France
| | | | | | | |
Collapse
|
16
|
Kligerman S, Hsiao A. Optimizing the diagnosis and assessment of chronic thromboembolic pulmonary hypertension with advancing imaging modalities. Pulm Circ 2021; 11:20458940211007375. [PMID: 34104420 PMCID: PMC8150458 DOI: 10.1177/20458940211007375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023] Open
Abstract
Imaging is key to nearly all aspects of chronic thromboembolic pulmonary hypertension including management for screening, assessing eligibility for pulmonary endarterectomy, and post-operative follow-up. While ventilation/perfusion scintigraphy, the gold standard technique for chronic thromboembolic pulmonary hypertension screening, can have excellent sensitivity, it can be confounded by other etiologies of pulmonary malperfusion, and does not provide structural information to guide operability assessment. Conventional computed tomography pulmonary angiography has high specificity, though findings of chronic thromboembolic pulmonary hypertension can be visually subtle and unrecognized. In addition, computed tomography pulmonary angiography can provide morphologic information to aid in pre-operative workup and assessment of other structural abnormalities. Advances in computed tomography imaging techniques, including dual-energy computed tomography and spectral-detector computed tomography, allow for improved sensitivity and specificity in detecting chronic thromboembolic pulmonary hypertension, comparable to that of ventilation/perfusion scans. Furthermore, these advanced computed tomography techniques, compared with conventional computed tomography, provide additional physiologic data from perfused blood volume maps and improved resolution to better visualize distal chronic thromboembolic pulmonary hypertension, an important consideration for balloon pulmonary angioplasty for inoperable patients. Electrocardiogram-synchronized techniques in electrocardiogram-gated computed tomography can also show further information regarding right ventricular function and structure. While the standard of care in the workup of chronic thromboembolic pulmonary hypertension includes a ventilation/perfusion scan, computed tomography pulmonary angiography, direct catheter angiography, echocardiogram, and coronary angiogram, in the future an electrocardiogram-gated dual-energy computed tomography angiography scan may enable a "one-stop" imaging study to guide diagnosis, operability assessment, and treatment decisions with less radiation exposure and cost than traditional chronic thromboembolic pulmonary hypertension imaging modalities.
Collapse
Affiliation(s)
- Seth Kligerman
- Cardiothoracic Imaging, University of California San Diego, La Jolla, CA, USA
| | - Albert Hsiao
- Cardiothoracic Imaging, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Mangesius S, Grams AE. Dual energy computed tomomgraphy in acute stroke, where are we and where are we going? J Neuroradiol 2021; 48:71-74. [PMID: 33607169 DOI: 10.1016/j.neurad.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Affiliation(s)
- S Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - A E Grams
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
18
|
Gupta A, Kikano EG, Bera K, Baruah D, Saboo SS, Lennartz S, Hokamp NG, Gholamrezanezhad A, Gilkeson RC, Laukamp KR. Dual energy imaging in cardiothoracic pathologies: A primer for radiologists and clinicians. Eur J Radiol Open 2021; 8:100324. [PMID: 33532519 PMCID: PMC7822965 DOI: 10.1016/j.ejro.2021.100324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances in dual-energy imaging techniques, dual-energy subtraction radiography (DESR) and dual-energy CT (DECT), offer new and useful additional information to conventional imaging, thus improving assessment of cardiothoracic abnormalities. DESR facilitates detection and characterization of pulmonary nodules. Other advantages of DESR include better depiction of pleural, lung parenchymal, airway and chest wall abnormalities, detection of foreign bodies and indwelling devices, improved visualization of cardiac and coronary artery calcifications helping in risk stratification of coronary artery disease, and diagnosing conditions like constrictive pericarditis and valvular stenosis. Commercially available DECT approaches are classified into emission based (dual rotation/spin, dual source, rapid kilovoltage switching and split beam) and detector-based (dual layer) systems. DECT provide several specialized image reconstructions. Virtual non-contrast images (VNC) allow for radiation dose reduction by obviating need for true non contrast images, low energy virtual mono-energetic images (VMI) boost contrast enhancement and help in salvaging otherwise non-diagnostic vascular studies, high energy VMI reduce beam hardening artifacts from metallic hardware or dense contrast material, and iodine density images allow quantitative and qualitative assessment of enhancement/iodine distribution. The large amount of data generated by DECT can affect interpreting physician efficiency but also limit clinical adoption of the technology. Optimization of the existing workflow and streamlining the integration between post-processing software and picture archiving and communication system (PACS) is therefore warranted.
Collapse
Key Words
- AI, artificial intelligence
- BT, blalock-taussig
- CAD, computer-aided detection
- CR, computed radiography
- DECT, dual-energy computed tomography
- DESR, dual-energy subtraction radiography
- Dual energy CT
- Dual energy radiography
- NIH, national institute of health
- NPV, negative predictive value
- PACS, picture archiving and communication system
- PCD, photon-counting detector
- PET, positron emission tomography
- PPV, positive predictive value
- Photoelectric effect
- SNR, signal to noise ratio
- SPECT, single photon emission computed tomography
- SVC, superior vena cava
- TAVI, transcatheter aortic valve implantation
- TNC, true non contrast
- VMI, virtual mono-energetic images
- VNC, virtual non-contrast images
- eGFR, estimated glomerular filtration rate
- kV, kilo volt
- keV, kilo electron volt
Collapse
Affiliation(s)
- Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Elias G Kikano
- Department of Radiology, University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Dhiraj Baruah
- Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Sachin S Saboo
- Department of Radiology, University Of Texas Health Science Center, San Antonio, TX, USA
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert C Gilkeson
- Department of Radiology, University Hospitals Cleveland Medical Center/Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Kai R Laukamp
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
19
|
Dual-energy computed tomography in acute ischemic stroke: state-of-the-art. Eur Radiol 2020; 31:4138-4147. [PMID: 33319330 PMCID: PMC8128835 DOI: 10.1007/s00330-020-07543-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Abstract Dual-energy computed tomography (DECT) allows distinguishing between tissues with similar X-ray attenuation but different atomic numbers. Recent studies demonstrated that this technique has several areas of application in patients with ischemic stroke and a potential impact on patient management. After endovascular stroke therapy (EST), hyperdense areas can represent either hemorrhage or contrast staining due to blood-brain barrier disruption, which can be differentiated reliably by DECT. Further applications are improved visualization of early infarctions, compared to single-energy computed tomography, and prediction of transformation into infarction or hemorrhage in contrast-enhancing areas. In addition, DECT allows detection and evaluation of the material composition of intra-arterial clots after EST. This review summarizes the clinical state-of-the-art of DECT in patients with stroke, and features some prospects for future developments. Key points • Dual-energy computed tomography (DECT) allows differentiation between tissues with similar X-ray attenuation but differentatomic numbers. • DECT has several areas of application in patients with ischemic stroke and a potential impact on patient management. • Prospects for future developments in DECT may improve treatment decision-making.
Collapse
|
20
|
Building a dual-energy CT service line in abdominal radiology. Eur Radiol 2020; 31:4330-4339. [PMID: 33210201 DOI: 10.1007/s00330-020-07441-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
As the access of radiology practices to dual-energy CT (DECT) has increased worldwide, seamless integration into clinical workflows and optimized use of this technology are desirable. In this article, we provide basic concepts of commercially available DECT hardware implementations, discuss financial and logistical aspects, provide tips for protocol building and image routing strategies, and review radiation dose considerations to establish a DECT service line in abdominal imaging. KEY POINTS: • Tube-based and detector-based DECT implementations with varying features and strengths are available on the imaging market. • Thorough assessment of financial and logistical aspects is key to successful implementation of a DECT service line. • Optimized protocol building and image routing strategies are of critical importance for effective use and seamless inception of DECT in routine clinical workflows.
Collapse
|
21
|
Schmidt B, Flohr T. Principles and applications of dual source CT. Phys Med 2020; 79:36-46. [PMID: 33115699 DOI: 10.1016/j.ejmp.2020.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/03/2023] Open
Abstract
This article describes the technical principles and clinical applications of dual source CT. A dual source CT (DSCT) is a CT system with two x-ray tubes and two detectors at an angle of approximately 90°. Both measurement systems acquire CT scan data simultaneously at the same anatomical level of the patient (same z-position). DSCT provides temporal resolution of approximately a quarter of the gantry rotation time for cardiac, cardio-thoracic and pediatric imaging. Successful imaging of the heart and the coronary arteries at high and variable heart rates has been demonstrated. DSCT systems can be operated at twice the spiral pitch of single source CT systems (up to pitch 3.2). The resulting high table speed is beneficial for pediatric applications and fast CT angiographic scans, e. g. of the aorta or the extremities. Operating both X-ray tubes at different tube potential (kV) enables the acquisition of dual energy data and the corresponding applications such as monoenergetic imaging and computation of material maps. Spectral separation can be improved by different filtration of the X-ray beams of both X-ray tubes. As a downside, DSCT systems have to cope with some challenges, among them the limited size of the second measurement system, and cross-scattered radiation.
Collapse
Affiliation(s)
- Bernhard Schmidt
- Siemens Healthcare GmbH, Computed Tomography, Siemensstr. 3, 91301 Forchheim, Germany.
| | - Thomas Flohr
- Siemens Healthcare GmbH, Computed Tomography, Siemensstr. 3, 91301 Forchheim, Germany
| |
Collapse
|
22
|
Kosmala A, Gruschwitz P, Veldhoen S, Weng AM, Krauss B, Bley TA, Petritsch B. Dual-energy CT angiography in suspected pulmonary embolism: influence of injection protocols on image quality and perfused blood volume. Int J Cardiovasc Imaging 2020; 36:2051-2059. [PMID: 32506286 PMCID: PMC8692293 DOI: 10.1007/s10554-020-01911-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
To compare intravenous contrast material (CM) injection protocols for dual-energy CT pulmonary angiography (CTPA) in patients with suspected acute pulmonary embolism with regard to image quality and pulmonary perfused blood volume (PBV) values. A total of 198 studies performed with four CM injection protocols varying in CM volume and iodine delivery rates (IDR) were retrospectively included: (A) 60 ml at 5 ml/s (IDR = 1.75gI/s), (B) 50 ml at 5 ml/s (IDR = 1.75gI/s), (C) 50 ml at 4 ml/s (IDR = 1.40gI/s), (D) 40 ml at 3 ml/s (IDR = 1.05gI/s). Image quality and PBV values at different resolution settings were compared. Pulmonary arterial tract attenuation was highest for protocol A (397 ± 110 HU; p vs. B = 0.13; vs. C = 0.02; vs. D < 0.001). CTPA image quality of protocol A was rated superior compared to protocols B and D by reader 1 (p = 0.01; < 0.001), and superior to protocols B, C and D by reader 2 (p < 0.001; 0.02; < 0.001). Otherwise, there were no significant differences in CTPA quality ratings. Subjective iodine map ratings did not vary significantly between protocols A, B, and C. Both readers rated protocol D inferior to all other protocols (p < 0.05). PBV values did not vary significantly between protocols A and B at resolution settings of 1, 4 and 10 (p = 0.10; 0.10; 0.09), while otherwise PBV values displayed a decreasing trend from protocol A to D (p < 0.05). Higher CM volume and IDR are associated with superior CTPA and iodine map quality and higher absolute PBV values.
Collapse
Affiliation(s)
- Aleksander Kosmala
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Bernhard Krauss
- Siemens Healthcare GmbH, Research and Development, Forchheim, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| |
Collapse
|
23
|
Accuracy of Pulmonary Nodule Volumetry Using Noise-Optimized Virtual Monoenergetic Image and Nonlinear Blending Image Algorithms in Dual-Energy Computed Tomography: A Phantom Study. J Comput Assist Tomogr 2020; 44:847-851. [PMID: 32976271 DOI: 10.1097/rct.0000000000001102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to assess accuracy of pulmonary nodule volumetry using noise-optimized virtual monoenergetic image (VMI+) and nonlinear blending image (NBI) algorithms in dual-energy computed tomography (DECT). METHODS An anthropomorphic chest phantom with 10 simulated nodules (5 solid nodules and 5 ground-glass opacities) was scanned using DECT80/Sn140kV, DECT100/Sn140kV, and single-energy CT (SECT120kV/200mAs), respectively. The dual-energy images were reconstructed using VMI+ (70 keV) and NBI algorithms. The contrast-to-noise ratio and absolute percentage error (APE) of nodule volume were measured to assess image quality and accuracy of nodule volumetry. The radiation dose was also estimated. RESULTS The contrast-to-noise ratio of SECT120kV/200mAs was significantly higher than that of NBI80/Sn140kV and VMI+80/Sn140kV (both corrected P < 0.05), whereas there were no significant differences between NBI100/sn140kV and SECT120kV/200mAs and between VMI+100/sn140kV and SECT120kV/200mAs (both corrected P > 0.05). The APE of SECT120kV/200mAs was significantly lower than that of NBI80/Sn140kV and VMI+80/Sn140kV in both types of nodules (all corrected P < 0.05), whereas there were no significant differences between VMI+100/sn140kV and SECT120kV/200mAs in solid nodules and between NBI100/Sn140kV and SECT120kV/200mAs in ground-glass opacities (both corrected P > 0.05). The radiation dose of DECT100/Sn140kV and DECT80/Sn140kV were significantly lower than that of SECT120kV/200mAs (both corrected P < 0.05). CONCLUSIONS The DECT100/sn140kV can ensure image quality and nodule volumetry accuracy with lower radiation dose compared with SECT120kV/200mAs. Specifically, the VMI+ algorithm could be used in solid nodules and NBI algorithm in ground-glass opacities.
Collapse
|
24
|
Lenga L, Lange M, Arendt CT, Booz C, Yel I, Bodelle B, D'Angelo T, Hammerstingl RM, Huizinga NA, Vogl TJ, Martin SS, Albrecht MH. Measurement Reliability and Diagnostic Accuracy of Virtual Monoenergetic Dual-Energy CT in Patients with Colorectal Liver Metastases. Acad Radiol 2020; 27:e168-e175. [PMID: 31727567 DOI: 10.1016/j.acra.2019.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES To compare dual-energy CT virtual monoenergetic images (VMI) and standard reconstructions for reliability of quantitative size measurements and diagnostic accuracy for the detection of colorectal liver metastases (CRLM). MATERIALS AND METHODS We retrospectively included 98 patients (mean age, 61.1±11.5 years) with colorectal cancer, of whom 49 subjects had CRLM. All patients underwent a portal-venous phase dual-energy CT examination. Standard linearly-blended reformats and 40-keV VMI were reconstructed. For both reconstruction techniques, two blinded readers performed measurements of CRLM twice in a preset sequence. Three additional radiologists independently assessed all liver lesions in terms of dignity (benign vs. malignant). Sensitivity, specificity and diagnostic accuracy were calculated on a per-patient basis using MRI as reference standard. Readers scored the suitability for metric measurements and their diagnostic confidence using 5-point Likert scales. Inter-rater agreement was evaluated using intraclass correlation coefficient (ICC). RESULTS Inter-rater agreement for lesion size measurements was higher for 40-keV VMI (ICC, 0.88) compared to standard linearly-blended series (ICC, 0.80). Sensitivity and diagnostic accuracy for the detection of CRLM were significantly higher for VMI at 40-keV compared to standard reconstructions (90.6% vs. 80.6%, and 89.1% vs. 81.3%; p < 0.001). Reader scores indicated that 40-keV VMI were more suitable for metric lesion measurements and provided greater diagnostic confidence compared to standard reformats (median, 5 vs. 3, and 5 vs. 4; both p < 0.001). CONCLUSION Low-keV VMI reconstructions improve reliability of quantitative size measurements and diagnostic accuracy for the assessment of CRLM compared to standard linearly-blended images.
Collapse
|
25
|
Zhang Z, Zou H, Yuan A, Jiang F, Zhao B, Liu Y, Chen J, Zuo M, Gong L. A Single Enhanced Dual-Energy CT Scan May Distinguish Lung Squamous Cell Carcinoma From Adenocarcinoma During the Venous phase. Acad Radiol 2020; 27:624-629. [PMID: 31447258 DOI: 10.1016/j.acra.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate whether iodine quantification extracted from enhanced dual energy-computed tomography (DE-CT) is useful for distinguishing lung squamous cell carcinoma from adenocarcinoma and to evaluate whether a single scan evaluated during the venous phase (VP) can be substituted for scans evaluated during other phases. MATERIALS AND METHODS Sixty-two patients with lung cancer (32 squamous cell carcinomas; 30 adenocarcinomas) underwent enhanced dual-phase DE-CT scans, including an arterial phase and VP. The iodine concentration (IC), normalized iodine concentration (NIC), and slope of the curve (K) in lesions were measured during two scanning phases in two different pathological types of lung cancers. The differences in parameters (IC, NIC, and K) between these two types of lung cancers were statistically analyzed. In addition, the receiver operating characteristic curves of these parameters were performed to discriminate squamous cell carcinoma from adenocarcinoma. RESULTS The mean IC, NIC, and K in adenocarcinomas were all higher than those in squamous cell carcinomas during the two scanning phases. However, the differences in these parameters between the two types of cancers were significant only during the VP, not during the arterial phase. Receiver operating characteristic analysis demonstrated that the optimal thresholds of the IC, NIC, and K for discriminating squamous cell carcinoma from adenocarcinoma were 1.550, 0.227, and 1.608, respectively. In addition, the sensitivity, specificity, and area under the curve were 81.2%, 83.3%, and 0.871 for the IC; 56.2%, 93.3%, and 0.800 for the NIC; and 65.6%, 80%, and 0.720 for the K; 81.3%, 83.3%, and 0.874 for the IC + NIC; 68.8%, 93.3%, and 0.891 for the IC + NIC + K, respectively. The "IC + NIC + K" had the highest diagnostic efficiency for discriminating two types of lung cancers, but with low sensitivity. Whereas, "IC"and "IC + NIC" had the similar lower diagnostic efficiency, but with high sensitivity and specificity. CONCLUSION The iodine quantification parameters derived from enhanced DE-CT during the VP may be useful for distinguishing lung squamous cell carcinoma from adenocarcinoma.
Collapse
|
26
|
Acquisition time, radiation dose, subjective and objective image quality of dual-source CT scanners in acute pulmonary embolism: a comparative study. Eur Radiol 2020; 30:2712-2721. [PMID: 32025830 DOI: 10.1007/s00330-019-06650-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To compare the scan acquisition time, radiation dose, subjective and objective image quality of two dual-source CT scanners (DSCT) for detection of acute pulmonary embolism. METHODS Two hundred twenty-one scans performed on the 2nd-generation DSCT and 354 scans on the 3rd-generation DSCT were included in this large retrospective study. In a randomized blinded design, two radiologists independently reviewed the scans using a 5-point Likert scale. Radiation dose and objective image quality parameters were calculated. RESULTS Mean acquisition time was significantly lower in the 3rd-generation DSCT (2.81 s ± 0.1 in comparison with 9.7 s ± 0.15 [mean ± SD] respectively; p < 0.0001) with the 3rd generation 3.4 times faster. The mean subjective image quality score was 4.33/5 and 4/5 for the 3rd- and 2nd-generation DSCT respectively (p < 0.0001) with strong interobserver reliability agreement. DLP, CTDIvol, and ED were significantly lower in the 3rd than the 2nd generation (175.6 ± 63.7 mGy cm; 5.3 ± 1.9 mGy and 2.8 ± 1.2 mSv in comparison with 266 ± 255 mGy.cm; 7.8 ± 2.2 mGy and 3.8 ± 4.3 mSv). Noise was significantly lower in the 3rd generation (p < 0.01). Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure of merit (FOM), a dose-insensitive index for CNR, were significantly higher in the 3rd-generation DSCT (33.5 ± 23.4; 29.0 ± 21.3 and 543.7 ± 1037 in comparison with 23.4 ± 17.7; 19.4 ± 16.0 and 170.5 ± 284.3). CONCLUSION Objective and subjective image quality are significantly higher on the 3rd-generation DSCT with significantly lower mean acquisition time and radiation dose. KEY POINTS • The 3rd-generation DSCT scanner provides an improved image quality, less perceived artifacts, and lower radiation dose in comparison with the 2nd-generation DSCT, when operating in dual-energy (DE) mode. • The 3.4-times-faster 3rd-generation DSCT scanner can be of particular value in patients with chronic lung diseases or breathing difficulties that prevent adequate breathhold.
Collapse
|