1
|
Christensen RH, Ashina H, Al‐Khazali HM, Ocampo‐Pineda M, Rahmanzadeh R, Hadjikhani N, Granziera C, Amin FM, Ashina M. Signs of Cortical Inflammation in Migraine Measured with Quantitative Magnetic Resonance Imaging: A Registry for Migraine (REFORM) Study. Ann Neurol 2025; 97:1168-1179. [PMID: 39902552 PMCID: PMC12082015 DOI: 10.1002/ana.27197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 02/05/2025]
Abstract
OBJECTIVE The involvement of cortical inflammation in migraine, particularly migraine with aura, has been a subject of considerable interest, but has proved challenging to demonstrate. We aimed to detect and characterize signs of cortical inflammation in adults with migraine using a novel, multimodal magnetic resonance imaging (MRI) technique. METHODS We used T2 mapping to measure water content/cellularity, T1 mapping to measure tissue microstructure integrity, and apparent diffusion coefficient (ADC) mapping to measure intra- or extracellular edema. We compared these values between participants with migraine (with and without aura) and healthy controls using general linear models adjusted for age and sex. RESULT Two hundred ninety-six adult participants with migraine and 155 age- and sex-matched healthy controls provided eligible imaging data. Among the participants with migraine, 103 had migraine with aura, 180 chronic migraine, and 88 were ictal during the scan. Participants with migraine had higher quantitative T2 (qT2) in the left occipital cortex than healthy controls (p < 0.0001). In migraine with aura, the higher qT2 was more widespread and located bilaterally in the occipital cortices, compared with controls (left, p < 0.0001; right p = 0.004). Post-hoc analysis revealed overlapping ADC elevations in migraine with aura compared with controls (p = 0.0069). INTERPRETATION Quantitative MRI changes compatible with cortical inflammation were detected in participants with migraine, and appeared driven by the subgroup with aura. Higher occipital qT2 in migraine with aura might represent either extracellular edema or accumulation of inflammatory microglia or astrocytes. These results support the importance of cortical inflammation in migraine pathophysiology, particularly in migraine with aura. ANN NEUROL 2025;97:1168-1179.
Collapse
Affiliation(s)
- Rune H. Christensen
- Department of Neurology, Danish Headache CenterCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache CenterCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Haidar M. Al‐Khazali
- Department of Neurology, Danish Headache CenterCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mario Ocampo‐Pineda
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
- Department of NeurologyUniversity Hospital BaselBaselSwitzerland
| | - Reza Rahmanzadeh
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Nouchine Hadjikhani
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and PhysiologySahlgrenska AcademyGothenburgSweden
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalBostonMAUSA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
- Department of NeurologyUniversity Hospital BaselBaselSwitzerland
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache CenterCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache CenterCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Danish Knowledge Center on Headache DisordersCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| |
Collapse
|
2
|
Liang Y, Huang J, Zhang X, Xu F, Bo C, Lin M, Wen X. Quantitative assessment of thalamic damage and serum neurofilament light chain in relapsing-remitting multiple sclerosis. J Neuroimmunol 2025; 399:578504. [PMID: 39647403 DOI: 10.1016/j.jneuroim.2024.578504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND The study assessed group differences in the thalamus microstructural parameters among healthy individuals and relapsing-remitting multiple sclerosis (RRMS) patients and examined the relationship between quantitative MRI (qMRI) parameters and neurological scores, T2 lesion load, and serum neurofilament light chain (sNfL) levels. METHODS A total of 30 patients with RRMS and 26 age- and sex-matched healthy controls were recruited in this study. The qMRI images were obtained from these individuals. T2 lesion load, thalamic volume, and parameters of thalamic subnuclei were estimated. The neurological functions of participants were assessed using a battery of tests. sNfL concentrations were measured using the single molecule array (SIMOA) technique. RESULTS T2 relaxometry in the whole thalamus and its subnuclei were increased, and showed an apparent correlation with T2 lesion load and the severity of MS (EDSS, MSSS, 9HPT, T25FW, SDMT). T1 variability was prolonged in most thalamic subnuclei, and it was correlated with the severity of MS (EDSS, 9HPT, SDMT). Thalamic volumetric parameters of MS patients were smaller than those of healthy controls (p < 0.001) and showed an apparent correlation with MS severity. Surprisingly, sNfL levels showed no correlation with T2 relaxometry, T1 variability, or thalamic volumetric parameters. CONCLUSION Quantitative synthetic MRI, especially, the metric T2 relaxation times provides a surrogate parameter for assessing underlying thalamic and subnuclei damage in the RRMS group. Integrating structural and quantitative MRI allows a better assessment of the neurodegeneration in the normal-appearing thalamus of RRMS.
Collapse
Affiliation(s)
- Yan Liang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiyue Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fang Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunrui Bo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Huang J, Liang Y, Wang J, Shan Y, Zhao C, Li Q, Dong H, Lu J. Quantitative synthetic MRI for evaluation of hippocampus in patients with multiple sclerosis. Brain Res 2025; 1847:149298. [PMID: 39490955 DOI: 10.1016/j.brainres.2024.149298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE To identify early changes in hippocampal quantitative parameters in multiple sclerosis (MS) patients using synthetic MRI, and to correlate these changes with clinical variables. METHODS 45 MS patients and 26 healthy controls (HCs) underwent synthetic MRI and 3D-T1 MRI. The hippocampus volumes were assessed by using voxel-based morphometry. Synthetic MRI parameters (T1, T2, and proton density (PD)) from hippocampus and its subfield were measured and compared, and their associations with the Expanded Disability Status Scale (EDSS), Symbol Digit Modalities Test (SDMT) scores were further investigated. RESULTS There was no significant difference in hippocampal volume between MS patients and HCs. Compared with HCs, the T1, T2 and PD values of hippocampus and its subfield increased in MS patients. T2 values showed positive correlation with EDSS and negative correlation with SDMT. CONCLUSIONS Synthetic MRI can detect subtle quantitative changes of the hippocampus in MS patients with normal hippocampal volume. Specifically, Synthetic MRI parameters may apply as potentially effective imaging biomarker for hippocampus evaluation.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Yan Liang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiyuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Cheng Zhao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Qiongge Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Huiqing Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Nabizadeh F, Pirahesh K, Azami M, Moradkhani A, Sardaripour A, Ramezannezhad E. T1 and T2 weighted lesions and cognition in multiple Sclerosis: A systematic review and meta-analysis. J Clin Neurosci 2024; 119:1-7. [PMID: 37952373 DOI: 10.1016/j.jocn.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Considering the different results regarding the correlation between Magnetic Resonance Imaging (MRI) structural measures and cognitive dysfunction in patients with MS, we aimed to perform a systematic review and meta-analysis study to investigate the correlation between T1 and T2 weighted lesions and cognitive scores to find the most robust MRI markers for cognitive function in MS population. METHODS The literature of this paper was identified through a comprehensive search of electronic datasets including PubMed, Scopus, Web of Science, and Embase in February 2022. Studies that reported the correlation between cognitive status and T1 and T2 weighted lesions in MS patients were selected. RESULTS 21 studies with a total of 3771 MS patients with mean ages ranging from 30 to 57 years were entered into our study. Our analysis revealed that the volume of T1 lesions was significantly correlated with Symbol Digit Modality test (SDMT) (r: -0.30, 95 %CI: -0.59, -0.01) and Paced Auditory Serial-Addition Task (PASAT) scores (r: -0.23, 95 %CI: -0.36, -0.10). We investigated the correlation between T2 lesions and cognitive scores. The pooled estimates of z scores were significant for SDMT (r: -0.27, 95 %CI: -0.51, -0.03) and PASAT (r: -0.27, 95 %CI: -0.41, -0.13). CONCLUSION In conclusion, our systematic review and meta-analysis study provides strong evidence of the correlation between T1 and T2 lesions and cognitive function in MS patients. Further research is needed to explore the potential mechanisms underlying this relationship and to develop targeted interventions to improve cognitive outcomes in MS patients.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| | - Kasra Pirahesh
- Student Research Committee, School of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
| | - Mobin Azami
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Asra Moradkhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | | |
Collapse
|
5
|
Maiworm M, Hamid C, Wagner M, Nöth U, Deichmann R, Seiler A, Gracien RM. Multiparametric quantitative MRI reveals progressive cortical damage over time in clinically stable relapsing-remitting MS. J Neurol Neurosurg Psychiatry 2023; 94:786-791. [PMID: 37169544 DOI: 10.1136/jnnp-2022-330894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND In relapsing-remitting multiple sclerosis (RRMS), cortical grey matter pathology relevantly contributes to long-term disability. Still, diffuse cortical inflammation cannot be detected with conventional MRI. OBJECTIVE We aimed to assess microstructural damage of cortical grey matter over time and the relation to clinical disability as well as relapse activity in patients with RRMS using multiparametric quantitative (q)MRI techniques. METHODS On 40 patients with RRMS and 33 age-matched and sex-matched healthy controls, quantitative T1, T2, T2* and proton density (PD) mapping was performed at baseline and follow-up after 2 years. Cortical qMRI parameter values were extracted with the FreeSurfer software using a surface-based approach. QMRI parameters, cortical thickness and white matter lesion (WML) load, as well as Expanded Disability Status Scale (EDSS) and relapse rate, were compared between time points. RESULTS Over 2 years, significant increases of T1 (p≤0.001), PD (p≤0.001) and T2 (p=0.005) values were found in the patient, but not in the control group. At decreased relapse rate over time (p=0.001), cortical thickness, WML volume and EDSS remained unchanged. CONCLUSION Despite clinical stability, cortical T1, T2 and PD values increased over time, indicating progressive demyelination and increasing water content. These parameters represent promising surrogate parameters of diffuse cortical inflammation in RRMS.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Celona Hamid
- Department of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marlies Wagner
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Seiler
- Department of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - René-Maxime Gracien
- Department of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Liu CL, Cheng X, Choo BL, Hong M, Teo JL, Koo WL, Tan JYJ, Ubrani MB, Suckling J, Gulyás B, Leong V, Kourtzi Z, Sahakian B, Robbins T, Chen ASH. Potential cognitive and neural benefits of a computerised cognitive training programme based on Structure Learning in healthy adults: study protocol for a randomised controlled trial. Trials 2023; 24:517. [PMID: 37568212 PMCID: PMC10422731 DOI: 10.1186/s13063-023-07551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Cognitive flexibility refers to the capacity to shift between conceptual representations particularly in response to changes in instruction and feedback. It enables individuals to swiftly adapt to changes in their environment and has significant implications for learning. The present study focuses on investigating changes in cognitive flexibility following an intervention programme-Structure Learning training. METHODS Participants are pseudo-randomised to either the Training or Control group, while matched on age, sex, intelligence and cognitive flexibility performance. In the Training group, participants undergo around 2 weeks of training (at least 13 sessions) on Structure Learning. In the Control group, participants do not have to undergo any training and are never exposed to the Structure Learning task. The effects of Structure Learning training are investigated at both the behavioural and neural level. We measured covariates that can influence an individual's training performance before the training phase and outcome measures that can potentially show training benefits after the training phase. At the behavioural level, we investigated outcomes in both cognitive and social aspects with a primary focus on executive functions. At the neural level, we employed a multimodality approach and investigated potential changes to functional connectivity patterns, neurometabolite concentration in the frontal brain regions, and brain microstructure and myelination. DISCUSSION We reported the development of a novel training programme based on Structure Learning that aims to hone a general learning ability to potentially achieve extensive transfer benefits across various cognitive constructs. Potential transfer benefits can be exhibited through better performance in outcome measures between Training and Control participants, and positive associations between training performance and outcomes after the training in Training participants. Moreover, we attempt to substantiate behavioural findings with evidence of neural changes across different imaging modalities by the Structure Learning training. TRIAL REGISTRATION National Institutes of Health U.S. National Library of Medicine ClinicalTrials.gov NCT05611788. Registered on 7 November 2022. PROTOCOL VERSION 11 May 2023.
Collapse
Affiliation(s)
- Chia-Lun Liu
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore.
| | - Xiaoqin Cheng
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Boon Linn Choo
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
| | - Min Hong
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
| | - Jia Li Teo
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
- School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wei Ler Koo
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
| | - Jia Yuan Janet Tan
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
| | - Marisha Barth Ubrani
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Victoria Leong
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
- School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barbara Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Trevor Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Annabel Shen-Hsing Chen
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
- School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Chen Z, Liao C, Cao X, Poser BA, Xu Z, Lo WC, Wen M, Cho J, Tian Q, Wang Y, Feng Y, Xia L, Chen W, Liu F, Bilgic B. 3D-EPI blip-up/down acquisition (BUDA) with CAIPI and joint Hankel structured low-rank reconstruction for rapid distortion-free high-resolution T 2 * mapping. Magn Reson Med 2023; 89:1961-1974. [PMID: 36705076 PMCID: PMC10072851 DOI: 10.1002/mrm.29578] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE This work aims to develop a novel distortion-free 3D-EPI acquisition and image reconstruction technique for fast and robust, high-resolution, whole-brain imaging as well as quantitativeT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. METHODS 3D Blip-up and -down acquisition (3D-BUDA) sequence is designed for both single- and multi-echo 3D gradient recalled echo (GRE)-EPI imaging using multiple shots with blip-up and -down readouts to encode B0 field map information. Complementary k-space coverage is achieved using controlled aliasing in parallel imaging (CAIPI) sampling across the shots. For image reconstruction, an iterative hard-thresholding algorithm is employed to minimize the cost function that combines field map information informed parallel imaging with the structured low-rank constraint for multi-shot 3D-BUDA data. Extending 3D-BUDA to multi-echo imaging permitsT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. For this, we propose constructing a joint Hankel matrix along both echo and shot dimensions to improve the reconstruction. RESULTS Experimental results on in vivo multi-echo data demonstrate that, by performing joint reconstruction along with both echo and shot dimensions, reconstruction accuracy is improved compared to standard 3D-BUDA reconstruction. CAIPI sampling is further shown to enhance image quality. ForT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping, parameter values from 3D-Joint-CAIPI-BUDA and reference multi-echo GRE are within limits of agreement as quantified by Bland-Altman analysis. CONCLUSIONS The proposed technique enables rapid 3D distortion-free high-resolution imaging andT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. Specifically, 3D-BUDA enables 1-mm isotropic whole-brain imaging in 22 s at 3T and 9 s on a 7T scanner. The combination of multi-echo 3D-BUDA with CAIPI acquisition and joint reconstruction enables distortion-free whole-brainT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping in 47 s at 1.1 × 1.1 × 1.0 mm3 resolution.
Collapse
Affiliation(s)
- Zhifeng Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, VIC, Australia
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Benedikt A. Poser
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, University of Maastricht, the Netherlands
| | - Zhongbiao Xu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Science, Guangzhou, China
| | | | - Manyi Wen
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Yaohui Wang
- Division of Superconducting Magnet Science and Technology, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ling Xia
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Wufan Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
8
|
Straub S, El-Sanosy E, Emmerich J, Sandig FL, Ladd ME, Schlemmer HP. Quantitative magnetic resonance imaging biomarkers for cortical pathology in multiple sclerosis at 7 T. NMR IN BIOMEDICINE 2023; 36:e4847. [PMID: 36259249 DOI: 10.1002/nbm.4847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Substantial cortical gray matter tissue damage, which correlates with clinical disease severity, has been revealed in multiple sclerosis (MS) using advanced magnetic resonance imaging (MRI) methods at 3 T and the use of ultra-high field, as well as in histopathology studies. While clinical assessment mainly focuses on lesions using T 1 - and T 2 -weighted MRI, quantitative MRI (qMRI) methods are capable of uncovering subtle microstructural changes. The aim of this ultra-high field study is to extract possible future MR biomarkers for the quantitative evaluation of regional cortical pathology. Because of their sensitivity to iron, myelin, and in part specifically to cortical demyelination, T 1 , T 2 , R 2 * , and susceptibility mapping were performed including two novel susceptibility markers; in addition, cortical thickness as well as the volumes of 34 cortical regions were computed. Data were acquired in 20 patients and 16 age- and sex-matched healthy controls. In 18 cortical regions, large to very large effect sizes (Cohen's d ≥ 1) and statistically significant differences in qMRI values between patients and controls were revealed compared with only four regions when using more standard MR measures, namely, volume and cortical thickness. Moreover, a decrease in all susceptibility contrasts ( χ , χ + , χ - ) and R 2 * values indicates that the role of cortical demyelination might outweigh inflammatory processes in the form of iron accumulation in cortical MS pathology, and might also indicate iron loss. A significant association between susceptibility contrasts as well as R 2 * of the caudal middle frontal gyrus and disease duration was found (adjusted R2 : 0.602, p = 0.0011). Quantitative MRI parameters might be more sensitive towards regional cortical pathology compared with the use of conventional markers only and therefore may play a role in early detection of tissue damage in MS in the future.
Collapse
Affiliation(s)
- Sina Straub
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Edris El-Sanosy
- Division Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Emmerich
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik L Sandig
- Division Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
9
|
Thaler C, Hartramph I, Stellmann JP, Heesen C, Bester M, Fiehler J, Gellißen S. T1 Relaxation Times in the Cortex and Thalamus Are Associated With Working Memory and Information Processing Speed in Patients With Multiple Sclerosis. Front Neurol 2021; 12:789812. [PMID: 34925222 PMCID: PMC8678069 DOI: 10.3389/fneur.2021.789812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cortical and thalamic pathologies have been associated with cognitive impairment in patients with multiple sclerosis (MS). Objective: We aimed to quantify cortical and thalamic damage in patients with MS using a high-resolution T1 mapping technique and to evaluate the association of these changes with clinical and cognitive impairment. Methods: The study group consisted of 49 patients with mainly relapsing-remitting MS and 17 age-matched healthy controls who received 3T MRIs including a T1 mapping sequence (MP2RAGE). Mean T1 relaxation times (T1-RT) in the cortex and thalami were compared between patients with MS and healthy controls. Additionally, correlation analysis was performed to assess the relationship between MRI parameters and clinical and cognitive disability. Results: Patients with MS had significantly decreased normalized brain, gray matter, and white matter volumes, as well as increased T1-RT in the normal-appearing white matter, compared to healthy controls (p < 0.001). Partial correlation analysis with age, sex, and disease duration as covariates revealed correlations for T1-RT in the cortex (r = -0.33, p < 0.05), and thalami (right thalamus: r = -0.37, left thalamus: r = -0.50, both p < 0.05) with working memory and information processing speed, as measured by the Symbol-Digit Modalities Test. Conclusion: T1-RT in the cortex and thalamus correlate with information processing speed in patients with MS.
Collapse
Affiliation(s)
- Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabelle Hartramph
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Patrick Stellmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,APHM La Timone, CEMEREM and Department of Neuroradiology, Marseille, France.,Aix-Marseille University, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Christoph Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maxim Bester
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Gellißen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Seiler A, Nöth U, Hok P, Reiländer A, Maiworm M, Baudrexel S, Meuth S, Rosenow F, Steinmetz H, Wagner M, Hattingen E, Deichmann R, Gracien RM. Multiparametric Quantitative MRI in Neurological Diseases. Front Neurol 2021; 12:640239. [PMID: 33763021 PMCID: PMC7982527 DOI: 10.3389/fneur.2021.640239] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/12/2021] [Indexed: 11/27/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the gold standard imaging technique for diagnosis and monitoring of many neurological diseases. However, the application of conventional MRI in clinical routine is mainly limited to the visual detection of macroscopic tissue pathology since mixed tissue contrasts depending on hardware and protocol parameters hamper its application for the assessment of subtle or diffuse impairment of the structural tissue integrity. Multiparametric quantitative (q)MRI determines tissue parameters quantitatively, enabling the detection of microstructural processes related to tissue remodeling in aging and neurological diseases. In contrast to measuring tissue atrophy via structural imaging, multiparametric qMRI allows for investigating biologically distinct microstructural processes, which precede changes of the tissue volume. This facilitates a more comprehensive characterization of tissue alterations by revealing early impairment of the microstructural integrity and specific disease-related patterns. So far, qMRI techniques have been employed in a wide range of neurological diseases, including in particular conditions with inflammatory, cerebrovascular and neurodegenerative pathology. Numerous studies suggest that qMRI might add valuable information, including the detection of microstructural tissue damage in areas appearing normal on conventional MRI and unveiling the microstructural correlates of clinical manifestations. This review will give an overview of current qMRI techniques, the most relevant tissue parameters and potential applications in neurological diseases, such as early (differential) diagnosis, monitoring of disease progression, and evaluating effects of therapeutic interventions.
Collapse
Affiliation(s)
- Alexander Seiler
- Department of Neurology, Goethe University, Frankfurt, Germany.,Brain Imaging Center, Goethe University, Frankfurt, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Goethe University, Frankfurt, Germany
| | - Pavel Hok
- Department of Neurology, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czechia
| | - Annemarie Reiländer
- Department of Neurology, Goethe University, Frankfurt, Germany.,Brain Imaging Center, Goethe University, Frankfurt, Germany
| | - Michelle Maiworm
- Department of Neurology, Goethe University, Frankfurt, Germany.,Brain Imaging Center, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Goethe University, Frankfurt, Germany
| | - Simon Baudrexel
- Department of Neurology, Goethe University, Frankfurt, Germany.,Brain Imaging Center, Goethe University, Frankfurt, Germany
| | - Sven Meuth
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Rosenow
- Department of Neurology, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital, Frankfurt, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Goethe University, Frankfurt, Germany
| | - Marlies Wagner
- Brain Imaging Center, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Goethe University, Frankfurt, Germany.,Department of Neuroradiology, Goethe University, Frankfurt, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Goethe University, Frankfurt, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University, Frankfurt, Germany.,Brain Imaging Center, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Seiler A, Schöngrundner S, Stock B, Nöth U, Hattingen E, Steinmetz H, Klein JC, Baudrexel S, Wagner M, Deichmann R, Gracien RM. Cortical aging - new insights with multiparametric quantitative MRI. Aging (Albany NY) 2020; 12:16195-16210. [PMID: 32852283 PMCID: PMC7485732 DOI: 10.18632/aging.103629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Understanding the microstructural changes related to physiological aging of the cerebral cortex is pivotal to differentiate healthy aging from neurodegenerative processes. The aim of this study was to investigate the age-related global changes of cortical microstructure and regional patterns using multiparametric quantitative MRI (qMRI) in healthy subjects with a wide age range. 40 healthy participants (age range: 2nd to 8th decade) underwent high-resolution qMRI including T1, PD as well as T2, T2* and T2′ mapping at 3 Tesla. Cortical reconstruction was performed with the FreeSurfer toolbox, followed by tests for correlations between qMRI parameters and age. Cortical T1 values were negatively correlated with age (p=0.007) and there was a widespread age-related decrease of cortical T1 involving the frontal and the parietotemporal cortex, while T2 was correlated positively with age, both in frontoparietal areas and globally (p=0.004). Cortical T2′ values showed the most widespread associations across the cortex and strongest correlation with age (r= -0.724, p=0.0001). PD and T2* did not correlate with age. Multiparametric qMRI allows to characterize cortical aging, unveiling parameter-specific patterns. Quantitative T2′ mapping seems to be a promising imaging biomarker of cortical age-related changes, suggesting that global cortical iron deposition is a prominent process in healthy aging.
Collapse
Affiliation(s)
- Alexander Seiler
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Sophie Schöngrundner
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Benjamin Stock
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Johannes C Klein
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Simon Baudrexel
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Marlies Wagner
- Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Ahmad R, Maiworm M, Nöth U, Seiler A, Hattingen E, Steinmetz H, Rosenow F, Deichmann R, Wagner M, Gracien RM. Cortical Changes in Epilepsy Patients With Focal Cortical Dysplasia: New Insights With T 2 Mapping. J Magn Reson Imaging 2020; 52:1783-1789. [PMID: 32383241 DOI: 10.1002/jmri.27184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In epilepsy patients with focal cortical dysplasia (FCD) as the epileptogenic focus, global cortical signal changes are generally not visible on conventional MRI. However, epileptic seizures or antiepileptic medication might affect normal-appearing cerebral cortex and lead to subtle damage. PURPOSE To investigate cortical properties outside FCD regions with T2 -relaxometry. STUDY TYPE Prospective study. SUBJECTS Sixteen patients with epilepsy and FCD and 16 age-/sex-matched healthy controls. FIELD STRENGTH/SEQUENCE 3T, fast spin-echo T2 -mapping, fluid-attenuated inversion recovery (FLAIR), and synthetic T1 -weighted magnetization-prepared rapid acquisition of gradient-echoes (MP-RAGE) datasets derived from T1 -maps. ASSESSMENT Reconstruction of the white matter and cortical surfaces based on MP-RAGE structural images was performed to extract cortical T2 values, excluding lesion areas. Three independent raters confirmed that morphological cortical/juxtacortical changes in the conventional FLAIR datasets outside the FCD areas were definitely absent for all patients. Averaged global cortical T2 values were compared between groups. Furthermore, group comparisons of regional cortical T2 values were performed using a surface-based approach. Tests for correlations with clinical parameters were carried out. STATISTICAL TESTS General linear model analysis, permutation simulations, paired and unpaired t-tests, and Pearson correlations. RESULTS Cortical T2 values were increased outside FCD regions in patients (83.4 ± 2.1 msec, control group 81.4 ± 2.1 msec, P = 0.01). T2 increases were widespread, affecting mainly frontal, but also parietal and temporal regions of both hemispheres. Significant correlations were not observed (P ≥ 0.55) between cortical T2 values in the patient group and the number of seizures in the last 3 months or the number of anticonvulsive drugs in the medical history. DATA CONCLUSION Widespread increases in cortical T2 in FCD-associated epilepsy patients were found, suggesting that structural epilepsy in patients with FCD is not only a symptom of a focal cerebral lesion, but also leads to global cortical damage not visible on conventional MRI. EVIDENCE LEVEL 21 TECHNICAL EFFICACY STAGE: 3 J. MAGN. RESON. IMAGING 2020;52:1783-1789.
Collapse
Affiliation(s)
- Rida Ahmad
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Michelle Maiworm
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Felix Rosenow
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt/Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Marlies Wagner
- Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| |
Collapse
|
13
|
Stock B, Shrestha M, Seiler A, Foerch C, Hattingen E, Steinmetz H, Deichmann R, Wagner M, Gracien RM. Distribution of Cortical Diffusion Tensor Imaging Changes in Multiple Sclerosis. Front Physiol 2020; 11:116. [PMID: 32231581 PMCID: PMC7083109 DOI: 10.3389/fphys.2020.00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/31/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose Diffuse cortical damage in relapsing–remitting multiple sclerosis (RRMS) is clinically relevant but cannot be directly assessed with conventional MRI. In this study, it was aimed to use diffusion tensor imaging (DTI) techniques with optimized intrinsic eddy current compensation to quantify and characterize cortical mean diffusivity (MD) and fractional anisotropy (FA) changes in RRMS and to analyze the distribution of these changes across the cortex. Materials and Methods Three-Tesla MRI acquisition, mapping of the MD providing information about the integrity of microstructural barriers and of the FA reflecting axonal density and surface-based analysis with Freesurfer were performed for 24 RRMS patients and 25 control subjects. Results Across the whole cortex, MD was increased in patients (p < 0.001), while surface-based analysis revealed focal cortical FA decreases. MD and FA changes were distributed inhomogeneously across the cortex, the MD increase being more widespread than the FA decrease. Cortical MD correlated with the Expanded Disability Status Scale (EDSS, r = 0.38, p = 0.03). Conclusion Damage of microstructural barriers occurs inhomogeneously across the cortex in RRMS and might be spatially more widespread than axonal degeneration. The results and, in particular, the correlation with the clinical status indicate that DTI might be a promising technique for the monitoring of cortical damage under treatment in larger clinical studies.
Collapse
Affiliation(s)
- Benjamin Stock
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany.,Department of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany.,Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Manoj Shrestha
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany.,Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Christian Foerch
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Marlies Wagner
- Department of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany.,Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|