1
|
Zhao Y, Luu N, Hubbard L, Malkasian S, Molloi S. Pulmonary regional blood flow: validation of low-dose two-volume dynamic CT perfusion imaging in a swine model. Eur Radiol Exp 2025; 9:17. [PMID: 39966217 PMCID: PMC11836245 DOI: 10.1186/s41747-025-00556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND We aimed to validate a low-dose two-volume pulmonary computed tomography (CT) perfusion technique. METHODS Five Yorkshire swine (weight 53.6 ± 2.6 kg) underwent 21 independent CT perfusion acquisitions. Intravenous contrast material (370 mg/mL iodine, 0.5 mL/kg) and saline chaser (0.5 mL/kg) were injected at 5 mL/s for each acquisition. Two-volume and multivolume dynamic CT perfusion data were acquired using a 320-slice CT, with multivolume measurements serving as the reference standard. The two-volume CT perfusion involved a low-dose (50 mA) volume scan before contrast injection and a diagnostic (300 mA) volume scan after bolus-tracking in the main pulmonary artery at the peak contrast enhancement. Multivolume CT perfusion included 15-20 volume scans for blood flow measurement. Paired sample t-test, linear regression, and Bland-Altman analysis compared both global and regional two-volume perfusion measurements to the reference standard. The reproducibility of the two-volume CT perfusion was assessed from two independent measurements under the same perfusion condition. RESULTS Two-volume global perfusion measurements (P2V) were related to reference multivolume (PMV) measurements by P2V = 0.96 × PMV + 0.45 (r = 0.92), with a root-mean-square error of 1.29 mL/min/g and a root-mean-square deviation of 1.29 mL/min/g. The CT dose index for the two-volume and multivolume CT perfusion measurements were 9.3 mGy and 184.8 mGy, respectively. CONCLUSION We successfully validated a prospective, two-volume CT perfusion technique in a swine model. The findings affirm the feasibility of accurate and reproducible pulmonary blood flow measurement. RELEVANCE STATEMENT This two-volume CT pulmonary perfusion technique, validated in a swine model, demonstrates the feasibility of blood flow measurement with a substantial reduction in radiation exposure. It could allow low-dose regional blood flow measurement in the assessment of pulmonary artery disease in humans. KEY POINTS Lung perfusion can be measured in mL/min/g using a prospective, two-volume CT technique. Flow measurement is achievable in a swine model with a radiation dose as low as 9.3 mGy. CT angiography and perfusion can be acquired following a single contrast injection.
Collapse
Affiliation(s)
- Yixiao Zhao
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Nile Luu
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Logan Hubbard
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Shant Malkasian
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Sabee Molloi
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Pannenbecker P, Heidenreich JF, Grunz JP, Huflage H, Gruschwitz P, Patzer TS, Feldle P, Bley TA, Petritsch B. Image Quality and Radiation Dose of CTPA With Iodine Maps: A Prospective Randomized Study of High-Pitch Mode Photon-Counting Detector CT Versus Energy-Integrating Detector CT. AJR Am J Roentgenol 2024; 222:e2330154. [PMID: 37966036 DOI: 10.2214/ajr.23.30154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND. Dual-energy CT pulmonary angiography (CTPA) with energy-integrating detector (EID) technology is limited by the inability to use high-pitch technique. OBJECTIVE. The purpose of this study was to compare the image quality of anatomic images and iodine maps between high-pitch photon-counting detector (PCD) CTPA and dual-energy EID CTPA. METHODS. This prospective study included 117 patients (70 men and 47 women; median age, 65 years) who underwent CTPA to evaluate for pulmonary embolism between March 2022 and November 2022. Fifty-eight patients were randomized to undergo PCD CTPA (pitch, 2.0), and 59 were randomized to undergo EID CTPA (pitch, 0.55). For each examination, 120-kV polychromatic images, 60-keV virtual monogenetic images (VMIs), and iodine maps were reconstructed. One radiologist measured CNR and SNR. Three radiologists independently assessed subjective image quality (on a scale of 1-4, with a score of 1 denoting highest quality). Radiation dose was recorded. RESULTS. SNR and CNR were higher for PCD CTPA than for EID CTPA for polychromatic images and VMIs, for all assessed vessels other than the left upper lobe artery. For example, for PCD CTPA versus EID CTPA, the right lower lobe artery on polychromatic images had an SNR of 34.5 versus 28.0 (p = .003) and a CNR of 29.2 versus 24.4 (p = .001), and on VMIs it had an SNR of 43.2 versus 32.7 (p = .005) and a CNR of 37.4 versus 29.3 (p = .002). For both scanners for readers 1 and 2, the median image quality score for polychromatic images and VMIs was 1, although distributions indicated significantly better scores for PCD CTPA than for EID CTPA for polychromatic images for reader 1 (p = .02) and reader 2 (p = .005) and for VMIs for reader 1 (p = .001) and reader 2 (p = .006). The image quality of anatomic image sets was not different between PCD CTPA and EID CTPA for reader 3 (p > .05). The image quality of iodine maps was not different between PCD CTPA and EID CTPA for any reader (p > .05). For PCD CTPA versus EID CTPA, the CTDIvol was 3.9 versus 4.5 mGy (p = .03), and the DLP was 123.5 mGy × cm versus 157.0 mGy × cm (p < .001). CONCLUSION. High-pitch PCD CTPA provided anatomic images with better subjective and objective image quality versus dual-energy EID CTPA, with lower radiation dose. Iodine maps showed no significant difference in image quality between scanners. CLINICAL IMPACT. CTPA may benefit from the PCD CT technique.
Collapse
Affiliation(s)
- Pauline Pannenbecker
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Julius F Heidenreich
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Theresa S Patzer
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Philipp Feldle
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| |
Collapse
|
3
|
Pannenbecker P, Huflage H, Grunz JP, Gruschwitz P, Patzer TS, Weng AM, Heidenreich JF, Bley TA, Petritsch B. Photon-counting CT for diagnosis of acute pulmonary embolism: potential for contrast medium and radiation dose reduction. Eur Radiol 2023; 33:7830-7839. [PMID: 37311805 PMCID: PMC10598187 DOI: 10.1007/s00330-023-09777-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the image quality of an ultra-low contrast medium and radiation dose CT pulmonary angiography (CTPA) protocol for the diagnosis of acute pulmonary embolism using a clinical photon-counting detector (PCD) CT system and compare its performance to a dual-energy-(DE)-CTPA protocol on a conventional energy-integrating detector (EID) CT system. METHODS Sixty-four patients either underwent CTPA with the novel scan protocol on the PCD-CT scanner (32 patients, 25 mL, CTDIvol 2.5 mGy·cm) or conventional DE-CTPA on a third-generation dual-source EID-CT (32 patients, 50 mL, CTDIvol 5.1 mGy·cm). Pulmonary artery CT attenuation, signal-to-noise ratio, and contrast-to-noise-ratio were assessed as objective criteria of image quality, while subjective ratings of four radiologists were compared at 60 keV using virtual monoenergetic imaging and polychromatic standard reconstructions. Interrater reliability was determined by means of the intraclass correlation coefficient (ICC). Effective dose was compared between patient cohorts. RESULTS Subjective image quality was deemed superior by all four reviewers for 60-keV PCD scans (excellent or good ratings in 93.8% of PCD vs. 84.4% of 60 keV EID scans, ICC = 0.72). No examinations on either system were considered "non-diagnostic." Objective image quality parameters were significantly higher in the EID group (mostly p < 0.001), both in the polychromatic reconstructions and at 60 keV. The ED (1.4 vs. 3.3 mSv) was significantly lower in the PCD cohort (p < 0.001). CONCLUSIONS PCD-CTPA allows for considerable reduction of contrast medium and radiation dose in the diagnosis of acute pulmonary embolism, while maintaining good to excellent image quality compared to conventional EID-CTPA. CLINICAL RELEVANCE STATEMENT Clinical PCD-CT allows for spectral assessment of pulmonary vasculature with high scan speed, which is beneficial in patients with suspected pulmonary embolism, frequently presenting with dyspnea. Simultaneously PCD-CT enables substantial reduction of contrast medium and radiation dose. KEY POINTS • The clinical photon-counting detector CT scanner used in this study allows for high-pitch multi-energy acquisitions. • Photon-counting computed tomography allows for considerable reduction of contrast medium and radiation dose in the diagnosis of acute pulmonary embolism. • Subjective image quality was rated best for 60-keV photon-counting scans.
Collapse
Affiliation(s)
- Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany.
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Theresa S Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Andreas M Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Julius F Heidenreich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| |
Collapse
|
4
|
Ohno Y, Ozawa Y, Nagata H, Bando S, Cong S, Takahashi T, Oshima Y, Hamabuchi N, Matsuyama T, Ueda T, Yoshikawa T, Takenaka D, Toyama H. Area-Detector Computed Tomography for Pulmonary Functional Imaging. Diagnostics (Basel) 2023; 13:2518. [PMID: 37568881 PMCID: PMC10416899 DOI: 10.3390/diagnostics13152518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Shuji Bando
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Shang Cong
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Tomoki Takahashi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| |
Collapse
|
5
|
Santamarina MG, Lomakin FM, Beddings I, Riscal DB, Chang Villacís J, Contreras R, Marambio JV, Labarca E, Torres J, Volpacchio M. COVID-19 pneumonia: Perfusion abnormalities shown on subtraction CT angiography in apparently well-ventilated lungs. A prospective cohort study. Heliyon 2023; 9:e18085. [PMID: 37519667 PMCID: PMC10375558 DOI: 10.1016/j.heliyon.2023.e18085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose To evaluate whether a subtraction CT angiography (sCTA) perfusion score may have prognostic value in patients with COVID-19 pneumonia. Method This prospective cohort study included adult patients with RT-PCR-confirmed SARS-CoV-2 infection admitted to the ED and a sCTA performed within 24 h of admission between June and September 2020. Perfusion abnormalities (PA) in areas of apparently spared lung parenchyma on conventional CT images were assessed with sCTA perfusion score. Airspace disease extension was assessed with CT severity scores, which were then correlated with clinical outcomes (admission to ICU, requirement of IMV, and death). Inter-rater reliability (IRR) was assessed using Cohen's Kappa. Independent predictors of adverse outcomes were evaluated by multivariable logistic regression analyses using the Hosmer and Lemeshow's test. Results 191 patients were included: 112 males (58%), median age of 60.8 years (SD ± 16.0). The IRR was very high (median Kappa statistic: 0.95). No association was found between perfusion CT scores and D-dimer levels (Kendall's Tau-B coefficient = 0.08, p = 0.16) or between PaO2/FiO2 ratios and D-dimer levels (Kendall's Tau-B coefficient = -0.10, p = 0.07). Multivariate analyses adjusting for parenchymal disease extension, vascular beaded appearance, pulmonary embolism, sex, and age showed that severe PA remained a significant predictor for ICU admission (AOR: 6.25, 95% CI 2.10-18.7, p = 0.001). The overall diagnostic capacity of this model was adequate (ROC AUC: 0.83; 95% CI 0.77-0.89). Conclusions The assessment of pulmonary perfusion abnormalities in areas of apparently spared lung parenchyma on conventional CT images via sCTA perfusion scoring has prognostic value in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Mario G. Santamarina
- Radiology Department, Hospital Naval Almirante Nef, Viña del Mar, Chile
- Radiology Department, Hospital Dr. Eduardo Pereira, Valparaiso, Chile
| | - Felipe Martinez Lomakin
- Intensive Care Unit, Hospital Naval Almirante Nef, Viña del Mar, Chile
- Universidad Andrés Bello, Viña del Mar, Escuela de Medicina, Facultad de Medicina Viña del Mar, Valparaiso, Chile
| | - Ignacio Beddings
- Radiology Department, Hospital Clínico San Borja Arriaran, Santiago, Chile
| | | | | | - Roberto Contreras
- Intensive Care Unit, Hospital San Martin de Quillota, Quillota, Chile
| | | | - Eduardo Labarca
- Intensive Care Unit, Hospital Naval Almirante Nef, Viña del Mar, Chile
| | - Jorge Torres
- Radiology Department, Hospital Naval Almirante Nef, Viña del Mar, Chile
| | - Mariano Volpacchio
- Radiology Department, Centro de Diagnóstico Dr. Enrique Rossi, Buenos Aires, Argentina
| |
Collapse
|
6
|
Dissaux B, Le Floch PY, Le Pennec R, Tromeur C, Le Roux PY. Systemic Artery to Pulmonary Artery Shunt Mimicking Acute Pulmonary Embolism, Unmasked by a Multimodality Imaging Approach. Tomography 2022; 8:175-179. [PMID: 35076610 PMCID: PMC8788444 DOI: 10.3390/tomography8010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
In this report, we describe the functional imaging findings of systemic artery to pulmonary artery shunt in V/Q SPECT CT imaging. A 63-year-old man with small-cell lung cancer underwent CT pulmonary angiography (CTPA) for suspected acute pulmonary embolism (PE). The CTPA showed an isolated segmental filling defect in the right lower lobe, which was initially interpreted as positive for PE but was actually the consequence of a systemic artery to pulmonary artery shunt due to the recruitment of the bronchial arterial network by the adjacent tumor. A V/Q SPECT/CT scan was also performed, demonstrating a matched perfusion/ventilation defect in the right lower lobe.
Collapse
Affiliation(s)
- Brieg Dissaux
- Radiology Department, University Hospital of Brest, 29609 Brest, France;
- Correspondence: (B.D.); (P.-Y.L.R.)
| | | | - Romain Le Pennec
- Nuclear Medicine Department, University Hospital of Brest, 29609 Brest, France;
| | - Cécile Tromeur
- Pneumology Department, University Hospital of Brest, 29609 Brest, France;
| | - Pierre-Yves Le Roux
- Nuclear Medicine Department, University Hospital of Brest, 29609 Brest, France;
- Correspondence: (B.D.); (P.-Y.L.R.)
| |
Collapse
|
7
|
Dhawan RT, Gopalan D, Howard L, Vicente A, Park M, Manalan K, Wallner I, Marsden P, Dave S, Branley H, Russell G, Dharmarajah N, Kon OM. Beyond the clot: perfusion imaging of the pulmonary vasculature after COVID-19. THE LANCET. RESPIRATORY MEDICINE 2021; 9:107-116. [PMID: 33217366 PMCID: PMC7833494 DOI: 10.1016/s2213-2600(20)30407-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
A compelling body of evidence points to pulmonary thrombosis and thromboembolism as a key feature of COVID-19. As the pandemic spread across the globe over the past few months, a timely call to arms was issued by a team of clinicians to consider the prospect of long-lasting pulmonary fibrotic damage and plan for structured follow-up. However, the component of post-thrombotic sequelae has been less widely considered. Although the long-term outcomes of COVID-19 are not known, should pulmonary vascular sequelae prove to be clinically significant, these have the potential to become a public health problem. In this Personal View, we propose a proactive follow-up strategy to evaluate residual clot burden, small vessel injury, and potential haemodynamic sequelae. A nuanced and physiological approach to follow-up imaging that looks beyond the clot, at the state of perfusion of lung tissue, is proposed as a key triage tool, with the potential to inform therapeutic strategies.
Collapse
Affiliation(s)
- Ranju T Dhawan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK; Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK.
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK; National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, London, UK; Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Luke Howard
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK; National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Angelito Vicente
- Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Mirae Park
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Kavina Manalan
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Ingrid Wallner
- Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Peter Marsden
- Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK; Medical Physics and Biomedical Engineering, University College London Hospitals, London, UK
| | - Surendra Dave
- Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Howard Branley
- Respiratory Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Georgina Russell
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Nishanth Dharmarajah
- Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Onn M Kon
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
8
|
Santamarina MG, Boisier Riscal D, Beddings I, Contreras R, Baque M, Volpacchio M, Martinez Lomakin F. COVID-19: What Iodine Maps From Perfusion CT can reveal-A Prospective Cohort Study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:619. [PMID: 33087155 PMCID: PMC7576979 DOI: 10.1186/s13054-020-03333-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Subtraction CT angiography (sCTA) is a technique used to evaluate pulmonary perfusion based on iodine distribution maps. The aim of this study is to assess lung perfusion changes with sCTA seen in patients with COVID-19 pneumonia and correlate them with clinical outcomes. MATERIAL AND METHODS A prospective cohort study was carried out with 45 RT-PCR-confirmed COVID-19 patients that required hospitalization at three different hospitals, between April and May 2020. In all cases, a basic clinical and demographic profile was obtained. Lung perfusion was assessed using sCTA. Evaluated imaging features included: Pattern predominance of injured lung parenchyma in both lungs (ground-glass opacities, consolidation and mixed pattern) and anatomical extension; predominant type of perfusion abnormality (increased perfusion or hypoperfusion), perfusion abnormality distribution (focal or diffuse), extension of perfusion abnormalities (mild, moderate and severe involvement); presence of vascular dilatation and vascular tortuosity. All participants were followed-up until hospital discharge searching for the development of any of the study endpoints. These endpoints included intensive-care unit (ICU) admission, initiation of invasive mechanical ventilation (IMV) and death. RESULTS Forty-one patients (55.2 ± 16.5 years, 22 men) with RT-PCR-confirmed SARS-CoV-2 infection and an interpretable iodine map were included. Patients with perfusion anomalies on sCTA in morphologically normal lung parenchyma showed lower Pa/Fi values (294 ± 111.3 vs. 397 ± 37.7, p = 0.035), and higher D-dimer levels (1156 ± 1018 vs. 378 ± 60.2, p < 0.01). The main common patterns seen in lung CT scans were ground-glass opacities, mixed pattern with predominant ground-glass opacities and mixed pattern with predominant consolidation in 56.1%, 24.4% and 19.5% respectively. Perfusion abnormalities were common (36 patients, 87.8%), mainly hypoperfusion in areas of apparently healthy lung. Patients with severe hypoperfusion in areas of apparently healthy lung parenchyma had an increased probability of being admitted to ICU and to initiate IMV (HR of 11.9 (95% CI 1.55-91.9) and HR 7.8 (95% CI 1.05-61.1), respectively). CONCLUSION Perfusion abnormalities evidenced in iodine maps obtained by sCTA are associated with increased admission to ICU and initiation of IMV in COVID-19 patients.
Collapse
Affiliation(s)
- Mario G Santamarina
- Radiology Department, Hospital Naval Almirante Nef, Subida Alesandri S/N., Viña del Mar, Provincia de Valparaíso, Chile. .,Radiology Department, Hospital Dr. Eduardo Pereira, Valparaiso, Chile.
| | | | | | - Roberto Contreras
- Intensive Care Unit, Hospital San Martin de Quillota, Quillota, Chile
| | - Martiniano Baque
- Intensive Care Unit, Hospital IESS Los Ceibos, Guayaquil, Ecuador
| | - Mariano Volpacchio
- Radiology Department, Centro de Diagnóstico Dr. Enrique Rossi, Buenos Aires, Argentina
| | - Felipe Martinez Lomakin
- Intensive Care Unit, Hospital Naval Almirante Nef, Viña del Mar, Chile.,Viña del Mar, Escuela de Medicina, Facultad de Medicina Viña del Mar, Universidad Andres Bello, Valparaiso, Chile
| |
Collapse
|