1
|
Zaurito P, Stabile A, Montorsi F, Briganti A, Gandaglia G. The prognostic role of prostate MRI in prostate cancer patients. Curr Opin Urol 2025:00042307-990000000-00241. [PMID: 40269557 DOI: 10.1097/mou.0000000000001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
PURPOSE OF REVIEW Multiparametric MRI (mpMRI) has been included in the diagnostic pathway of prostate cancer (PCa). However, the role of this imaging modality in predicting clinical outcomes after diagnosis has been poorly addressed so far. This review aims to summarize the most relevant updates on the prognostic role of mpMRI. RECENT FINDINGS Baseline mpMRI features help to predict adverse pathology at radical prostatectomy (RP) and grade reclassification during active surveillance. Parameters derived at prostate mpMRI such as PI-RADS score 4-5, the maximum diameter of the index lesion and the presence of extracapsular invasion/seminal vesicle invasion are among the strongest predictors of biochemical recurrence (BCR) for men treated with RP. mpMRI-based predictive models can achieve similar accuracy for BCR prediction when compared with validated models that relied on final pathology. Moreover, the use of mpMRI findings to predict disease recurrence after radiotherapy or focal therapy seems to optimize patient's risk stratification after treatment, ruling out disease recurrence. SUMMARY Clinicians should account for prostate mpMRI findings when predicting clinical outcomes in patients diagnosed with PCa.
Collapse
Affiliation(s)
- Paolo Zaurito
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University, Milan, Italy
| | - Armando Stabile
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Briganti
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Gandaglia
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Benheddi T, Seguier D, Puech P, Leroy X, Cailliau E, Behal H, Villers A, Olivier J. Long-term oncological outcomes of active surveillance for low-risk prostate cancer diagnosed during the MRI era. THE FRENCH JOURNAL OF UROLOGY 2025; 35:102850. [PMID: 39710329 DOI: 10.1016/j.fjurol.2024.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Active surveillance (AS) is the recommended approach for managing Grade-Group1 (GG1) prostate cancer (PCa). Incorporating MRI at entry improve patient selection and outcomes. OBJECTIVE To evaluate long-term oncological outcomes of patients receiving AS selected with MRI at entry. MATERIALS AND METHODS Retrospective analysis of a single-center cohort of patients selected for AS from 2007 to 2022. Inclusion criteria were GG1 PCa with MRI prior to systematic and targeted biopsies. A per-protocol re-biopsy at one year has not been part of the AS inclusion criteria since 2015. Main outcome was cumulative incidence of: biopsy grade reclassification, AS discontinuation, active treatment, post-active treatment biochemical recurrence, metastasis, and mortality. Secondary outcome was the identification of risk factors for AS discontinuation. RESULTS Cohort consists of 354 men. Median follow-up is 6.3 years (IQR: 3.2-9.1). Median PSA was 6.3ng/mL (5.0 to 8.5). At 10 years post-diagnosis, the cumulative incidence was 29.6% (95%CI: 23.3-36.2%) for grade reclassification, 40.0% (95%CI: 32.8-47.0%) for AS discontinuation, 36.9% (95% CI: 30.0-43.7) for active treatment, 9.4% (95% CI: 3.7-18.4) for post-active treatment biochemical recurrence and 0.5% for metastatic progression (2 patients). No PCa-related deaths were observed. PI-RADS score, and the number of positive biopsies at inclusion were identified as predictive factors for AS discontinuation. CONCLUSION In this cohort of AS patients with MRI at entry, 60% of men remained on AS at 10 years, with less than 1% developing metastatic disease and no PCa-related mortality. These results support AS management with MRI at entry and add to share decision-making with patients. LEVEL OF EVIDENCE Level 2.
Collapse
Affiliation(s)
| | - Denis Seguier
- Department of Urology, University of Lille, Lille, France
| | - Philippe Puech
- Department of Radiology, University of Lille, Lille, France
| | - Xavier Leroy
- Department of Histopathology, University of Lille, Lille, France
| | | | - Helene Behal
- Department of Biostatistics, CHU of Lille, 59000 Lille, France
| | | | | |
Collapse
|
3
|
Chappidi MR, Lin DW, Westphalen AC. Role of MRI in Active Surveillance of Prostate Cancer. Semin Ultrasound CT MR 2025; 46:31-44. [PMID: 39608681 DOI: 10.1053/j.sult.2024.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Magnetic resonance imaging (MRI) plays an important role in the management of patients with prostate cancer on active surveillance. In this review, we will explore the incorporation of MRI into active surveillance protocols, detailing its impact on clinical decision-making and patient management and discussing how it aligns with current guidelines and practice patterns. The role of MRI in this patient population continues to evolve over time, and we will discuss some of the recent advancements in the field and highlight potential areas for future research endeavors.
Collapse
Affiliation(s)
- Meera R Chappidi
- Department of Urology, University of Washington School of Medicine, Seattle, WA.
| | - Daniel W Lin
- Department of Urology, University of Washington School of Medicine, Seattle, WA.
| | - Antonio C Westphalen
- Department of Urology, University of Washington School of Medicine, Seattle, WA; Department of Radiology, University of Washington School of Medicine, Seattle, WA; Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
4
|
Dias AB, Chang SD, Fennessy FM, Ghafoor S, Ghai S, Panebianco V, Purysko AS, Giganti F. New Prostate MRI Scoring Systems (PI-QUAL, PRECISE, PI-RR, and PI-FAB): AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2025; 224:e2430956. [PMID: 38568038 DOI: 10.2214/ajr.24.30956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Multiparametric MRI (mpMRI), interpreted using PI-RADS, improves the initial detection of clinically significant prostate cancer. Prostate MR image quality has increasingly recognized relevance to the use of mpMRI for prostate cancer diagnosis. Additionally, mpMRI is increasingly used in scenarios beyond initial detection, including active surveillance and assessment for local recurrence after prostatectomy, radiation therapy, or focal therapy. In acknowledgment of these evolving demands, specialized prostate MRI scoring systems beyond PI-RADS have emerged to address distinct scenarios and unmet needs. Examples include Prostate Imaging Quality (PIQUAL) for assessment of image quality of mpMRI, Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations for evaluation of serial mpMRI examinations during active surveillance, Prostate Imaging for Recurrence Reporting (PI-RR) system for assessment for local recurrence after prostatectomy or radiation therapy, and Prostate Imaging after Focal Ablation (PI-FAB) for assessment for local recurrence after focal therapy. These systems' development and early uptake signal a compelling shift toward prostate MRI standardization in different scenarios, and ongoing research will help refine their roles in practice. This AJR Expert Panel Narrative Review critically examines these new prostate MRI scoring systems (PI-QUAL, PRECISE, PI-RR, and PI-FAB), analyzing the available evidence, delineating current limitations, and proposing solutions for improvement.
Collapse
Affiliation(s)
- Adriano B Dias
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network-Mount Sinai Hospital-Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Silvia D Chang
- Department of Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada
| | - Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Soleen Ghafoor
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sangeet Ghai
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network-Mount Sinai Hospital-Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Andrei S Purysko
- Section of Abdominal Imaging and Nuclear Radiology Department, Cleveland Clinic, Imaging Institute, Cleveland, OH
| | - Francesco Giganti
- Division of Surgery and Interventional Science, University College London, 43-45 Foley St, 3rd Fl, Charles Bell House, London W1W 7TS, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Dias AB, Woo S, Leni R, Rajwa P, Kasivisvanathan V, Ghai S, Haider M, Gandaglia G, Brembilla G. Is MRI ready to replace biopsy during active surveillance? Eur Radiol 2024; 34:7716-7727. [PMID: 38965093 DOI: 10.1007/s00330-024-10863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 07/06/2024]
Abstract
Active surveillance (AS) is a conservative management option recommended for patients diagnosed with low-risk prostate cancer (PCa) and selected cases with intermediate-risk PCa. The adoption of prostate MRI in the primary diagnostic setting has sparked interest in its application during AS. This review aims to examine the role and performance of multiparametric MRI (mpMRI) across the entire AS pathway, from initial stratification to follow-up, also relative to the utilization of the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) criteria. Given the high negative predictive value of mpMRI in detecting clinically significant PCa (csPCa), robust evidence supports its use in patient selection and risk stratification at the time of diagnosis or confirmatory biopsy. However, conflicting results have been observed when using MRI in evaluating disease progression during follow-up. Key areas requiring clarification include addressing the clinical significance of MRI-negative csPCa, optimizing MRI quality, determining the role of biparametric MRI (bpMRI) or mpMRI protocols, and integrating artificial intelligence (AI) for improved performance. CLINICAL RELEVANCE STATEMENT: MRI plays an essential role in the selection, stratification, and follow up of patients in active surveillance (AS) for prostate cancer. However, owing to existing limitations, it cannot fully replace biopsies in the context of AS. KEY POINTS: Multiparametric MRI (mpMRI) has become a crucial tool in active surveillance (AS) for prostate cancer (PCa). Conflicting results have been observed regarding multiparametric MRI efficacy in assessing disease progression. Standardizing MRI-guided protocols will be critical in addressing current limitations in active surveillance for prostate cancer.
Collapse
Affiliation(s)
- Adriano B Dias
- University Medical Imaging Toronto; Joint Department of Medical Imaging; University Health Network-Sinai Health System-Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Sungmin Woo
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Riccardo Leni
- Division of Experimental Oncology, Department of Urology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Veeru Kasivisvanathan
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Sangeet Ghai
- University Medical Imaging Toronto; Joint Department of Medical Imaging; University Health Network-Sinai Health System-Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Masoom Haider
- University Medical Imaging Toronto; Joint Department of Medical Imaging; University Health Network-Sinai Health System-Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Giorgio Gandaglia
- Division of Experimental Oncology, Department of Urology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Brembilla
- Vita-Salute San Raffaele University, Milan, Italy.
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Englman C, Maffei D, Allen C, Kirkham A, Albertsen P, Kasivisvanathan V, Baroni RH, Briganti A, De Visschere P, Dickinson L, Gómez Rivas J, Haider MA, Kesch C, Loeb S, Macura KJ, Margolis D, Mitra AM, Padhani AR, Panebianco V, Pinto PA, Ploussard G, Puech P, Purysko AS, Radtke JP, Rannikko A, Rastinehad A, Renard-Penna R, Sanguedolce F, Schimmöller L, Schoots IG, Shariat SF, Schieda N, Tempany CM, Turkbey B, Valerio M, Villers A, Walz J, Barrett T, Giganti F, Moore CM. PRECISE Version 2: Updated Recommendations for Reporting Prostate Magnetic Resonance Imaging in Patients on Active Surveillance for Prostate Cancer. Eur Urol 2024; 86:240-255. [PMID: 38556436 DOI: 10.1016/j.eururo.2024.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND OBJECTIVE The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations standardise the reporting of prostate magnetic resonance imaging (MRI) in patients on active surveillance (AS) for prostate cancer. An international consensus group recently updated these recommendations and identified the areas of uncertainty. METHODS A panel of 38 experts used the formal RAND/UCLA Appropriateness Method consensus methodology. Panellists scored 193 statements using a 1-9 agreement scale, where 9 means full agreement. A summary of agreement, uncertainty, or disagreement (derived from the group median score) and consensus (determined using the Interpercentile Range Adjusted for Symmetry method) was calculated for each statement and presented for discussion before individual rescoring. KEY FINDINGS AND LIMITATIONS Participants agreed that MRI scans must meet a minimum image quality standard (median 9) or be given a score of 'X' for insufficient quality. The current scan should be compared with both baseline and previous scans (median 9), with the PRECISE score being the maximum from any lesion (median 8). PRECISE 3 (stable MRI) was subdivided into 3-V (visible) and 3-NonV (nonvisible) disease (median 9). Prostate Imaging Reporting and Data System/Likert ≥3 lesions should be measured on T2-weighted imaging, using other sequences to aid in the identification (median 8), and whenever possible, reported pictorially (diagrams, screenshots, or contours; median 9). There was no consensus on how to measure tumour size. More research is needed to determine a significant size increase (median 9). PRECISE 5 was clarified as progression to stage ≥T3a (median 9). CONCLUSIONS AND CLINICAL IMPLICATIONS The updated PRECISE recommendations reflect expert consensus opinion on minimal standards and reporting criteria for prostate MRI in AS.
Collapse
Affiliation(s)
- Cameron Englman
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Davide Maffei
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Clare Allen
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Alex Kirkham
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Peter Albertsen
- Department of Surgery (Urology), UConn Health, Farmington, CT, USA
| | - Veeru Kasivisvanathan
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Ronaldo Hueb Baroni
- Department of Radiology, Hospital Israelita Albert Einstein. Sao Paulo, Brazil
| | - Alberto Briganti
- Division of Experimental Oncology/Unit of Urology, URI; IRCCS Ospedale San Raffaele, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Pieter De Visschere
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Louise Dickinson
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Juan Gómez Rivas
- Department of Urology, Clinico San Carlos University Hospital, Madrid, Spain
| | - Masoom A Haider
- Joint Department of Medical Imaging, Sinai Health System, University of Toronto, Toronto, Canada
| | - Claudia Kesch
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Stacy Loeb
- Department of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs, New York, NY, USA
| | - Katarzyna J Macura
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Margolis
- Weill Cornell Medical College, Department of Radiology, New York, NY, USA
| | - Anita M Mitra
- Department of Cancer Services, University College London Hospitals NHS Foundation Trust, London, UK
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Rickmansworth Road, Middlesex, UK
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Philippe Puech
- Department of Radiology, University of Lille, Lille, France
| | - Andrei S Purysko
- Abdominal Imaging Section, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jan Philipp Radtke
- University Dusseldorf, Medical Faculty, Department of Urology, Dusseldorf, Germany
| | - Antti Rannikko
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Art Rastinehad
- Department of Urology, Lenox Hill Hospital, New York, NY, USA
| | - Raphaele Renard-Penna
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francesco Sanguedolce
- Department of Urology, Autonoma University of Barcelona, Barcelona, Spain; Department of Medicine, Surgery and Pharmacy, Universitá degli studi di Sassari - Italy
| | - Lars Schimmöller
- Dusseldorf University, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany; Department of Diagnostic, Interventional Radiology and Nuclear Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Ivo G Schoots
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan
| | - Nicola Schieda
- Department of Radiology, University of Ottawa, Ottawa, ON, Canada
| | - Clare M Tempany
- Department of Radiology Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Valerio
- Department of Urology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Arnauld Villers
- Department of Urology, Hospital Claude Huriez, CHU Lille, Lille, France
| | - Jochen Walz
- Department of Urology, Institut Paoli-Calmettes Cancer Center, Marseille, France
| | - Tristan Barrett
- Department of Radiology, University of Cambridge, Addenbrook''s Hospital, Cambridge, UK
| | - Francesco Giganti
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK.
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Englman C, Barrett T, Moore CM, Giganti F. Active Surveillance for Prostate Cancer: Expanding the Role of MR Imaging and the Use of PRECISE Criteria. Radiol Clin North Am 2024; 62:69-92. [PMID: 37973246 DOI: 10.1016/j.rcl.2023.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Multiparametric magnetic resonance (MR) imaging has had an expanding role in active surveillance (AS) for prostate cancer. It can improve the accuracy of prostate biopsies, assist in patient selection, and help monitor cancer progression. The PRECISE recommendations standardize reporting of serial MR imaging scans during AS. We summarize the evidence on MR imaging-led AS and provide a clinical primer to help report using the PRECISE criteria. Some limitations to both serial imaging and the PRECISE recommendations must be considered as we move toward a more individualized risk-stratified approach to AS.
Collapse
Affiliation(s)
- Cameron Englman
- Department of Radiology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK
| | - Tristan Barrett
- Department of Radiology, University of Cambridge, Box 218, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Box 218, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Department of Urology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK
| | - Francesco Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK.
| |
Collapse
|
8
|
Sanmugalingam N, Sushentsev N, Lee KL, Caglic I, Englman C, Moore CM, Giganti F, Barrett T. The PRECISE Recommendations for Prostate MRI in Patients on Active Surveillance for Prostate Cancer: A Critical Review. AJR Am J Roentgenol 2023; 221:649-660. [PMID: 37341180 DOI: 10.2214/ajr.23.29518] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations were published in 2016 to standardize the reporting of MRI examinations performed to assess for disease progression in patients on active surveillance for prostate cancer. Although a limited number of studies have reported outcomes from use of PRECISE in clinical practice, the available studies have demonstrated PRECISE to have high pooled NPV but low pooled PPV for predicting progression. Our experience in using PRECISE in clinical practice at two teaching hospitals has highlighted issues with its application and areas requiring clarification. This Clinical Perspective critically appraises PRECISE on the basis of this experience, focusing on the system's key advantages and disadvantages and exploring potential changes to improve the system's utility. These changes include consideration of image quality when applying PRECISE scoring, incorporation of quantitative thresholds for disease progression, adoption of a PRECISE 3F sub-category for progression not qualifying as substantial, and comparisons with both the baseline and most recent prior examinations. Items requiring clarification include derivation of a patient-level score in patients with multiple lesions, intended application of PRECISE score 5 (i.e., if requiring development of disease that is no longer organ-confined), and categorization of new lesions in patients with prior MRI-invisible disease.
Collapse
Affiliation(s)
- Nimalan Sanmugalingam
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Kang-Lung Lee
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Iztok Caglic
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Cameron Englman
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Francesco Giganti
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| |
Collapse
|
9
|
Aerts J, Hendrickx S, Berquin C, Lumen N, Verbeke S, Villeirs G, Van Praet C, De Visschere P. Clinical Application of the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation Score for Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer. EUR UROL SUPPL 2023; 56:39-46. [PMID: 37822515 PMCID: PMC10562144 DOI: 10.1016/j.euros.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/13/2023] Open
Abstract
Background The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) score has been developed to standardise prostate magnetic resonance imaging (MRI) reporting in men on active surveillance (AS) for prostate cancer (PCa). Objective To evaluate the feasibility of PRECISE scoring and assess its diagnostic accuracy. Design setting and participants All PCa patients on AS with a baseline MRI and at least one follow-up MRI scan between January 2008 and September 2022 at a single tertiary referral centre were included in a database. The follow-up protocol of the Prostate Cancer International Active Surveillance (PRIAS) study was used. All scans were retrospectively re-reported by a dedicated uroradiologist and appointed a Prostate Imaging Reporting and Data System (version 2.1) and PRECISE score. Outcome measurements and statistical analysis Clinically significant progression was defined by histopathological upgrading (on biopsy or radical prostatectomy) to grade group ≥3 and/or evolution to T3 stage. A survival analysis was performed to assess differential progression-free survival (PFS) according to the PRECISE score. Results and limitations A total of 188 patients were included for an analysis with a total of 358 repeat MRI scans and 144 repeat biopsies. The median follow-up was 46 mo (interquartile range 21-74). Radiological progression (PRECISE 4-5) had sensitivity, specificity, negative predictive value, and positive predictive value of, respectively, 78%, 70%, 90%, and 49% for clinically significant progression. Four-year PFS was 91% for PRECISE 1-3 versus 66% for PRECISE 4-5 (p < 0.001). In total, 137 patients underwent a confirmation MRI scan within 18 mo after diagnosis. Four-year PFS in this group was 81% for PRECISE 1-3 versus 43% for PRECISE 4-5 (p < 0.001). Limitations include retrospective design and no strict adherence to AS protocol. Conclusions Implementation of PRECISE scoring for PCa patients on AS is feasible and offers a prognostic value. Patients with PRECISE score 4-5 on confirmation MRI within 18 mo after diagnosis have a three-fold higher risk of clinically significant progression after 4 yr. Patient summary Patients with low-risk prostate cancer can be followed up carefully. In this study, we evaluate the standardised reporting of repeat magnetic resonance imaging scans (using the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation [PRECISE] recommendations). PRECISE scoring is feasible and helps identify patients in need of further treatment.
Collapse
Affiliation(s)
- Jan Aerts
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Sigi Hendrickx
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Camille Berquin
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Sofie Verbeke
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Geert Villeirs
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Pieter De Visschere
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
10
|
Bhanji Y, Mamawala M, de la Calle CM, Landis P, Epstein JI, Simopoulos DN, Macura KJ, Pavlovich CP. Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) Magnetic Resonance Imaging Scoring to Predict Clinical Outcomes in Active Surveillance for Grade Group 1 Prostate Cancer. Urology 2023; 180:194-199. [PMID: 37536582 DOI: 10.1016/j.urology.2023.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE To determine whether radiological change on serial multiparametric magnetic resonance imaging scored using the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) Scoring system predicts grade reclassification (GR) at surveillance biopsy in men on active surveillance (AS) with Grade Group 1 (GG1) prostate cancer (PCa). METHODS We retrospectively reviewed records of 255 men with low-risk PCa on AS with magnetic resonance imaging (MRI)-informed diagnostic and confirmatory biopsies and studied the subset who had surveillance biopsies (n = 163) within 6months of an interval MRI. RESULTS We studied 309 PRECISE scores in 255 men. 14% demonstrated radiological progression (PRECISE 4-5) on interval MRI performed within 24months, compared to 34% of those whose interval MRI was performed at a >3-year interval (P = .002). 28% (46/163) of men undergoing surveillance biopsy experienced GR to ≥ GG2 PCa. There was no significant increase in the rate of GR with increasing PRECISE score (PRECISE 1-2: 24%, PRECISE 3: 23%, PRECISE 4-5: 38%; P = .11). There was a significant increase in the rate of GR with increasing PI-RADS score (P < .05). On multivariable analysis, a PI-RADS score of 4-5 was significantly associated with GR compared to men who had a highest PI-RADS ≤3 (OR=1.98 [95% CI: 1.45-3.09, P = .01]). CONCLUSION In a low-risk AS cohort with limited follow-up, a patient's highest PI-RADS rather than their PRECISE score on interval MRI was predictive of GR on surveillance biopsy.
Collapse
Affiliation(s)
- Yasin Bhanji
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mufaddal Mamawala
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Claire M de la Calle
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Patricia Landis
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan I Epstein
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Demetrios N Simopoulos
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katarzyna J Macura
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christian P Pavlovich
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
11
|
Harder FN, Heming CAM, Haider MA. mpMRI Interpretation in Active Surveillance for Prostate Cancer-An overview of the PRECISE score. Abdom Radiol (NY) 2023; 48:2449-2455. [PMID: 37160473 DOI: 10.1007/s00261-023-03912-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Active surveillance (AS) is now included in all major guidelines for patients with low-risk PCa and selected patients with intermediate-risk PCa. Several studies have highlighted the potential benefit of multiparametric magnetic resonance imaging (mpMRI) in AS and it has been adopted in some guidelines. However, uncertainty remains about whether serial mpMRI can help to safely reduce the number of required repeat biopsies under AS. In 2017, the European School of Oncology initiated the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) panel which proposed the PRECISE scoring system to assess the likelihood of radiological tumor progression on serial mpMRI. The PRECISE scoring system remains the only major system evaluated in multiple publications. In this review article, we discuss the current body of literature investigating the application of PRECISE as it is not as yet an established standard in mpMRI reporting. We delineate the strengths of PRECISE and its potential added value. Also, we underline potential weaknesses of the PRECISE scoring system, which might be tackled in future versions to further increase its value in AS.
Collapse
Affiliation(s)
- Felix N Harder
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada
| | - Carolina A M Heming
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada
- Radiology Department, Instituto Nacional do Cancer (INCa), Rio de Janeiro, Brazil
| | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada.
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
12
|
Bao J, Hou Y, Qin L, Zhi R, Wang XM, Shi HB, Sun HZ, Hu CH, Zhang YD. High-throughput precision MRI assessment with integrated stack-ensemble deep learning can enhance the preoperative prediction of prostate cancer Gleason grade. Br J Cancer 2023; 128:1267-1277. [PMID: 36646808 PMCID: PMC10050457 DOI: 10.1038/s41416-022-02134-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND To develop and test a Prostate Imaging Stratification Risk (PRISK) tool for precisely assessing the International Society of Urological Pathology Gleason grade (ISUP-GG) of prostate cancer (PCa). METHODS This study included 1442 patients with prostate biopsy from two centres (training, n = 672; internal test, n = 231 and external test, n = 539). PRISK is designed to classify ISUP-GG 0 (benign), ISUP-GG 1, ISUP-GG 2, ISUP-GG 3 and ISUP GG 4/5. Clinical indicators and high-throughput MRI features of PCa were integrated and modelled with hybrid stacked-ensemble learning algorithms. RESULTS PRISK achieved a macro area-under-curve of 0.783, 0.798 and 0.762 for the classification of ISUP-GGs in training, internal and external test data. Permitting error ±1 in grading ISUP-GGs, the overall accuracy of PRISK is nearly comparable to invasive biopsy (train: 85.1% vs 88.7%; internal test: 85.1% vs 90.4%; external test: 90.4% vs 94.2%). PSA ≥ 20 ng/ml (odds ratio [OR], 1.58; p = 0.001) and PRISK ≥ GG 3 (OR, 1.45; p = 0.005) were two independent predictors of biochemical recurrence (BCR)-free survival, with a C-index of 0.76 (95% CI, 0.73-0.79) for BCR-free survival prediction. CONCLUSIONS PRISK might offer a potential alternative to non-invasively assess ISUP-GG of PCa.
Collapse
Affiliation(s)
- Jie Bao
- Department of Radiology, The First Affiliated Hospital of Soochow University, 188N, Shizi Road, 215006, Suzhou, Jiangsu, China
| | - Ying Hou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Lang Qin
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Rui Zhi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Xi-Ming Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, 188N, Shizi Road, 215006, Suzhou, Jiangsu, China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Hong-Zan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Chun-Hong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, 188N, Shizi Road, 215006, Suzhou, Jiangsu, China.
| | - Yu-Dong Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Georgiev A, Chervenkov L, Doykov M, Doykova K, Uchikov P, Tsvetkova S. Surveillance Value of Apparent Diffusion Coefficient Maps: Multiparametric MRI in Active Surveillance of Prostate Cancer. Cancers (Basel) 2023; 15:1128. [PMID: 36831471 PMCID: PMC9953850 DOI: 10.3390/cancers15041128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND This study aims to establish the value of apparent diffusion coefficient maps and other magnetic resonance sequences for active surveillance of prostate cancer. The study included 530 men with an average age of 66, who were under surveillance for prostate cancer. We have used multiparametric magnetic resonance imaging with subsequent transperineal biopsy (TPB) to verify the imaging findings. RESULTS We have observed a level of agreement of 67.30% between the apparent diffusion coefficient (ADC) maps, other magnetic resonance sequences, and the biopsy results. The sensitivity of the apparent diffusion coefficient is 97.14%, and the specificity is 37.50%. According to our data, apparent diffusion coefficient is the most accurate sequence, followed by diffusion imaging in prostate cancer detection. CONCLUSIONS Based on our findings we advocate that the apparent diffusion coefficient should be included as an essential part of magnetic resonance scanning protocols for prostate cancer in at least bi-parametric settings. The best option will be apparent diffusion coefficient combined with diffusion imaging and T2 sequences. Further large-scale prospective controlled studies are required to define the precise role of multiparametric and bi-parametric magnetic resonance in the active surveillance of prostate cancer.
Collapse
Affiliation(s)
- Aleksandar Georgiev
- Department of Diagnostic Imaging, Medical Faculty, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4002 Plovdiv, Bulgaria
- Department of Diagnostic Imaging, Complex Oncology Center Plovdiv, ul. Pere Toshev 62, 4004 Plovdiv, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical Faculty, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4002 Plovdiv, Bulgaria
- Research Complex for Translational Neuroscience, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4002 Plovdiv, Bulgaria
| | - Mladen Doykov
- Department of Urology and General Medicine, Medical Faculty, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4002 Plovdiv, Bulgaria
| | - Katya Doykova
- Department of Diagnostic Imaging, Medical Faculty, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4002 Plovdiv, Bulgaria
| | - Petar Uchikov
- Department of Special Surgery, Medical Faculty, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4002 Plovdiv, Bulgaria
| | - Silvia Tsvetkova
- Department of Diagnostic Imaging, Medical Faculty, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
14
|
Fiard G, Giganti F. How MRI is changing prostate cancer management: a focus on early detection and active surveillance: Comment l'IRM est en train de révolutionner la prise en charge du cancer de la prostate : focus sur la détection précoce et la surveillance active. Prog Urol 2022; 32:6S19-6S25. [PMID: 36719642 DOI: 10.1016/s1166-7087(22)00171-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The last decade has witnessed major changes in prostate cancer management. Among these, the advent of magnetic resonance imaging (MRI), by allowing the visualisation of the cancerous lesion inside the prostatic gland, opened new management horizons. MATERIAL AND METHODS We conducted a narrative review of the literature published since 2010, focusing on the place of MRI in the early detection, active surveillance and prostate cancer screening settings. RESULTS Multiparametric magnetic resonance imaging (mpMRI), interpreted using the PI-RADS scoring system, has allowed a shift from systematic to mpMRI-targeted biopsies, supported by level I evidence. Studies are ongoing to evaluate the role of MRI as a triage and screening tool. The integration of mpMRI has allowed for a better selection of active surveillance candidates, reducing the risk of misclassification. The PRECISE recommendations have been created to assess the likelihood of radiological change over time from the previous or baseline mpMRI scan, and serial mpMRI appears promising to reduce the need for repeat biopsy in active surveillance. CONCLUSION Growing evidence supports the use of MRI at all stages of the prostate cancer pathway, relying on images of optimal diagnostic quality and experience in prostate MRI reporting and biopsy targeting. © 2022 Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- G Fiard
- Department of Urology, Grenoble Alpes University Hospital, Grenoble, France; Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France.
| | - F Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK; Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
15
|
The current role of MRI for guiding active surveillance in prostate cancer. Nat Rev Urol 2022; 19:357-365. [PMID: 35393568 DOI: 10.1038/s41585-022-00587-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 01/13/2023]
Abstract
Active surveillance (AS) is the recommended treatment option for low-risk and favourable intermediate-risk prostate cancer management, preserving oncological and functional outcomes. However, active monitoring using relevant parameters in addition to the usual clinical, biological and pathological considerations is necessary to compensate for initial undergrading of the tumour or to detect early progression without missing the opportunity to provide curative therapy. Indeed, several studies have raised concerns about inadequate biopsy sampling at diagnosis. However, the implementation of baseline MRI and targeted biopsy have led to improved initial stratification of low-risk disease; baseline MRI correlates well with disease characteristics and AS outcomes. The use of follow-up MRI during the surveillance phase also raises the question of the requirement for serial biopsies in the absence of radiological progression and the possibility of using completely MRI-based surveillance, with triggers for biopsies based solely on MRI findings. This concept of a tailored-risk, imaging-based monitoring strategy is aimed at reducing invasive procedures. However, the abandonment of serial biopsies in the absence of MRI progression can probably not yet be recommended in routine practice, as the data from real-life cohorts are heterogeneous and inconclusive. Thus, the evolution towards a routine, fully MRI-guided AS pathway has to be preceded by ensuring quality programme assessment for MRI reading and by demonstrating its safety in prospective trials.
Collapse
|
16
|
Barrett T, Pacey S, Leonard K, Wulff J, Funingana IG, Gnanapragasam V. A Feasibility Study of the Therapeutic Response and Durability of Short-term Androgen-targeted Therapy in Early Prostate Cancer Managed with Surveillance: The Therapeutics in Active Prostate Surveillance (TAPS01) Study. EUR UROL SUPPL 2022; 38:17-24. [PMID: 35495285 PMCID: PMC9051967 DOI: 10.1016/j.euros.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Abstract
Background Active surveillance (AS) is a preferred management option for men with prostate cancer with favourable prognosis. However, nearly half of men on AS switch to treatment within 5 years, so therapeutic strategies to prevent or delay disease progression could be considered. The androgen receptor is the pre-eminent oncogenic driver in prostate cancer. Objective To explore image-based tumour responses and the patient impact of short-duration androgen-targeted therapy (ATT) to abrogate disease progression during AS. Design, setting, and participants Men on AS with Cambridge Prognostic Group 1 & 2 (low and favourable intermediate risk) prostate cancer and lesions visible on magnetic resonance imaging (MRI) were recruited to an open-label, single-centre, phase 2 feasibility study of short-term ATT (the TAPS01 study). Intervention Apalutamide 240 mg was administered for 90 days. Outcome measurements and statistical analysis MRI-measured tumour volume (TV), gland volume (GV), and the TV/GV ratio were calculated at baseline, at day 90 (end of treatment), and at 6- and 18-month follow-up. Quality of life metrics were measured at day 0, day 90, and 6 weeks after ATT. Results and limitations Eleven patients (40% of eligible men approached) agreed to participate, of whom nine completed treatment. At day 90, the median percentage reduction was −38.2% (range −51.8% to −23.5%) for GV, −54.2% (range −74.1% to −13.8%) for TV, and −27.2% (range −61.5% to −7.5%) for TV/GV (all p < 0.0001). At 6 mo, while GV had returned to baseline (p = 0.95) both TV (−31.9%; p = 0.0007) and TV/GV (−28.7%; p = 0.0009) remained significantly reduced. This reduction was sustained at 18 months (TV −18%, TV/GV −23.8%; p = 0.01). European Organization for Research and Treatment of Cancer QoL core 30-item questionnaire scores for global, physical, role, and social functioning decreased during treatment, but all were recovering by 6 weeks. EQ-VAS scores were unchanged compared to baseline. Conclusions TAPS01 has demonstrated feasibility and patient tolerability for short-term ATT in men on AS. Our data suggest a selective and durable antitumour effect in the short term and support a larger-scale randomised trial. Patient summary We investigated the feasibility of short-term treatment with an androgen inhibitor to prevent or delay disease progression for men on active surveillance for prostate cancer. Results for a small group of patients show that 90-day treatment led to a sustained decrease in tumour volume over 18 months. The findings warrant a larger clinical trial for this approach, which could allow patients to delay or even avoid longer-term active treatments.
Collapse
Affiliation(s)
- Tristan Barrett
- Translational Prostate Cancer Group, CRUK Cambridge Cancer Centre, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Simon Pacey
- Translational Prostate Cancer Group, CRUK Cambridge Cancer Centre, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Kelly Leonard
- Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke’s Hospital, Cambridge, UK
| | - Jerome Wulff
- Cambridge Clinical Trials Unit-Cancer Theme, Cambridge, UK
| | - Ionut-Gabriel Funingana
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Vincent Gnanapragasam
- Translational Prostate Cancer Group, CRUK Cambridge Cancer Centre, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke’s Hospital, Cambridge, UK
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Corresponding author. Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke’s Hospital, Keith Day Road, Cambridge CB2 0SL, UK.
| |
Collapse
|
17
|
Sushentsev N, Rundo L, Blyuss O, Nazarenko T, Suvorov A, Gnanapragasam VJ, Sala E, Barrett T. Comparative performance of MRI-derived PRECISE scores and delta-radiomics models for the prediction of prostate cancer progression in patients on active surveillance. Eur Radiol 2022; 32:680-689. [PMID: 34255161 PMCID: PMC8660717 DOI: 10.1007/s00330-021-08151-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To compare the performance of the PRECISE scoring system against several MRI-derived delta-radiomics models for predicting histopathological prostate cancer (PCa) progression in patients on active surveillance (AS). METHODS The study included AS patients with biopsy-proven PCa with a minimum follow-up of 2 years and at least one repeat targeted biopsy. Histopathological progression was defined as grade group progression from diagnostic biopsy. The control group included patients with both radiologically and histopathologically stable disease. PRECISE scores were applied prospectively by four uro-radiologists with 5-16 years' experience. T2WI- and ADC-derived delta-radiomics features were computed using baseline and latest available MRI scans, with the predictive modelling performed using the parenclitic networks (PN), least absolute shrinkage and selection operator (LASSO) logistic regression, and random forests (RF) algorithms. Standard measures of discrimination and areas under the ROC curve (AUCs) were calculated, with AUCs compared using DeLong's test. RESULTS The study included 64 patients (27 progressors and 37 non-progressors) with a median follow-up of 46 months. PRECISE scores had the highest specificity (94.7%) and positive predictive value (90.9%), whilst RF had the highest sensitivity (92.6%) and negative predictive value (92.6%) for predicting disease progression. The AUC for PRECISE (84.4%) was non-significantly higher than AUCs of 81.5%, 78.0%, and 80.9% for PN, LASSO regression, and RF, respectively (p = 0.64, 0.43, and 0.57, respectively). No significant differences were observed between AUCs of the three delta-radiomics models (p-value range 0.34-0.77). CONCLUSIONS PRECISE and delta-radiomics models achieved comparably good performance for predicting PCa progression in AS patients. KEY POINTS • The observed high specificity and PPV of PRECISE are complemented by the high sensitivity and NPV of delta-radiomics, suggesting a possible synergy between the two image assessment approaches. • The comparable performance of delta-radiomics to PRECISE scores applied by expert readers highlights the prospective use of the former as an objective and standardisable quantitative tool for MRI-guided AS follow-up. • The marginally superior performance of parenclitic networks compared to conventional machine learning algorithms warrants its further use in radiomics research.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Leonardo Rundo
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Oleg Blyuss
- School of Physics, Engineering & Computer Science, University of Hertfordshire, Hatfield, UK
- Department of Paediatrics and Paediatric Infectious Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Tatiana Nazarenko
- Department of Mathematics and Institute for Women's Health, University College London, London, UK
| | - Aleksandr Suvorov
- World-Class Research Center "Digital Biodesign and Personalised Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vincent J Gnanapragasam
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, University of Cambridge, Cambridge, UK
| | - Evis Sala
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Ellis EE, Frye TP. Role of multi-parametric magnetic resonance imaging fusion biopsy in active surveillance of prostate cancer: a systematic review. Ther Adv Urol 2022; 14:17562872221106883. [PMID: 35872881 PMCID: PMC9297445 DOI: 10.1177/17562872221106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Our goal is to review current literature regarding the role of multi-parametric magnetic resonance imaging (mpMRI) in the active surveillance (AS) of prostate cancer (PCa) and identify trends in rate of reclassification of risk category, performance of fusion biopsy (FB) versus systematic biopsy (SB), and progression-free survival. Methods: We performed a comprehensive literature search in PubMed and identified 121 articles. A narrative summary was performed. Results: Thirty-two articles were chosen to be featured in this review. SB and FB are complementary in detecting higher-grade disease in follow-up. While FB was more likely than SB to detect clinically significant disease, FB missed 6.4–11% of clinically significant disease. Imaging factors that predicted upgrading include number of lesions on magnetic resonance imaging (MRI), lesion density, and MRI suspicion level. Conclusion: Incorporating mpMRI FB in conjunction with SB should be part of contemporary AS protocols. mpMRI should additionally be used routinely for follow-up; however, mpMRI is not currently sensitive enough in detecting disease progression to replace biopsy in the surveillance protocol.
Collapse
Affiliation(s)
| | - Thomas P Frye
- University of Rochester Medical Center, 601 Elmwood Ave Box 656, Rochester, NY 14620, USA
| |
Collapse
|
19
|
Boschheidgen M, Schimmöller L, Arsov C, Ziayee F, Morawitz J, Valentin B, Radke KL, Giessing M, Esposito I, Albers P, Antoch G, Ullrich T. MRI grading for the prediction of prostate cancer aggressiveness. Eur Radiol 2021; 32:2351-2359. [PMID: 34748064 PMCID: PMC8921105 DOI: 10.1007/s00330-021-08332-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/15/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES T o evaluate the value of multiparametric MRI (mpMRI) for the prediction of prostate cancer (PCA) aggressiveness. METHODS In this single center cohort study, consecutive patients with histologically confirmed PCA were retrospectively enrolled. Four different ISUP grade groups (1, 2, 3, 4-5) were defined and fifty patients per group were included. Several clinical (age, PSA, PSAD, percentage of PCA infiltration) and mpMRI parameters (ADC value, signal increase on high b-value images, diameter, extraprostatic extension [EPE], cross-zonal growth) were evaluated and correlated within the four groups. Based on combined descriptors, MRI grading groups (mG1-mG3) were defined to predict PCA aggressiveness. RESULTS In total, 200 patients (mean age 68 years, median PSA value 8.1 ng/ml) were analyzed. Between the four groups, statistically significant differences could be shown for age, PSA, PSAD, and for MRI parameters cross-zonal growth, high b-value signal increase, EPE, and ADC (p < 0.01). All examined parameters revealed a significant correlation with the histopathologic biopsy ISUP grade groups (p < 0.01), except PCA diameter (p = 0.09). A mixed linear model demonstrated the strongest prediction of the respective ISUP grade group for the MRI grading system (p < 0.01) compared to single parameters. CONCLUSIONS MpMRI yields relevant pre-biopsy information about PCA aggressiveness. A combination of quantitative and qualitative parameters (MRI grading groups) provided the best prediction of the biopsy ISUP grade group and may improve clinical pathway and treatment planning, adding useful information beyond PI-RADS assessment category. Due to the high prevalence of higher grade PCA in patients within mG3, an early re-biopsy seems indicated in cases of negative or post-biopsy low-grade PCA. KEY POINTS • MpMRI yields relevant pre-biopsy information about prostate cancer aggressiveness. • MRI grading in addition to PI-RADS classification seems to be helpful for a size independent early prediction of clinically significant PCA. • MRI grading groups may help urologists in clinical pathway and treatment planning, especially when to consider an early re-biopsy.
Collapse
Affiliation(s)
- M Boschheidgen
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - L Schimmöller
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - C Arsov
- Department of Urology, Medical Faculty, University Dusseldorf, 40225, Düsseldorf, Germany
| | - F Ziayee
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - J Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - B Valentin
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - K L Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - M Giessing
- Department of Urology, Medical Faculty, University Dusseldorf, 40225, Düsseldorf, Germany
| | - I Esposito
- Department of Pathology, Medical Faculty, University Dusseldorf, 40225, Düsseldorf, Germany
| | - P Albers
- Department of Urology, Medical Faculty, University Dusseldorf, 40225, Düsseldorf, Germany
| | - G Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - T Ullrich
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| |
Collapse
|
20
|
Luzzago S, Piccinelli ML, Mistretta FA, Bianchi R, Cozzi G, Di Trapani E, Cioffi A, Catellani M, Fontana M, Jannello LMI, Botticelli FMG, Marvaso G, Alessi S, Pricolo P, Ferro M, Matei DV, Jereczek-Fossa BA, Fusco N, Petralia G, de Cobelli O, Musi G. Repeat MRI during active surveillance: natural history of prostatic lesions and upgrading rates. BJU Int 2021; 129:524-533. [PMID: 34687137 DOI: 10.1111/bju.15623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To assess upgrading rates in patients on active surveillance (AS) for prostate cancer (PCa) after serial multiparametric magnetic resonance imaging (mpMRI). METHODS We conducted a retrospective analysis of 558 patients. Five different criteria for mpMRI progression were used: 1) a Prostate Imaging Reporting and Data System (PI-RADS) score increase; 2) a lesion size increase; 3) an extraprostatic extension score increase; 4) overall mpMRI progression; and 5) the number of criteria met for mpMRI progression (0 vs 1 vs 2-3). In addition, two definitions of PCa upgrading were evaluated: 1) International Society of Urological Pathology Grade Group (ISUP GG) ≥2 with >10% of pattern 4 and 2) ISUP GG ≥ 3. Estimated annual percent changes methodology was used to show the temporal trends of mpMRI progression criteria. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of mpMRI progression criteria were also analysed. Multivariable logistic regression models tested PCa upgrading rates. RESULTS Lower rates over time for all mpMRI progression criteria were observed. The NPV of serial mpMRI scans ranged from 90.5% to 93.5% (ISUP GG≥2 with >10% of pattern 4 PCa upgrading) and from 98% to 99% (ISUP GG≥3 PCa upgrading), depending on the criteria used for mpMRI progression. A prostate-specific antigen density (PSAD) threshold of 0.15 ng/mL/mL was used to substratify those patients who would be able to skip a prostate biopsy. In multivariable logistic regression models assessing PCa upgrading rates, all five mpMRI progression criteria achieved independent predictor status. CONCLUSION During AS, approximately 27% of patients experience mpMRI progression at first repeat MRI. However, the rates of mpMRI progression decrease over time at subsequent mpMRI scans. Patients with stable mpMRI findings and with PSAD < 0.15 ng/mL/mL could safely skip surveillance biopsies. Conversely, patients who experience mpMRI progression should undergo a prostate biopsy.
Collapse
Affiliation(s)
- Stefano Luzzago
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mattia Luca Piccinelli
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| | | | - Roberto Bianchi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Gabriele Cozzi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Ettore Di Trapani
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Antonio Cioffi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Michele Catellani
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Matteo Fontana
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| | - Letizia Maria Ippolita Jannello
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| | | | - Giulia Marvaso
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Sarah Alessi
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Ferro
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Deliu-Victor Matei
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Barbara A Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Pathology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavio de Cobelli
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gennaro Musi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Hettiarachchi D, Geraghty R, Rice P, Sachdeva A, Nambiar A, Johnson M, Gujadhur R, Mcneill M, Haslam P, Soomro N, Zeeshan Hameed BM, Somani B, Veeratterapillay R, Rai BP. Can the Use of Serial Multiparametric Magnetic Resonance Imaging During Active Surveillance of Prostate Cancer Avoid the Need for Prostate Biopsies?-A Systematic Diagnostic Test Accuracy Review. Eur Urol Oncol 2021; 4:426-436. [PMID: 32972894 DOI: 10.1016/j.euo.2020.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022]
Abstract
CONTEXT The role of multiparametric magnetic resonance imaging (mp-MRI) during active surveillance (AS) of prostate cancer needs evaluation. It remains unclear whether mp-MRI can replace prostate biopsies completely during AS. OBJECTIVE To evaluate the diagnostic performance of mp-MRI for disease progression in men on AS for prostate cancer. EVIDENCE ACQUISITION This systematic review was performed in accordance with the Cochrane Handbook and the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). Cross-sectional studies that evaluate the diagnostic performance of mp-MRI (index test) for disease progression compared with systematic and targeted prostate/template biopsies or a composite of this (reference standard) were included. A meta-analysis was performed using STATA with "metandi" and "midas" commands. EVIDENCE SYNTHESIS Seven studies with 800 patients were included in this systematic review. The pooled pathological progression rate was 27%. The pooled sensitivity and specificity of mp-MRI for disease progression were 0.61 (95% confidence interval [CI]: 0.46-0.74) and 0.78 (95% CI: 0.54-0.91), respectively. Adjusting for a prevalence of disease progression of 30% results in a positive predictive value of 0.43 (95% CI: 0.39-0.46) and a negative predictive value of 0.81 (95% CI: 0.78-0.84). Significant heterogeneity was observed. The meta-regression analysis did not demonstrate any significant outliers. CONCLUSIONS It is not possible to supplant prostate biopsies with mp-MRI in AS protocols with the current level of evidence. There is significant institutional variation in the diagnostic performance of mp-MRI during AS. Institutions must internally audit the diagnostic performance of mp-MRI in the AS setting. AS protocols must be based on local diagnostic performance, rather than on international AS protocols that may have limited applicability at individual settings. PATIENT SUMMARY In this review, we explored the accuracy of multiparametric magnetic resonance imaging in diagnosing disease progression for patients who were enrolled in active surveillance programmes for prostate cancer.
Collapse
Affiliation(s)
| | | | - Patrick Rice
- University Hospital Southampton NHS Trust, Southampton, UK
| | | | | | | | | | | | | | | | - B M Zeeshan Hameed
- Department of Urology, KMC Innovation Center, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bhaskar Somani
- University Hospital Southampton NHS Trust, Southampton, UK
| | | | | |
Collapse
|
22
|
Rajwa P, Pradere B, Quhal F, Mori K, Laukhtina E, Huebner NA, D'Andrea D, Krzywon A, Shim SR, Baltzer PA, Renard-Penna R, Leapman MS, Shariat SF, Ploussard G. Reliability of Serial Prostate Magnetic Resonance Imaging to Detect Prostate Cancer Progression During Active Surveillance: A Systematic Review and Meta-analysis. Eur Urol 2021; 80:549-563. [PMID: 34020828 DOI: 10.1016/j.eururo.2021.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
CONTEXT Although magnetic resonance imaging (MRI) is broadly implemented into active surveillance (AS) protocols, data on the reliability of serial MRI in order to help guide follow-up biopsy are inconclusive. OBJECTIVE To assess the diagnostic estimates of serial prostate MRI for prostate cancer (PCa) progression during AS. EVIDENCE ACQUISITION We systematically searched PubMed, Scopus, and Web of Science databases to select studies analyzing the association between changes on serial prostate MRI and PCa progression during AS. We included studies that provided data for MRI progression, which allowed us to calculate diagnostic estimates. We compared Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) accuracy with institution-specific definitions. EVIDENCE SYNTHESIS We included 15 studies with 2240 patients. Six used PRECISE criteria and nine institution-specific definitions of MRI progression. The pooled PCa progression rate, which included histological progression to Gleason grade ≥2, was 27%. The pooled sensitivity and specificity were 0.59 (95% confidence interval [CI] 0.44-0.73) and 0.75 (95% CI 0.66-0.84) respectively. There was significant heterogeneity between included studies. Depending on PCa progression prevalence, the pooled negative predictive value for serial prostate MRI ranged from 0.81 (95% CI 0.73-0.88) to 0.88 (95% CI 0.83-0.93) and the pooled positive predictive value ranged from 0.37 (95% CI 0.24-0.54) to 0.50 (95% CI 0.36-0.66). There were no significant differences in the pooled sensitivity (p = 0.37) and specificity (p = 0.74) of PRECISE and institution-specific schemes. CONCLUSIONS Serial MRI still should not be considered a sole factor for excluding PCa progression during AS, and changes on MRI are not accurate enough to indicate PCa progression. There was a nonsignificant trend toward improved diagnostic estimates of PRECISE recommendations. These findings highlight the need to further define the optimal triggers and timing of biopsy during AS, as well as the need for optimizing the quality, interpretation, and reporting of serial prostate MRI. PATIENT SUMMARY Our study suggests that serial prostate magnetic resonance imaging (MRI) alone in patients on active surveillance is not accurate enough to reliably rule out or rule in prostate cancer progression. Other clinical factors and biomarkers along with serial MRI are required to safely tailor the intensity of follow-up biopsies.
Collapse
Affiliation(s)
- Pawel Rajwa
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Benjamin Pradere
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Fahad Quhal
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Keiichiro Mori
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ekaterina Laukhtina
- Department of Urology, Medical University of Vienna, Vienna, Austria; Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Nicolai A Huebner
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - David D'Andrea
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Aleksandra Krzywon
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Sung Ryul Shim
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
| | - Pascal A Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Raphaële Renard-Penna
- Department of Radiology, Pitié-Salpétrière Hospital, Paris-Sorbonne University, Paris, France
| | | | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria; Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia; Department of Urology, Weill Cornell Medical College, New York, NY, USA; Department of Urology, University of Texas Southwestern, Dallas, TX, USA; Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria; Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
23
|
Boschheidgen M, Schimmöller L, Kasprowski L, Abrar D, Arsov C, Albers P, Antoch G, Wittsack HJ, Ullrich T. Arterial spin labelling as a gadolinium-free alternative in the detection of prostate cancer. Magn Reson Imaging 2021; 80:33-38. [PMID: 33905833 DOI: 10.1016/j.mri.2021.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE To determine the capability of Gadolinium-free arterial spin labelling (ASL) sequences as novel, contrast-free, non-invasive alternative perfusion imaging method to differentiate prostate cancer (PCA) from benign prostate tissue compared to conventional DCE MRI. METHODS Thirty men with histologically confirmed PCA were included in this prospectively enrolled single center cohort study. All patients received multiparametric MRI (T2, DWI, DCE) at 3 T with additional ASL of the PCA lesion. Primary endpoint was differentiability of PCA versus benign prostate tissue by signal intensities (SI) and contrast ratios (CR) in ASL in comparison to DCE. For DCE also Signal-Enhancement-Ratio (SER) of native and early contrast enhancement SI was assessed. Secondary objectives were differences regarding PCA localisation in peripheral (PZ) or transition zone (TZ) and PCA detection. RESULTS In both, ASL and DCE, average SI of PCA differed significantly from SI in benign tissue in the TZ and PZ (p < 0,01, respectively). ASL had significantly higher CR discerning PCA and benign tissue in PZ and TZ (PZ = 5.19; TZ = 6.45) compared to DCE SI (PZ = 1.61; TZ = 1.43) and DCE SER (PZ = 1.59; TZ = 1.43) (p < 0.01, respectively). In subjective evaluation, PCA could be detected in ASL in 28 patients, compared to 29 in DCE. CONCLUSION ASL had significantly higher CR differentiating PCA from benign tissue in PZ and TZ compared to DCE. Visual detection of PCA does not differ significantly between the two sequences. As perfusion gadolinium-based contrast media is seen more critical in the last few years, ASL seems to be a promising alternative to DCE in PCA detection.
Collapse
Affiliation(s)
- M Boschheidgen
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - L Schimmöller
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - L Kasprowski
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - D Abrar
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - C Arsov
- University Dusseldorf, Medical Faculty, Department of Urology, D-40225 Dusseldorf, Germany.
| | - P Albers
- University Dusseldorf, Medical Faculty, Department of Urology, D-40225 Dusseldorf, Germany.
| | - G Antoch
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - H J Wittsack
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - T Ullrich
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| |
Collapse
|
24
|
O'Connor LP, Wang AZ, Yerram NK, Long L, Ahdoot M, Lebastchi AH, Gurram S, Zeng J, Harmon SA, Mehralivand S, Merino MJ, Parnes HL, Choyke PL, Shih JH, Wood BJ, Turkbey B, Pinto PA. Changes in Magnetic Resonance Imaging Using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation Criteria to Detect Prostate Cancer Progression for Men on Active Surveillance. Eur Urol Oncol 2021; 4:227-234. [PMID: 33867045 PMCID: PMC9310665 DOI: 10.1016/j.euo.2020.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND The ability of serial magnetic resonance imaging (MRI) to capture pathologic progression during active surveillance (AS) remains in question. OBJECTIVE To determine whether changes in MRI are associated with pathologic progression for patients on AS. DESIGN, SETTING, AND PARTICIPANTS From July 2007 through January 2020, we identified all patients evaluated for AS at our institution. Following confirmatory biopsy, a total of 391 patients who underwent surveillance MRI and biopsy at least once were identified (median follow-up of 35.6 mo, interquartile range 19.7-60.6). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS All MRI intervals were scored using the "Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation" (PRECISE) criteria, with PRECISE scores =4 considered a positive change in MRI. A generalized estimating equation-based logistic regression analysis was conducted for all intervals with a PRECISE score of <4 to determine the predictors of Gleason grade group (GG) progression despite stable MRI. RESULTS AND LIMITATIONS A total of 621 MRI intervals were scored by PRECISE and validated by biopsy. The negative predictive value of stable MRI (PRECISE score <4) was greatest for detecting GG1 to?=?GG3 disease (0.94 [0.91-0.97]). If 2-yr surveillance biopsy were performed exclusively for a positive change in MRI, 3.7% (4/109) of avoided biopsies would have resulted in missed progression from GG1 to?=?GG3 disease. Prostate-specific antigen (PSA) density (odds ratio 1.95 [1.17-3.25], p?=? 0.01) was a risk factor for progression from GG1 to =GG3 disease despite stable MRI. CONCLUSIONS In patients with GG1 disease and stable MRI (PRECISE score <4) on surveillance, grade progression to?=?GG3 disease is not common. In patients with grade progression detected on biopsy despite stable MRI, elevated PSA density appeared to be a risk factor for progression to?=?GG3 disease. PATIENT SUMMARY For patients with low-risk prostate cancer on active surveillance, the risk of progressing to grade group 3 disease is low with a stable magnetic resonance image (MRI) after 2?yr. Having higher prostate-specific antigen density increases the risk of progression, despite having a stable MRI.
Collapse
Affiliation(s)
- Luke P O'Connor
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alex Z Wang
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nitin K Yerram
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lori Long
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Ahdoot
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amir H Lebastchi
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Gurram
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Johnathan Zeng
- Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie A Harmon
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, MD, USA
| | - Sherif Mehralivand
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Howard L Parnes
- Division of Cancer Prevention, National Cancer Institutes, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joanna H Shih
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bradford J Wood
- Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
The Importance of Being PRECISE in Prostate Magnetic Resonance Imaging and Active Surveillance. Eur Urol 2021; 79:560-563. [PMID: 33546915 DOI: 10.1016/j.eururo.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023]
|
26
|
Giganti F, Stabile A, Stavrinides V, Osinibi E, Retter A, Orczyk C, Panebianco V, Trock BJ, Freeman A, Haider A, Punwani S, Allen C, Kirkham A, Emberton M, Moore CM. Natural history of prostate cancer on active surveillance: stratification by MRI using the PRECISE recommendations in a UK cohort. Eur Radiol 2020; 31:1644-1655. [PMID: 33000302 PMCID: PMC7880925 DOI: 10.1007/s00330-020-07256-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022]
Abstract
Objectives The PRECISE recommendations for magnetic resonance imaging (MRI) in patients on active surveillance (AS) for prostate cancer (PCa) include repeated measurement of each lesion, and attribution of a PRECISE radiological progression score for the likelihood of clinically significant change over time. We aimed to compare the PRECISE score with clinical progression in patients who are managed using an MRI-led AS protocol. Methods A total of 553 patients on AS for low- and intermediate-risk PCa (up to Gleason score 3 + 4) who had two or more MRI scans performed between December 2005 and January 2020 were included. Overall, 2161 scans were retrospectively re-reported by a dedicated radiologist to give a PI-RADS v2 score for each scan and assess the PRECISE score for each follow-up scan. Clinical progression was defined by histological progression to ≥ Gleason score 4 + 3 (Gleason Grade Group 3) and/or initiation of active treatment. Progression-free survival was assessed using Kaplan-Meier curves and log-rank test was used to assess differences between curves. Results Overall, 165/553 (30%) patients experienced the primary outcome of clinical progression (median follow-up, 74.5 months; interquartile ranges, 53–98). Of all patients, 313/553 (57%) did not show radiological progression on MRI (PRECISE 1–3), of which 296/313 (95%) had also no clinical progression. Of the remaining 240/553 patients (43%) with radiological progression on MRI (PRECISE 4–5), 146/240 (61%) experienced clinical progression (p < 0.0001). Patients with radiological progression on MRI (PRECISE 4-5) showed a trend to an increase in PSA density. Conclusions Patients without radiological progression on MRI (PRECISE 1-3) during AS had a very low likelihood of clinical progression and many could avoid routine re-biopsy. Key Points • Patients without radiological progression on MRI (PRECISE 1–3) during AS had a very low likelihood of clinical progression and many could avoid routine re-biopsy. • Clinical progression was almost always detectable in patients with radiological progression on MRI (PRECISE 4–5) during AS. • Patients with radiological progression on MRI (PRECISE 4–5) during AS showed a trend to an increase in PSA density. Electronic supplementary material The online version of this article (10.1007/s00330-020-07256-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK. .,Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley St., London, W1W 7TS, UK.
| | - Armando Stabile
- Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley St., London, W1W 7TS, UK.,Department of Urology and Division of Experimental Oncology, Vita-Salute San Raffaele University, Milan, Italy
| | - Vasilis Stavrinides
- Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley St., London, W1W 7TS, UK.,Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Elizabeth Osinibi
- Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley St., London, W1W 7TS, UK
| | - Adam Retter
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK.,Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley St., London, W1W 7TS, UK
| | - Clément Orczyk
- Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley St., London, W1W 7TS, UK.,Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Bruce J Trock
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex Freeman
- Department of Pathology, University College London Hospital NHS Foundation Trust, London, UK
| | - Aiman Haider
- Department of Pathology, University College London Hospital NHS Foundation Trust, London, UK
| | - Shonit Punwani
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK.,Centre for Medical Imaging, University College London, London, UK
| | - Clare Allen
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Alex Kirkham
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Mark Emberton
- Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley St., London, W1W 7TS, UK.,Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley St., London, W1W 7TS, UK.,Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| |
Collapse
|