1
|
Marth T, Kajdi GW, Stern C, Sutter R. Implementing tin-prefiltration in routine clinical CT scans of the lower extremity: impact on radiation dose. Skeletal Radiol 2025:10.1007/s00256-025-04897-3. [PMID: 40011260 DOI: 10.1007/s00256-025-04897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVES Several studies have demonstrated the potential of tin-prefiltration to reduce radiation dose while maintaining diagnostic image quality for musculoskeletal imaging. Still, no study has reported data on the impact of tin-prefiltration on radiation dose reduction for clinical routine scanning. MATERIALS AND METHODS Retrospective inclusion of 300 clinically indicated CT scans of the pelvis, knee, and ankle before January 2020 (without tin filter) and after December 2020 (with tin filter). For each joint, 50 examinations with tin-prefiltration and 50 examinations without tin-prefiltration were selected. Dose parameters were extracted, calculated, and compared. Subjective and quantitative parameters for image quality were assessed. RESULTS The CTDIvol, DLP, and effective dose were reduced significantly in all tin-prefiltered examinations compared to the non-tin-prefiltered examinations (p < 0.001): CTDIvol was 65% lower in the pelvis, 73% lower in the knee, and 54% lower in the ankle. This reduced the effective dose of 61%, 71%, and 60%, respectively. In absolute numbers, the reduction of the median effective dose delivered in a single CT scan of the pelvis was - 2.29 mSv, - 0.15 mSv for the knee, and - 0.03 mSv for the ankle. No difference in diagnostic image quality, depiction of bone anatomy and soft tissues, and image artifacts was observed (p > 0.05). Subjective and objective image noise was higher in tin-prefiltered pelvis CT (p < 0.001). CONCLUSION The implementation of tin-prefiltration in clinical routine scan protocols significantly reduced the effective radiation dose for unenhanced CT scans of the lower extremities between 60 and 70%.
Collapse
Affiliation(s)
- Thomas Marth
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland.
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland.
- Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Georg Wilhelm Kajdi
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Christoph Stern
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Bebbington NA, Østergård LL, Christensen KB, Holdgaard PC. CT radiation dose reduction with tin filter for localisation/characterisation level image quality in PET-CT: a phantom study. EJNMMI Phys 2024; 11:100. [PMID: 39585489 PMCID: PMC11589033 DOI: 10.1186/s40658-024-00703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND The tin filter has allowed radiation dose reduction in some standalone diagnostic computed tomography (CT) applications. Yet, 'low-dose' CT scans are commonly used in positron emission tomography (PET)-CT for lesion localisation/characterisation (L/C), with higher noise tolerated. Thus, dose reductions permissible with the tin filter at this image quality level may differ. The aim was to determine the level of CT dose reduction permitted with the tin filter in PET-CT, for comparable image quality to the clinical reference standard (CRS) L/C CT images acquired with standard filtration. MATERIALS AND METHODS A whole-body CT phantom was scanned with standard filtration in CRS protocols, using 120 kV with 20mAs-ref for bone L/C (used in 18F-Sodium Fluoride (NaF) PET-CT) and 40mAs-ref for soft tissue L/C (used in 18F-Fluorodeoxyglucose (FDG) PET-CT), followed by tin filter scans at 100 kV (Sn100kV) and 140 kV (Sn140kV) with a range of mAs settings. For each scan, effective dose (ED) in an equivalent-sized patient was calculated, and image quality determined in 5 different tissues through quantitative (contrast-to-noise ratio) and qualitative (visual) analyses. The relative dose reductions which could be achieved with the tin filter for comparable image quality to CRS images were calculated. RESULTS Quantitative analysis demonstrated dose savings of 50-76% in bone, 27-51% in lung and 8-61% in soft tissue with use of the tin filter at Sn100kV. Qualitative analysis demonstrated dose reductions using Sn100kV in general agreement with the dose reductions indicated by quantitative analysis. Overall, CT dose reductions of around 85% were indicated for NaF bone PET-CT, allowing whole-body CT at just 0.2mSv ED, and a 30-40% CT dose reduction for FDG PET-CT using Sn100kV (1.7-2.0mSv), providing comparable image quality to current CRS images with standard filtration. Sn140kV demonstrated limited value in CT dose reduction. CONCLUSIONS Large CT dose reductions can be made using the tin filter at Sn100kV, when imaging bone, lung and soft tissue at L/C level CT image quality in PET-CT. As well as reducing the risk of inducing a cancer in later life, such dose reductions may also impact PET-CT practice, such as justifying cross-sectional over planar imaging or justifying PET-CT in younger patients.
Collapse
Affiliation(s)
| | - Lone Lange Østergård
- Department of Nuclear Medicine, Lillebaelt University Hospital, Beriderbakken 4, Vejle, 7100, Denmark
| | - Kenneth Boye Christensen
- Department of Nuclear Medicine, Lillebaelt University Hospital, Beriderbakken 4, Vejle, 7100, Denmark
| | - Paw Christian Holdgaard
- Department of Nuclear Medicine, Lillebaelt University Hospital, Beriderbakken 4, Vejle, 7100, Denmark
| |
Collapse
|
3
|
Zhang X, Nadeem SA, DiCamillo PA, Shibli-Rahhal A, Regan EA, Barr RG, Hoffman EA, Comellas AP, Saha PK. Ultra-low dose hip CT-based automated measurement of volumetric bone mineral density at proximal femoral subregions. Med Phys 2024; 51:8213-8231. [PMID: 39042053 PMCID: PMC11661458 DOI: 10.1002/mp.17319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Forty to fifty percent of women and 13%-22% of men experience an osteoporosis-related fragility fracture in their lifetimes. After the age of 50 years, the risk of hip fracture doubles in every 10 years. x-Ray based DXA is currently clinically used to diagnose osteoporosis and predict fracture risk. However, it provides only 2-D representation of bone and is associated with other technical limitations. Thus, alternative methods are needed. PURPOSE To develop and evaluate an ultra-low dose (ULD) hip CT-based automated method for assessment of volumetric bone mineral density (vBMD) at proximal femoral subregions. METHODS An automated method was developed to segment the proximal femur in ULD hip CT images and delineate femoral subregions. The computational pipeline consists of deep learning (DL)-based computation of femur likelihood map followed by shape model-based femur segmentation and finite element analysis-based warping of a reference subregion labeling onto individual femur shapes. Finally, vBMD is computed over each subregion in the target image using a calibration phantom scan. A total of 100 participants (50 females) were recruited from the Genetic Epidemiology of COPD (COPDGene) study, and ULD hip CT imaging, equivalent to 18 days of background radiation received by U.S. residents, was performed on each participant. Additional hip CT imaging using a clinical protocol was performed on 12 participants and repeat ULD hip CT was acquired on another five participants. ULD CT images from 80 participants were used to train the DL network; ULD CT images of the remaining 20 participants as well as clinical and repeat ULD CT images were used to evaluate the accuracy, generalizability, and reproducibility of segmentation of femoral subregions. Finally, clinical CT and repeat ULD CT images were used to evaluate accuracy and reproducibility of ULD CT-based automated measurements of femoral vBMD. RESULTS Dice scores of accuracy (n = 20), reproducibility (n = 5), and generalizability (n = 12) of ULD CT-based automated subregion segmentation were 0.990, 0.982, and 0.977, respectively, for the femoral head and 0.941, 0.970, and 0.960, respectively, for the femoral neck. ULD CT-based regional vBMD showed Pearson and concordance correlation coefficients of 0.994 and 0.977, respectively, and a root-mean-square coefficient of variation (RMSCV) (%) of 1.39% with the clinical CT-derived reference measure. After 3-digit approximation, each of Pearson and concordance correlation coefficients as well as intraclass correlation coefficient (ICC) between baseline and repeat scans were 0.996 with RMSCV of 0.72%. Results of ULD CT-based bone analysis on 100 participants (age (mean ± SD) 73.6 ± 6.6 years) show that males have significantly greater (p < 0.01) vBMD at the femoral head and trochanteric regions than females, while females have moderately greater vBMD (p = 0.05) at the medial half of the femoral neck than males. CONCLUSION Deep learning, combined with shape model and finite element analysis, offers an accurate, reproducible, and generalizable algorithm for automated segmentation of the proximal femur and anatomic femoral subregions using ULD hip CT images. ULD CT-based regional measures of femoral vBMD are accurate and reproducible and demonstrate regional differences between males and females.
Collapse
Affiliation(s)
- Xiaoliu Zhang
- Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Syed Ahmed Nadeem
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Paul A DiCamillo
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Amal Shibli-Rahhal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elizabeth A Regan
- Department of Medicine, Division of Rheumatology, National Jewish Health, Denver, Colorado, USA
| | - R Graham Barr
- Department of Medicine, Columbia University, New York, New York, USA
| | - Eric A Hoffman
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Alejandro P Comellas
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Punam K Saha
- Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Siverino C, Metsemakers WJ, Sutter R, Della Bella E, Morgenstern M, Barcik J, Ernst M, D'Este M, Joeris A, Chittò M, Schwarzenberg P, Stoddart M, Vanvelk N, Richards G, Wehrle E, Weisemann F, Zeiter S, Zalavras C, Varga P, Moriarty TF. Clinical management and innovation in fracture non-union. Expert Opin Biol Ther 2024; 24:973-991. [PMID: 39126182 DOI: 10.1080/14712598.2024.2391491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION With the introduction and continuous improvement in operative fracture fixation, even the most severe bone fractures can be treated with a high rate of successful healing. However, healing complications can occur and when healing fails over prolonged time, the outcome is termed a fracture non-union. Non-union is generally believed to develop due to inadequate fixation, underlying host-related factors, or infection. Despite the advancements in fracture fixation and infection management, there is still a clear need for earlier diagnosis, improved prediction of healing outcomes and innovation in the treatment of non-union. AREAS COVERED This review provides a detailed description of non-union from a clinical perspective, including the state of the art in diagnosis, treatment, and currently available biomaterials and orthobiologics.Subsequently, recent translational development from the biological, mechanical, and infection research fields are presented, including the latest in smart implants, osteoinductive materials, and in silico modeling. EXPERT OPINION The first challenge for future innovations is to refine and to identify new clinical factors for the proper definition, diagnosis, and treatment of non-union. However, integration of in vitro, in vivo, and in silico research will enable a comprehensive understanding of non-union causes and correlations, leading to the development of more effective treatments.
Collapse
Affiliation(s)
- C Siverino
- AO Research Institute Davos, Davos Platz, Switzerland
| | - W-J Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven - University of Leuven, Leuven, Belgium
| | - R Sutter
- Radiology Department, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - E Della Bella
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Morgenstern
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - J Barcik
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Ernst
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M D'Este
- AO Research Institute Davos, Davos Platz, Switzerland
| | - A Joeris
- AO Innovation Translation Center, Davos Platz, Switzerland
| | - M Chittò
- AO Research Institute Davos, Davos Platz, Switzerland
| | | | - M Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland
| | - N Vanvelk
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - G Richards
- AO Research Institute Davos, Davos Platz, Switzerland
| | - E Wehrle
- AO Research Institute Davos, Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - F Weisemann
- Department of Trauma Surgery, BG Unfallklinik Murnau, Murnau am Staffelsee, Germany
| | - S Zeiter
- AO Research Institute Davos, Davos Platz, Switzerland
| | - C Zalavras
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Varga
- AO Research Institute Davos, Davos Platz, Switzerland
| | - T F Moriarty
- AO Research Institute Davos, Davos Platz, Switzerland
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Marth AA, Goller SS, Kajdi GW, Marcus RP, Sutter R. Photon-Counting Detector CT: Clinical Utility of Virtual Monoenergetic Imaging Combined With Tin Prefiltration to Reduce Metal Artifacts in the Postoperative Ankle. Invest Radiol 2024; 59:545-553. [PMID: 38214560 DOI: 10.1097/rli.0000000000001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
OBJECTIVES The aim of this study was to compare the effectiveness and clinical utility of virtual monoenergetic image (VMI) reconstructions in computed tomography (CT) scans with and without tin prefiltration on a photon-counting detector (PCD) CT system to reduce metal implant artifacts in the postoperative ankle. MATERIALS AND METHODS This retrospective study included patients with internal fixation of the ankle scanned with and without tin prefiltration (Sn) on a PCD CT scanner between March and October 2023. Virtual monoenergetic images between 60 and 190 keV were reconstructed with a 10-keV increment in a bone kernel for both acquisitions (VMI Sn and VMI Std , respectively). Noise measurements assessed artifact reduction in the most prominent near-metal image distortions and were compared between acquisitions modes as well as between polychromatic images and VMIs. Three readers assessed the visibility of osseous healing along with interpretability and artifact extent for 5 reconstruction levels. RESULTS A total of 48 patients (21 females, 27 males; mean age, 55.1 ± 19.4 years) were included in this study. Tin-prefiltered acquisitions (n = 30) had a lower artifact level for polychromatic images and VMIs compared with non-tin-prefiltered acquisitions (n = 18; P ≤ 0.043). A significant reduction of metal artifacts was observed for VMI Sn ≥120 keV compared with polychromatic images (hyperdense artifacts: 40.2 HU [interquartile range (IQR) 39.8] vs 14.0 HU [IQR 11.1]; P ≤ 0.01 and hypodense artifacts: 91.2 HU [IQR 82.4] vs 29.7 HU [IQR 39.6]; P ≤ 0.001). For VMI Std , this applied to reconstructions ≥100 keV (hyperdense artifacts: 57.7 HU [IQR 33.4] vs 19.4 HU [IQR 27.6]; P ≤ 0.001 and hypodense artifacts: 106.9 HU [IQR 76.1] vs 57.4 HU [IQR 55.7]; P ≤ 0.021). For visibility of osseous healing, VMI Sn at 120 keV yielded higher ratings compared with polychromatic images ( P ≤ 0.001), whereas image interpretability was rated better ( P = 0.023), and artifact extent was rated lower ( P ≤ 0.001) compared with polychromatic images. CONCLUSIONS Tin-prefiltered VMI at 120 keV showed a significant reduction in metal artifacts compared with polychromatic images, whereas visibility of osseous healing and image interpretability was improved. Therefore, tin-prefiltration PCD CT with VMI reconstructions may be a helpful complement to postsurgical CT imaging of the ankle in patients with metal implants.
Collapse
Affiliation(s)
- Adrian A Marth
- From the Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland (A.A.M.); and Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland (A.A.M., S.S.G., G.W.K., R.P.M., R.S.)
| | | | | | | | | |
Collapse
|
6
|
Kozłowski FM, van Reenen CJ, Trauernicht CJ. Establishment of local diagnostic reference levels for CT colonography at a tertiary hospital. SA J Radiol 2024; 28:2809. [PMID: 38323243 PMCID: PMC10839235 DOI: 10.4102/sajr.v28i1.2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 02/08/2024] Open
Abstract
Background Diagnostic reference levels (DRLs) are an important metric in identifying abnormally high radiation doses in diagnostic examinations. National DRLs for CT colonography do not currently exist in South Africa, but there are efforts to collect data for a national DRL project. Objectives This study investigated radiation doses for CT colonography in adult patients at a large tertiary hospital in South Africa with the aim of setting local DRLs. Method Patient data from two CT scanners (Philips Ingenuity and Siemens Somatom go.Top) in the period March 2020 - March 2023 were obtained from the hospital's picture archiving and communication system (PACS) (n = 115). Analysis involved determining the median computed tomography dose index-volume (CTDIvol) and dose-length product (DLP) values. The findings were compared with DRLs established internationally. Results Ingenuity median CTDIvol was 20 mGy and DLP was 2169 mGy*cm; Somatom median CTDIvol was 6 mGy and DLP was 557 mGy*cm. Ingenuity exceeded the United Kingdom's (UK) recommended DRLs by 82% and 214%, respectively. Somatom median CTDIvol and DLP were 45% and 19% lower than UK NDRLs. Conclusion Somatom's tin filter and other dose reduction features provided significant dose reduction. These data were used to set DRLs for CT colonography at the hospital; CTDIvol: 6 mGy and DLP: 557 mGy*cm. Contribution In addition to informing radiation protection practices at the level of the institution, the established local DRLs contribute towards implementing regional and national DRLs.
Collapse
Affiliation(s)
- Filip M Kozłowski
- Division of Medical Physics, Tygerberg Hospital, Cape Town, South Africa
- Department of Medical Physics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Christoffel J van Reenen
- Division of Medical Physics, Tygerberg Hospital, Cape Town, South Africa
- Department of Medical Physics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Christoph J Trauernicht
- Division of Medical Physics, Tygerberg Hospital, Cape Town, South Africa
- Department of Medical Physics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
7
|
Marcus RP, Nagy DA, Feuerriegel GC, Anhaus J, Nanz D, Sutter R. Photon-Counting Detector CT With Denoising for Imaging of the Osseous Pelvis at Low Radiation Doses: A Phantom Study. AJR Am J Roentgenol 2024; 222:e2329765. [PMID: 37646387 DOI: 10.2214/ajr.23.29765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
BACKGROUND. Photon-counting detector (PCD) CT may allow lower radiation doses than used for conventional energy-integrating detector (EID) CT, with preserved image quality. OBJECTIVE. The purpose of this study was to compare PCD CT and EID CT, reconstructed with and without a denoising tool, in terms of image quality of the osseous pelvis in a phantom, with attention to low radiation doses. METHODS. A pelvic phantom comprising human bones in acrylic material mimicking soft tissue underwent PCD CT and EID CT at various tube potentials and radiation doses ranging from 0.05 to 5.00 mGy. Additional denoised reconstructions were generated using a commercial tool. Noise was measured in the acrylic material. Two readers performed independent qualitative assessments that entailed determining the denoised EID CT reconstruction with the lowest acceptable dose and then comparing this reference reconstruction with PCD CT reconstructions without and with denoising, using subjective Likert scales. RESULTS. Noise was lower for PCD CT than for EID CT. For instance, at 0.05 mGy and 100 kV with tin filter, noise was 38.4 HU for PCD CT versus 48.8 HU for EID CT. Denoising further reduced noise; for example, for PCD CT at 100 kV with tin filter at 0.25 mGy, noise was 19.9 HU without denoising versus 9.7 HU with denoising. For both readers, lowest acceptable dose for EID CT was 0.10 mGy (total score, 11 of 15 for both readers). Both readers somewhat agreed that PCD CT without denoising at 0.10 mGy (reflecting reference reconstruction dose) was relatively better than the reference reconstruction in terms of osseous structures, artifacts, and image quality. Both readers also somewhat agreed that denoised PCD CT reconstructions at 0.10 mGy and 0.05 mGy (reflecting matched and lower doses, respectively, with respect to reference reconstruction dose) were relatively better than the reference reconstruction for the image quality measures. CONCLUSION. PCD CT showed better-quality images than EID CT when performed at the lowest acceptable radiation dose for EID CT. PCD CT with denoising yielded better-quality images at a dose lower than lowest acceptable dose for EID CT. CLINICAL IMPACT. PCD CT with denoising could facilitate lower radiation doses for pelvic imaging.
Collapse
Affiliation(s)
- Roy P Marcus
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Daniel A Nagy
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Georg C Feuerriegel
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | - Daniel Nanz
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Hochreiter B, Saager LV, Zindel C, Calek AK, Stern C, Wieser K, Gerber C. Computer-assisted planning vs. conventional surgery for the correction of symptomatic mid-shaft clavicular nonunion and malunion. JSES Int 2023; 7:2321-2329. [PMID: 37969529 PMCID: PMC10638583 DOI: 10.1016/j.jseint.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Background The aim of this study was to compare the clinical and radiographic outcomes of treatment of symptomatic mal- and/or nonunion of midshaft clavicle fractures using radiographically based free-hand open reduction and internal fixation (ORIF) or computer-assisted 3D-planned, personalized corrective osteotomies performed using patient-specific instrumentation (PSI) and ORIF. The hypotheses were that (1) patients treated with computer-assisted planning and PSI would have a better clinical outcome, and (2) computer-assisted surgical planning would achieve a more accurate restoration of anatomy compared to the free-hand technique. Methods Between 1998 and 2020, 13 patients underwent PSI, and 34 patients underwent free-hand ORIF and/or corrective osteotomy. After application of exclusion criteria, 12/13 and 11/34 patients were included in the study. The clinical examination included measurement of the active range of motion and assessment of the absolute and relative Constant-Murley Scores and the subjective shoulder value. Subjective satisfaction with the cosmetic result was assessed on a Likert scale from 0 to 100 (subjective aesthetic value). 11/13 and 6/11 patients underwent postoperative computed tomography evaluation of both clavicles. Computed tomography scans were segmented to generate 3D surface models. After projection onto the mirrored contralateral side, displacement analysis was performed. Finally, bony union was documented. The average follow-up time was 43 months in the PSI and 50 months in the free-hand cohort. Results The clinical outcomes of both groups did not differ significantly. Median subjective shoulder value was 97.5% (70; 100) in the PSI group vs. 90% (0; 100) in the free-hand group; subjective aesthetic value was 86.4% (±10.7) vs. 75% (±18.7); aCS was 82.3 (±10.3) points vs. 74.9 (±26) points; and rCS was 86.7 (±11.3) points vs. 81.9 (±28.1) points. In the free-hand group, 2/11 patients had a postoperative neurological complication. In the PSI cohort, the 3D angle deviation was significantly smaller (PSI/planned vs. free-hand/contralateral: 10.8° (3.1; 23.8) vs. 17.4° (11.6; 42.4); P = .020)). There was also a trend toward a smaller 3D shift, which was not statistically significant (PSI/planned vs. free-hand/contralateral: 6 mm (3.4; 18.3) vs. 9.3 mm (5.1; 18.1); P = .342). There were no other significant differences. A bony union was achieved in all cases. Conclusion Surgical treatment of nonunion and malunions of the clavicle was associated with very good clinical results and a 100% union rate. This study, albeit in a relatively small cohort with a follow-up of 4 years, could not document any clinically relevant advantage of 3D planning and personalized operative templating over conventional radiographic planning and free-hand surgical fixation performed by experienced surgeons.
Collapse
Affiliation(s)
- Bettina Hochreiter
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Laura Victoria Saager
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christoph Zindel
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Anna-Katharina Calek
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christoph Stern
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Karl Wieser
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christian Gerber
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Balgrist Campus, Orthopaedic Research Center, Zürich, Switzerland
| |
Collapse
|
9
|
Bebbington NA, Christensen KB, Østergård LL, Holdgaard PC. Ultra-low-dose CT for attenuation correction: dose savings and effect on PET quantification for protocols with and without tin filter. EJNMMI Phys 2023; 10:66. [PMID: 37861887 PMCID: PMC10589162 DOI: 10.1186/s40658-023-00585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Ultra-low-dose (ULD) computed tomography (CT) scans should be used when CT is performed only for attenuation correction (AC) of positron emission tomography (PET) data. A tin filter can be used in addition to the standard aluminium bowtie filter to reduce CT radiation dose to patients. The aim was to determine how low CT doses can be, when utilised for PET AC, with and without the tin filter, whilst providing adequate PET quantification. METHODS A water-filled NEMA image quality phantom was imaged in three configurations with 18F-FDG: (1) water only (0HU); (2) with cylindrical insert containing homogenous mix of sand, flour and water (SFW, approximately 475HU); (3) with cylindrical insert containing sand (approximately 1100HU). Each underwent one-bed-position (26.3 cm) PET-CT comprising 1 PET and 13 CT acquisitions. CT acquisitions with tube current modulation were performed at 120 kV/50 mAs-ref (reference standard), 100 kV/7 mAs-ref (standard ULDCT for PET AC protocol), Sn140kV (mAs range 7-50-ref) and Sn100kV (mAs range 12-400-ref). PET data were reconstructed with μ-maps provided by each CT dataset, and PET activity concentration measured in each reconstruction. Differences in CT dose length product (DLP) and PET quantification were determined relative to the reference standard. RESULTS At each tube voltage, changes in PET quantification were greater with increasing density and reducing mAs. Compared with the reference standard, differences in PET quantification for the standard ULDCT protocol for the three phantoms were ≤ 1.7%, with the water phantom providing a DLP of 7mGy.cm. With tin filter at Sn100kV, differences in PET quantification were negligible (≤ 1.2%) for all phantoms down to 50mAs-ref, proving a DLP of 2.8mGy.cm, at 60% dose reduction compared with standard ULDCT protocol. Below 50mAs-ref, differences in PET quantification were > 2% for at least one phantom (2.3% at 25mAs-ref in SFW; 6.4% at 12mAs-ref in sand). At Sn140kV/7mAs-ref, quantification differences were ≤ 0.6% in water, giving 3.8mGy.cm DLP, but increased to > 2% at bone-equivalent densities. CONCLUSIONS CT protocols for PET AC can provide ultra-low doses with adequate PET quantification. The tin filter can allow 60-87% lower dose than the standard ULDCT protocol for PET AC, depending on tissue density and accepted change in PET quantification.
Collapse
Affiliation(s)
| | - Kenneth Boye Christensen
- Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Lone Lange Østergård
- Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Paw Christian Holdgaard
- Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| |
Collapse
|
10
|
Vlachopoulos L, Fucentese SF. [Osteotomies around the knee: preoperative planning using CT-based three-dimensional analysis, patient-specific cutting and reduction guides]. OPERATIVE ORTHOPADIE UND TRAUMATOLOGIE 2023; 35:225-238. [PMID: 37316574 PMCID: PMC10520128 DOI: 10.1007/s00064-023-00814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The goal of osteotomy is either to restore pretraumatic anatomic conditions or to shift the load to less affected compartments. INDICATIONS Indications for computer-assisted 3D analysis and the use of patient-specific osteotomy and reduction guides include "simple" deformities and, in particular, multidimensional complex (especially posttraumatic) deformities. CONTRAINDICATIONS General contraindications for performing a computed tomography (CT) scan or for an open approach for performing the surgery. SURGICAL TECHNIQUE Based on CT examinations of the affected and, if necessary, the contralateral healthy extremity as a healthy template (including hip, knee, and ankle joints), 3D computer models are generated, which are used for 3D analysis of the deformity as well as for calculation of the correction parameters. For the exact and simplified intraoperative implementation of the preoperative plan, individualized guides for the osteotomy and the reduction are produced by 3D printing. POSTOPERATIVE MANAGEMENT Partial weight-bearing from the first postoperative day. Increasing load after the first x‑ray control 6 weeks postoperatively. No limitation of the range of motion. RESULTS There are several studies that have analyzed the accuracy of the implementation of the planned correction for corrective osteotomies around the knee joint with the use of patient-specific instruments with promising results.
Collapse
Affiliation(s)
- Lazaros Vlachopoulos
- Klinik für Orthopädie, Universitätsklinik Balgrist, Universität Zürich, Forchstr. 340, 8008, Zürich, Schweiz.
| | - Sandro F Fucentese
- Klinik für Orthopädie, Universitätsklinik Balgrist, Universität Zürich, Forchstr. 340, 8008, Zürich, Schweiz
| |
Collapse
|
11
|
Bogdanovic S, Sutter R, Zubler V. Spine injections: the rationale for CT guidance. Skeletal Radiol 2023; 52:1853-1862. [PMID: 36149474 PMCID: PMC10449983 DOI: 10.1007/s00256-022-04188-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2023]
Abstract
Back pain is one of the most common medical problems and is associated with high socioeconomic costs. Imaging-guided spinal injections are a minimally invasive method to evaluate where the back pain is originating from, and to treat patients with radicular pain or spinal stenosis with infiltration of corticosteroids. CT-guided spine injections are a safe procedure, characterized by precise needle placement, excellent visualization of the relevant anatomical structures, and low radiation exposure for the patient and the interventional radiologist. In this review article, the variety of applications of CT-guided injections (focused on nerve roots and epidural injections) and the optimal injection procedure as well as risks and side effects are discussed.
Collapse
Affiliation(s)
- Sanja Bogdanovic
- Department of Radiology, Orthopedic University Hospital Balgrist, Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Orthopedic University Hospital Balgrist, Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Veronika Zubler
- Department of Radiology, Orthopedic University Hospital Balgrist, Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| |
Collapse
|
12
|
Ackermann J, Hoch A, Snedeker JG, Zingg PO, Esfandiari H, Fürnstahl P. Automatic 3D Postoperative Evaluation of Complex Orthopaedic Interventions. J Imaging 2023; 9:180. [PMID: 37754944 PMCID: PMC10532700 DOI: 10.3390/jimaging9090180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/28/2023] Open
Abstract
In clinical practice, image-based postoperative evaluation is still performed without state-of-the-art computer methods, as these are not sufficiently automated. In this study we propose a fully automatic 3D postoperative outcome quantification method for the relevant steps of orthopaedic interventions on the example of Periacetabular Osteotomy of Ganz (PAO). A typical orthopaedic intervention involves cutting bone, anatomy manipulation and repositioning as well as implant placement. Our method includes a segmentation based deep learning approach for detection and quantification of the cuts. Furthermore, anatomy repositioning was quantified through a multi-step registration method, which entailed a coarse alignment of the pre- and postoperative CT images followed by a fine fragment alignment of the repositioned anatomy. Implant (i.e., screw) position was identified by 3D Hough transform for line detection combined with fast voxel traversal based on ray tracing. The feasibility of our approach was investigated on 27 interventions and compared against manually performed 3D outcome evaluations. The results show that our method can accurately assess the quality and accuracy of the surgery. Our evaluation of the fragment repositioning showed a cumulative error for the coarse and fine alignment of 2.1 mm. Our evaluation of screw placement accuracy resulted in a distance error of 1.32 mm for screw head location and an angular deviation of 1.1° for screw axis. As a next step we will explore generalisation capabilities by applying the method to different interventions.
Collapse
Affiliation(s)
- Joëlle Ackermann
- Research in Orthopedic Computer Science, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
- Laboratory for Orthopaedic Biomechanics, ETH Zurich, 8093 Zurich, Switzerland
| | - Armando Hoch
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Jess Gerrit Snedeker
- Laboratory for Orthopaedic Biomechanics, ETH Zurich, 8093 Zurich, Switzerland
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Patrick Oliver Zingg
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Hooman Esfandiari
- Research in Orthopedic Computer Science, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Philipp Fürnstahl
- Research in Orthopedic Computer Science, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
13
|
Kaiser D, Hoch A, Rahm S, Stern C, Sutter R, Zingg PO. Combining the advantages of 3-D and 2-D templating of total hip arthroplasty using a new tin-filtered ultra-low-dose CT of the hip with comparable radiation dose to conventional radiographs. Arch Orthop Trauma Surg 2023; 143:5345-5352. [PMID: 36460762 PMCID: PMC10374735 DOI: 10.1007/s00402-022-04697-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Inaccurately scaled radiographs for total hip arthroplasty (THA) templating are a source of error not recognizable to the surgeon and may lead to inaccurate reconstruction and thus revision surgery or litigation. Planning based on computed tomography (CT) scans is more accurate but associated with higher radiation exposure. The aim of this study was (1) to retrospectively assess the scaling deviation of pelvic radiographs; (2) to prospectively assess the feasibility and the radiation dose of THA templating on radiograph-like images reconstructed from a tin-filtered ultra-low-dose CT dataset. METHODS 120 consecutive patients were retrospectively analyzed to assess the magnification error of our current THA templates. 27 consecutive patients were prospectively enrolled and a radiographic work-up in the supine position including a new tin-filtered ultra-low-dose CT scan protocol was obtained. THA was templated on both images. Radiation dose was calculated. RESULTS Scaling deviations between preoperative radiographs and CT of ≥ 5% were seen in 25% of the 120 retrospectively analyzed patients. Between the two templates trochanter tip distance differed significantly (Δ2.4 mm, 0-7 mm, p = 0.035)), predicted femoral shaft size/cup size was the same in 45%/41%. The radiation dose of the CT (0.58 mSv, range 0.53-0.64) was remarkably low. CONCLUSION Scaling deviations of pelvic radiographs for templating THA may lead to planning errors of ≥ 3 mm in 25% and ≥ 6 mm in 2% of the patients. 2-D templating on radiograph-like images based on tin-filtered ultra-low-dose CT eliminates this source of error without increased radiation dose. LEVEL OF EVIDENCE Retrospective and prospective comparative study, Level III.
Collapse
Affiliation(s)
- Dominik Kaiser
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Armando Hoch
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Stefan Rahm
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Christoph Stern
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick O Zingg
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
14
|
Furrer PR, Kabelitz M, Schweizer A. Quantification of Malalignment and Corrective Osteotomies in Patients With Malunion After Elastic Stable Intramedullary Nailing of Pediatric Forearm Fractures. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2023. [DOI: 10.1016/j.jhsg.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
15
|
Nosrati R, Zhang D, Callahan MJ, Shore BJ, Tsai A. Hip Imaging in Children With Cerebral Palsy: Estimation and Intrapatient Comparison of Patient-Specific Radiation Doses of Low-Dose CT and Radiography. Invest Radiol 2023; 58:190-198. [PMID: 36070536 DOI: 10.1097/rli.0000000000000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Hip displacement is the second most common orthopedic problem affecting children with cerebral palsy (CP). Routine radiographic hip surveillance typically involves an anteroposterior (AP) pelvis radiograph. Unfortunately, this imaging protocol is limited by its projectional technique and the positioning challenges in children with CP. Alternatively, hip low-dose computed tomography (LDCT) has been advocated as a more accurate strategy for imaging surveillance as it provides biofidelic details of the hip that is independent of patient positioning. However, the tradeoff is the (presumed) higher radiation dose to the patient. The goal of this study is to estimate patient-specific radiation doses of hip LDCTs and AP pelvis radiographs in CP patients, and perform an intrapatient dose comparison. MATERIALS AND METHODS A search of our imaging database was performed to identify children with CP who underwent hip LDCT and AP pelvis radiograph within 6 months of each other. The LDCTs were performed using weight-adjusted kVp and tube current modulation, whereas the radiographs were obtained with age-/size-adjusted kVp/mAs. The patient-specific organ and effective doses for LDCT were estimated by matching the patients to a nonreference pediatric phantom library from the National Cancer Institute Dosimetry System for Computed Tomography database with Monte Carlo-based dosimetry. The patient-specific organ and effective doses for radiograph were estimated using the National Cancer Institute Dosimetry System for Radiography and Fluoroscopy with Monte Carlo-based dose calculation. Dose conversion k-factors of dose area product for radiography and dose length product for LDCT were adapted, and the estimation results were compared with patient-specific dosimetry. RESULTS Our study cohort consisted of 70 paired imaging studies from 67 children (age, 9.1 ± 3.3 years). The patient-specific and dose length product-based effective doses for LDCT were 0.42 ± 0.21 mSv and 0.59 ± 0.28 mSv, respectively. The patient-specific and dose area product-based effective doses for radiography were 0.14 ± 0.09 mSv and 0.08 ± 0.06 mSv, respectively. CONCLUSIONS The radiation dose for a hip LDCT is ~4 times higher than pelvis radiograph, but it is still very low and poses minimal risk to the patient.
Collapse
Affiliation(s)
| | - Da Zhang
- From the Departments of Radiology
| | | | - Benjamin J Shore
- Orthopedics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
16
|
Keller G, Grünwald L, Springer F. Ultra-low-dose CT is feasible for torsion measurement of the lower limb in patients with metal implants. Br J Radiol 2023; 96:20220495. [PMID: 36728237 PMCID: PMC10078873 DOI: 10.1259/bjr.20220495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Patients who need torsion measurement of the lower limb often have metal implants hindering e.g. MRI. A new ultra-low-dose (ULD-)CT protocol might be feasible for torsion measurement at cost of relatively low radiation exposure. METHODS We retrospectively included all patients with clinically indicated torsion measurement in the period July 2019 to June 2021 and metal implants in the scanning field. The ULD-CT protocol comprised automated tube current time product and automated tube voltage with reference settings of 100kV/20mAs (hip), 80kV/20mAs (knee) and 80kV/10mAs (ankle). Femoral neck anteversion, tibial, intra-articular knee and overall leg torsion measurements were performed by two radiologists independently. Diagnostic confidence regarding the delineation of the relevant cortical bone was rated on a 5-point Likert scale (1 = non-diagnostic, 5 = excellent). RESULTS 102 consecutive patients could be included (BMI 27.38 ± 5.85) with 154 metal implants. Median total dose length product of the ULD-CT-torsion measurement was 16.5mGycm [11-39]. Both readers showed high agreement with a maximum torsional difference of 4.1°. Diagnostic confidence was rated best (5/5) in 92.2% (reader 1) and 93.1% (reader 2) with a worst rating of 3/5. CONCLUSION The new ULD-CT protocol is feasible for torsion measurement of the lower limb - even in patients with metal implants. ADVANCES IN KNOWLEDGE Metal implants are not an obstacle for ULD-CT torsion measurements of the lower limb.
Collapse
Affiliation(s)
- Gabriel Keller
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str, Tübingen, Germany
| | - Leonard Grünwald
- Department of Traumatology and Reconstructive Surgery, BG Trauma Center Tübingen, Eberhard Karls University of Tübingen, Schnarrenberg-Str, Tübingen, Germany
| | - Fabian Springer
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str, Tübingen, Germany
| |
Collapse
|
17
|
Potential of Unenhanced Ultra-Low-Dose Abdominal Photon-Counting CT with Tin Filtration: A Cadaveric Study. Diagnostics (Basel) 2023; 13:diagnostics13040603. [PMID: 36832091 PMCID: PMC9955485 DOI: 10.3390/diagnostics13040603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVES This study investigated the feasibility and image quality of ultra-low-dose unenhanced abdominal CT using photon-counting detector technology and tin prefiltration. MATERIALS AND METHODS Employing a first-generation photon-counting CT scanner, eight cadaveric specimens were examined both with tin prefiltration (Sn 100 kVp) and polychromatic (120 kVp) scan protocols matched for radiation dose at three different levels: standard-dose (3 mGy), low-dose (1 mGy) and ultra-low-dose (0.5 mGy). Image quality was evaluated quantitatively by means of contrast-to-noise-ratios (CNR) with regions of interest placed in the renal cortex and subcutaneous fat. Additionally, three independent radiologists performed subjective evaluation of image quality. The intraclass correlation coefficient was calculated as a measure of interrater reliability. RESULTS Irrespective of scan mode, CNR in the renal cortex decreased with lower radiation dose. Despite similar mean energy of the applied x-ray spectrum, CNR was superior for Sn 100 kVp over 120 kVp at standard-dose (17.75 ± 3.51 vs. 14.13 ± 4.02), low-dose (13.99 ± 2.6 vs. 10.68 ± 2.17) and ultra-low-dose levels (8.88 ± 2.01 vs. 11.06 ± 1.74) (all p ≤ 0.05). Subjective image quality was highest for both standard-dose protocols (score 5; interquartile range 5-5). While no difference was ascertained between Sn 100 kVp and 120 kVp examinations at standard and low-dose levels, the subjective image quality of tin-filtered scans was superior to 120 kVp with ultra-low radiation dose (p < 0.05). An intraclass correlation coefficient of 0.844 (95% confidence interval 0.763-0.906; p < 0.001) indicated good interrater reliability. CONCLUSIONS Photon-counting detector CT permits excellent image quality in unenhanced abdominal CT with very low radiation dose. Employment of tin prefiltration at 100 kVp instead of polychromatic imaging at 120 kVp increases the image quality even further in the ultra-low-dose range of 0.5 mGy.
Collapse
|
18
|
Low-Dose CT Imaging of the Pelvis in Follow-up Examinations-Significant Dose Reduction and Impact of Tin Filtration: Evaluation by Phantom Studies and First Systematic Retrospective Patient Analyses. Invest Radiol 2022; 57:789-801. [PMID: 35776429 DOI: 10.1097/rli.0000000000000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Low-dose (LD) computed tomography (CT) is still rarely used in musculoskeletal (MSK) radiology. This study evaluates the potentials of LD CT for follow-up pelvic imaging with special focus on tin filtration (Sn) technology for normal and obese patients with and without metal implants. MATERIALS AND METHODS In a phantom study, 5 different LD and normal-dose (ND) CT protocols with and without tin filtration were tested using a normal and an obese phantom. Iterative reconstruction (IR) and filtered back projection (FBP) were used for CT image reconstruction. In a subsequent retrospective patient study, ND CT images of 45 patients were compared with follow-up tin-filtered LD CT images with a 90% dose reduction. Sixty-four percent of patients contained metal implants at the follow-up examination. Computed tomography images were objectively (image noise, contrast-to-noise ratio [CNR], dose-normalized contrast-to-noise ratio [CNRD]) and subjectively, using a 6-point Likert score, evaluated. In addition, the figure of merit was calculated. For group comparisons, paired t tests, Wilcoxon signed rank test, analysis of variance, or Kruskal-Wallis tests were used, where applicable. RESULTS The LD Sn protocol with 67% dose reduction resulted in equal values in qualitative (Likert score) and quantitative image analysis (image noise) compared with the ND protocol in the phantom study. For follow-up examinations, dose could be reduced up to 90% by using Sn LD CT scans without impairment in the clinical study. However, metal implants resulted in a mild impairment of Sn LD as well as ND CT images. Cancellous bone ( P < 0.001) was assessed worse and cortical bone ( P = 0.063) equally in Sn LD CT images compared with ND CT images. Figure of merit values were significant ( P ≤ 0.02) lower and hence better in Sn LD as in ND protocols. Obese patients benefited in particular from tin filtration in LD MSK imaging in terms of image noise and CNR ( P ≤ 0.05). CONCLUSIONS Low-dose CT scans with tin filtration allow maximum dose reduction while maintaining high image quality for certain clinical purposes, for example, follow-up examinations, especially metal implant position, material loosening, and consolidation controls. Overweight patients benefit particularly from tin filter technology. Although metal implants decrease image quality in ND as well as in Sn LD CT images, this is not a relevant limitation for assessability.
Collapse
|
19
|
Baffour FI, Rajendran K, Glazebrook KN, Thorne JE, Larson NB, Leng S, McCollough CH, Fletcher JG. Ultra-high-resolution imaging of the shoulder and pelvis using photon-counting-detector CT: a feasibility study in patients. Eur Radiol 2022; 32:7079-7086. [PMID: 35689699 PMCID: PMC9474720 DOI: 10.1007/s00330-022-08925-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate ultra-high-resolution (UHR) imaging of large joints using an investigational photon-counting detector (PCD) CT. MATERIALS AND METHODS Patients undergoing clinical shoulder or pelvis energy-integrating-detector (EID) CT exam were scanned using the UHR mode of the PCD-CT system. Axial EID-CT images (1-mm sections) and PCD-CT images (0.6-mm sections) were reconstructed using Br62/Br64 and Br76 kernels, respectively. Two musculoskeletal radiologists rated visualization of anatomic structures using a 5-point Likert scale. Wilcoxon rank-sum test was used for statistical analysis of reader scores, and paired t-test was used for comparing bone CT numbers and image noise from PCD-CT and EID-CT. RESULTS Thirty-two patients (17 shoulders and 15 pelvis) were prospectively recruited for this feasibility study. Mean age for shoulder exams was 67.3 ± 15.5 years (11 females) and 47.2 ± 15.8 years (11 females) for pelvis exams. The mean volume CT dose index was lower on PCD-CT compared to that on EID-CT (shoulders: 18 mGy vs. 34 mGy, pelvis: 11.6 mGy vs. 16.7 mGy). PCD-CT was rated significantly better than EID-CT (p < 0.001) for anatomic-structure visualization. Trabecular delineation in shoulders (mean score = 4.24 ± 0.73) and femoroacetabular joint visualization in the pelvis (mean score = 3.67 ± 1.03) received the highest scores. PCD-CT demonstrated significant increase in bone CT number (p < 0.001) relative to EID-CT; no significant difference in image noise was found between PCD-CT and EID-CT. CONCLUSION The evaluated PCD-CT system provided improved visualization of osseous structures in the shoulders and pelvises at a 31-47% lower radiation dose compared to EID-CT. KEY POINTS • A full field-of-view PCD-CT with 0.151 mm × 0.176 mm detector pixel size (isocenter) facilitates bilateral, high-resolution imaging of shoulders and pelvis. • The evaluated investigational PCD-CT system was rated superior by two musculoskeletal radiologists for anatomic structure visualization in shoulders and pelvises despite a 31-47% lower radiation dose compared to EID-CT. • PCD-CT demonstrated significantly higher bone CT number compared to EID-CT, while no significant difference in image noise was observed between PCD-CT and EID-CT despite a 31-47% dose reduction on PCD-CT.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas B Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
20
|
Kaiser D, Hoch A, Stern C, Sommer S, Sutter R, Zingg PO. Accuracy of pelvic measurements on virtual radiographic projections based on computed tomography scans compared to conventional radiographs pre- and postoperatively. Arch Orthop Trauma Surg 2022; 143:2965-2971. [PMID: 35767038 DOI: 10.1007/s00402-022-04476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/08/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND The anteroposterior (ap) radiograph of the pelvis is decisive in the diagnosis of different pathologies of the hip joint. Technical advantages have reduced the radiation dose of pelvic CT to levels comparable to radiographs. The purpose of this study was to validate if standard radiographic parameters (lateral center edge angle, medial center edge angle, acetabular index, acetabular arc, extrusion index, crossover sign and posterior wall sign) can accurately be determined on radiograph-like projections reconstructed from the CT dataset pre- and postoperatively. METHODS A consecutive series of patient with symptomatic dysplasia of the hip and a full radiologic workup (radiographs and CT scan pre- and postoperatively) who underwent periacetabular osteotomy were included. Standard radiographic parameters were compared between radiographs and radiograph-like projections by two authors pre- and postoperatively. RESULTS A total of 16 hips (32 radiographs/32 radiograph-like projections) were included in the study. No significant difference was found between the radiographs and radiograph-like images for all parameter for both examiners. ICC between radiograph and radiograph-like projections for all investigated parameters showed good to excellent reliability (0.78-0.99) pre- and postoperatively. CONCLUSION Radiograph-like projections show comparable results to radiographs with regard to the important investigated parameters (lateral center edge angle, medial center edge angle, acetabular index, acetabular arc, extrusion index, crossover sign and posterior wall sign). Thus, ultra-low-dose CT scans may reduce the need for conventional radiographs in pre- and postoperative analyses of 3-dimensional hip pathologies in the future, as the advantages increasingly outweigh the disadvantages.
Collapse
Affiliation(s)
- Dominik Kaiser
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Armando Hoch
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Christoph Stern
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Sommer
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Siemens Healthcare, Zurich, Switzerland.,Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland.,Advanced Clinical Imaging Technology (ACIT), Siemens Healthcare AG, Lausanne, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick O Zingg
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
21
|
Huflage H, Grunz JP, Hackenbroch C, Halt D, Luetkens KS, Alfred Schmidt AM, Patzer TS, Ergün S, Bley TA, Kunz AS. Metal artefact reduction in low-dose computed tomography: Benefits of tin prefiltration versus postprocessing of dual-energy datasets over conventional CT imaging. Radiography (Lond) 2022; 28:690-696. [PMID: 35728278 DOI: 10.1016/j.radi.2022.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The purpose of this study was to determine the potential for metal artefact reduction in low-dose multidetector CT as these pose a frequent challenge in clinical routine. Investigations focused on whether spectral shaping via tin prefiltration, virtual monoenergetic imaging or virtual blend imaging (VBI) offers superior image quality in comparison with conventional CT imaging. METHODS Using a third-generation dual-source CT scanner, two cadaveric specimens with different metal implants (dental, cervical spine, hip, knee) were examined with acquisition protocols matched for radiation dose with regards to tube voltage and current. In order to allow for precise comparison, and due to the relatively short scan lengths, automatic tube current modulation was disabled. Specifically, the following scan protocals were examined: conventional CT protocols (100/120 kVp), tin prefiltration (Sn 100/Sn 150 kVp), VBI and virtual monoenergetic imaging (VME 100/120/150 keV). Mean attenuation and image noise were measured in hyperdense and hypodense artefacts, in artefact-impaired and artefact-free soft tissue. Subjective image quality was rated independently by three radiologists. RESULTS Objectively, Sn 150 kVp allowed for the best reduction of hyperdense streak artefacts (p < 0.001), while VME 150 keV and Sn 150 kVp protocols facilitated equally good reduction of hypodense artefacts (p = 0.173). Artefact-impaired soft tissue attenuation was lowest in Sn 150 kVp protocols (p ≤ 0.011), whereas all VME showed significantly less image noise compared to conventional or tin-filtered protocols (p ≤ 0.001). Subjective assessment favoured Sn 150 kVp regarding hyperdense streak artefacts and delineation of cortical bone (p ≤ 0.005). The intraclass correlation coefficient was 0.776 (95% confidence interval: 0.712-0.831; p < 0.001) indicating good interrater reliability. CONCLUSION In the presence of metal implants in our cadaveric study, tin prefiltration with 150 kVp offers superior artefact reduction for low-dose CT imaging of osseous tissue compared with virtual monoenergetic images of dual-energy datasets. The delineation of cortical boundaries seems to benefit particularly from spectral shaping. IMPLICATIONS FOR PRACTICE Low-dose CT imaging of osseous tissue in combination with tin prefiltration allows for superior metal artefact reduction when compared to virtual monoenergetic images of dual-energy datasets. Employing this technique ought to be considered in daily routine when metal implants are present within the scan volume as findings suggest it allows for radiation dose reduction and facilitates diagnosis relevant to further treatment.
Collapse
Affiliation(s)
- H Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - J-P Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - C Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - D Halt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany.
| | - K S Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - A M Alfred Schmidt
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - T S Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - S Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany.
| | - T A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - A S Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| |
Collapse
|
22
|
Calek AK, Hodel S, Hochreiter B, Viehöfer A, Fucentese S, Wirth S, Vlachopoulos L. Restoration of the patient-specific anatomy of the distal fibula based on a novel three-dimensional contralateral registration method. J Exp Orthop 2022; 9:48. [PMID: 35593978 PMCID: PMC9123107 DOI: 10.1186/s40634-022-00487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Posttraumatic fibular malunion alters ankle joint biomechanics and may lead to pain, stiffness, and premature osteoarthritis. The accurate restoration is key for success of reconstructive surgeries. The aim of this study was to analyze the accuracy of a novel three-dimensional (3D) registration algorithm using different segments of the contralateral anatomy to restore the distal fibula. Methods Triangular 3D surface models were reconstructed from computed tomographic data of 96 paired lower legs. Four segments were defined: 25% tibia, 50% tibia, 75% fibula, and 75% fibula and tibia. A surface registration algorithm was used to superimpose the mirrored contralateral model on the original model. The accuracy of distal fibula restoration was measured. Results The median rotation error, 3D distance (Euclidean distance), and 3D angle (Euler’s angle) using the distal 25% tibia segment for the registration were 0.8° (− 1.7–4.8), 2.1 mm (1.4–2.9), and 2.9° (1.9–5.4), respectively. The restoration showed the highest errors using the 75% fibula segment (rotation error 3.2° (0.1–8.3); Euclidean distance 4.2 mm (3.1–5.8); Euler’s angle 5.8° (3.4–9.2)). The translation error did not differ significantly between segments. Conclusion 3D registration of the contralateral tibia and fibula reliably approximated the premorbid anatomy of the distal fibula. Registration of the 25% distal tibia, including distinct anatomical landmarks of the fibular notch and malleolar colliculi, restored the anatomy with increasing accuracy, minimizing both rotational and translational errors. This new method of evaluating malreductions could reduce morbidity in patients with ankle fractures. Level of evidence IV
Collapse
Affiliation(s)
- Anna-Katharina Calek
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, CH-8008, Zurich, Switzerland.
| | - Sandro Hodel
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, CH-8008, Zurich, Switzerland
| | - Bettina Hochreiter
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, CH-8008, Zurich, Switzerland
| | - Arnd Viehöfer
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, CH-8008, Zurich, Switzerland
| | - Sandro Fucentese
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, CH-8008, Zurich, Switzerland
| | - Stephan Wirth
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, CH-8008, Zurich, Switzerland
| | - Lazaros Vlachopoulos
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, CH-8008, Zurich, Switzerland
| |
Collapse
|
23
|
[Imaging in joint-preserving hip surgery]. Radiologe 2022; 62:271-284. [PMID: 35238995 PMCID: PMC8894169 DOI: 10.1007/s00117-022-00973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Instabilität und Impingement stellen die Hauptpathomechanismen dar, die bereits bei jungen Patienten durch erhöhten mechanischen Stress zu chondrolabralen Schäden, schmerzhafter Bewegungseinschränkung und frühzeitiger Coxarthrose führen können. Ziele der gelenkerhaltenden Chirurgie an der Hüfte sind die Korrektur der knöchernen Deformitäten und chondrolabraler Schäden sowie die Wiederherstellung der Gelenkfunktion. Voraussetzung dafür ist die Identifikation der ursächlichen Pathologien an der Hüfte, welche zudem in Kombination auftreten können. Die dezidierte Röntgen- und Magnetresonanzbildgebung der knöchernen Morphologie und der degenerativen Gelenkbinnenläsionen liefern einen essenziellen Beitrag für die Behandlungsindikation und die Behandlungsplanung. Der vorliegende Artikel soll einen kurzen Überblick über die Hüftdeformitäten mit deren Prävalenz, Pathomechanismus und indizierter Therapie sowie detaillierte Empfehlungen über die spezifische radiologische Abklärung geben.
Collapse
|
24
|
Morbée L, Chen M, Van Den Berghe T, Schiettecatte E, Gosselin R, Herregods N, Jans LBO. MRI-based synthetic CT of the hip: can it be an alternative to conventional CT in the evaluation of osseous morphology? Eur Radiol 2022; 32:3112-3120. [DOI: 10.1007/s00330-021-08442-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
|
25
|
Evaluation of CT-Guided Ultra-Low-Dose Protocol for Injection Guidance in Preparation of MR-Arthrography of the Shoulder and Hip Joints in Comparison to Conventional and Low-Dose Protocols. Diagnostics (Basel) 2021; 11:diagnostics11101835. [PMID: 34679533 PMCID: PMC8534975 DOI: 10.3390/diagnostics11101835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
To evaluate patients’ radiation exposure undergoing CT-guided joint injection in preparation of MR-arthrography. We developed a novel ultra-low-dose protocol utilizing tin-filtration, performed it in 60 patients and compared the radiation exposure (DLP) and success rate to conventional protocol (26 cases) and low-dose protocol (37 cases). We evaluated 123 patients’ radiation exposure undergoing CT-guided joint injection from 16 January–21 March. A total of 55 patients received CT-guided joint injections with various other examination protocols and were excluded from further investigation. In total, 56 patients received shoulder injection and 67 received hip injection with consecutive MR arthrography. The ultra-low-dose protocol was performed in 60 patients, the low-dose protocol in 37 patients and the conventional protocol in 26 patients. We compared the dose of the interventional scans for each protocol (DLP) and then evaluated success rate with MR-arthrography images as gold standard of intraarticular or extracapsular contrast injection. There were significant differences when comparing the DLP of the ultra-low-dose protocol (DLP 1.1 ± 0.39; p < 0.01) to the low dose protocol (DLP 5.3 ± 3.24; p < 0.01) as well as against the conventional protocol (DLP 22.9 ± 8.66; p < 0.01). The ultra-low-dose protocol exposed the patients to an average effective dose of 0.016 millisievert and resulted in a successful joint injection in all 60 patients. The low dose protocol as well as the conventional protocol were also successful in all patients. The presented ultra-low-dose CT-guided joint injection protocol for the preparation of MR-arthrography demonstrated to reduce patients’ radiation dose in a way that it was less than the equivalent of the natural radiation exposure in Germany over 3 days—and thereby, negligible to the patient.
Collapse
|
26
|
Hodel S, Calek AK, Fürnstahl P, Fucentese SF, Vlachopoulos L. Accuracy of joint line restoration based on three-dimensional registration of the contralateral tibial tuberosity and the fibular tip. J Exp Orthop 2021; 8:84. [PMID: 34586528 PMCID: PMC8481454 DOI: 10.1186/s40634-021-00400-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose To assess a novel method of three-dimensional (3D) joint line (JL) restoration based on the contralateral tibia and fibula. Methods 3D triangular surface models were generated from computed tomographic data of 96 paired lower legs (48 cadavers) without signs of pathology. Three segments of the tibia and fibula, excluding the tibia plateau, were defined (tibia, fibula, tibial tuberosity (TT) and fibular tip). A surface registration algorithm was used to superimpose the mirrored contralateral model onto the original model. JL approximation and absolute mean errors for each segment registration were measured and its relationship to gender, height, weight and tibia and fibula length side-to-side differences analyzed. Fibular tip to JL distance was measured and analyzed. Results Mean JL approximation did not yield significant differences among the three segments. Mean absolute JL error was highest for the tibia 1.4 ± 1.4 mm (range: 0 to 6.0 mm) and decreased for the fibula 0.8 ± 1.0 mm (range: 0 to 3.7 mm) and for TT and fibular tip segment 0.7 ± 0.6 (range: 0 to 2.4 mm) (p = 0.03). Mean absolute JL error of the TT and fibular tip segment was independent of gender, height, weight and tibia and fibula length side-to-side differences. Mean fibular tip to JL distance was 11.9 ± 3.4 mm (range: 3.4 to 22.1 mm) with a mean absolute side-to-side difference of 1.6 ± 1.1 mm (range: 0 to 5.3 mm). Conclusion 3D registration of the contralateral tibia and fibula reliably approximated the original JL. The registration of, TT and fibular tip, as robust anatomical landmarks, improved the accuracy of JL restoration independent of tibia and fibula length side-to-side differences. Level of evidence IV
Collapse
Affiliation(s)
- Sandro Hodel
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Anna-Katharina Calek
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Philipp Fürnstahl
- Research in Orthopedic Computer Science (ROCS), Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zürich, Switzerland
| | - Sandro F Fucentese
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Lazaros Vlachopoulos
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|