1
|
Hoshino M, Jukema RA, Hoek R, Dahdal J, Raijmakers P, Driessen R, Bom MJ, van Diemen P, Twisk J, Danad I, Kakuta T, Knuuti J, Knaapen P. Microvascular resistance reserve in relation to total and vessel-specific atherosclerotic burden. Eur Heart J Cardiovasc Imaging 2025; 26:481-488. [PMID: 39531645 PMCID: PMC11879247 DOI: 10.1093/ehjci/jeae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS The relationship between coronary artery atherosclerosis and microvascular resistance remains unclear. This study aims to clarify the relationship between total atherosclerotic and vessel-specific atherosclerotic burden and microvascular resistance reserve (MRR). METHODS AND RESULTS In this post hoc analysis of the PACIFIC 1 trial, symptomatic patients without prior coronary artery disease (CAD) underwent [15O]H2O positron emission tomography, coronary computed tomography angiography (CCTA), and invasive fractional flow reserve (FFR). MRR was assessed across all three coronary branches, utilizing PET-derived coronary flow reserve and invasive FFR measurements. CCTA was used to assess patient and vessel-specific plaque volumes. Percentage atheroma volume (PAV) was defined as total plaque volume divided by vessel volume. The study included 142 patients (55% male, 57.5 ± 8.6 years) with 426 vessels with a mean MRR of 3.77 ± 1.64. While a significantly higher PAV was observed in the left anterior descending artery territory, MRR was similar across the three coronary branches. Generalized estimating equations without correction for cardiovascular risk factors identified that patient-specific PAV tertiles but not vessel-specific PAV tertiles were related to vessel-specific MRR. After correction for cardiovascular risk factors, compared with the first tertile of patient-specific PAV, the second tertile showed a vessel-specific MRR decrease of β = -0.362, P = 0.018, and the third tertile showed a decrease of β = -0.347, P = 0.024. CONCLUSION In patients without prior CAD, patient-specific plaque burden was negatively associated to vessel-specific MRR; however, vessel-specific plaque burden was not related to vessel-specific MRR. Our findings suggest that the relation between atherosclerotic burden and an impaired microcirculatory function is of systemic origin.
Collapse
Affiliation(s)
- Masahiro Hoshino
- Departments of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ruurt A Jukema
- Departments of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Roel Hoek
- Departments of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Jorge Dahdal
- Departments of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Cardiovascular Diseases, Clínica Alemana de Santiago, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Pieter Raijmakers
- Radiology, Nuclear Medicine & PET Research, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roel Driessen
- Departments of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Michiel J Bom
- Departments of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Pepijn van Diemen
- Departments of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Jos Twisk
- Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ibrahim Danad
- Departments of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Tsunekazu Kakuta
- Department of Cardiology, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku 20520, Finland
- Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital and University of Turku, Turku 20520, Finland
| | - Paul Knaapen
- Departments of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Teng Y, Hoshino M, Kanaji Y, Sugiyama T, Misawa T, Hada M, Nagamine T, Nogami K, Ueno H, Sayama K, Matsuda K, Yonetsu T, Sasano T, Kakuta T. Predictors and prognostic value of coronary computed tomography angiography for unrecognized myocardial infarction in patients with chronic coronary syndrome. Hellenic J Cardiol 2024:S1109-9666(24)00159-3. [PMID: 39019330 DOI: 10.1016/j.hjc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE Unrecognized myocardial infarction (UMI) on delayed-enhancement cardiac magnetic resonance imaging (DE-CMR) and coronary computed tomography angiography (CCTA) derived high-risk features provide prognostic information in patients with chronic coronary syndrome (CCS). The study aimed to assess the prognostic value of UMI and predictors of UMI using CCTA in patients with CCS who underwent elective percutaneous coronary intervention (PCI). METHODS This study enrolled 181 patients with CCS who underwent DE-CMR and CCTA before elective PCI. The CCTA-derived predictors of UMI and the association of baseline clinical characteristics, CCTA findings, and CMR-derived factors, including UMI, with MACEs, defined as death, nonfatal myocardial infarction, unplanned late revascularization, hospitalization for congestive heart failure, and stroke, were investigated. RESULTS UMI was detected in 57 (31.5%) patients. ROC analysis revealed that the optimal cut-off values of Agatston score and mean peri-coronary fat attenuation index (FAI) for predicting the presence of UMI were 397 and -69.8, respectively. The multivariable logistic regression analysis revealed that left ventricular mass, Agatston score >397, mean FAI >-69.8, positive remodeling of the target lesion, and CCTA-derived stenosis severity were independent predictors of UMI. Kaplan-Meier analysis revealed that patients with UMI were associated with increased risk of MACEs. The Cox proportional hazards analysis showed post-PCI minimum lumen diameter and the presence of UMI were independent predictors of MACEs. The risk of MACEs significantly increased according to the number of four preprocedural CCTA-relevant features of UMI. CONCLUSION Preprocedural comprehensive CCTA analysis may help predict the presence of UMI and provide prognostic information in patients with CCS who underwent PCI.
Collapse
Affiliation(s)
- Yun Teng
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Masahiro Hoshino
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Yoshihisa Kanaji
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Tomoyo Sugiyama
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Toru Misawa
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Masahiro Hada
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Tatsuhiro Nagamine
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Kai Nogami
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Hiroki Ueno
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Kodai Sayama
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Kazuki Matsuda
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Taishi Yonetsu
- Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsunekazu Kakuta
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan.
| |
Collapse
|
3
|
Westwood M, Armstrong N, Krijkamp E, Perry M, Noake C, Tsiachristas A, Corro-Ramos I. A cloud-based medical device for predicting cardiac risk in suspected coronary artery disease: a rapid review and conceptual economic model. Health Technol Assess 2024; 28:1-105. [PMID: 39023142 PMCID: PMC11299050 DOI: 10.3310/wygc4096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background The CaRi-Heart® device estimates risk of 8-year cardiac death, using a prognostic model, which includes perivascular fat attenuation index, atherosclerotic plaque burden and clinical risk factors. Objectives To provide an Early Value Assessment of the potential of CaRi-Heart Risk to be an effective and cost-effective adjunctive investigation for assessment of cardiac risk, in people with stable chest pain/suspected coronary artery disease, undergoing computed tomography coronary angiography. This assessment includes conceptual modelling which explores the structure and evidence about parameters required for model development, but not development of a full executable cost-effectiveness model. Data sources Twenty-four databases, including MEDLINE, MEDLINE In-Process and EMBASE, were searched from inception to October 2022. Methods Review methods followed published guidelines. Study quality was assessed using Prediction model Risk Of Bias ASsessment Tool. Results were summarised by research question: prognostic performance; prevalence of risk categories; clinical effects; costs of CaRi-Heart. Exploratory searches were conducted to inform conceptual cost-effectiveness modelling. Results The only included study indicated that CaRi-Heart Risk may be predictive of 8 years cardiac death. The hazard ratio, per unit increase in CaRi-Heart Risk, adjusted for smoking, hypercholesterolaemia, hypertension, diabetes mellitus, Duke index, presence of high-risk plaque features and epicardial adipose tissue volume, was 1.04 (95% confidence interval 1.03 to 1.06) in the model validation cohort. Based on Prediction model Risk Of Bias ASsessment Tool, this study was rated as having high risk of bias and high concerns regarding its applicability to the decision problem specified for this Early Value Assessment. We did not identify any studies that reported information about the clinical effects or costs of using CaRi-Heart to assess cardiac risk. Exploratory searches, conducted to inform the conceptual cost-effectiveness modelling, indicated that there is a deficiency with respect to evidence about the effects of changing existing treatments or introducing new treatments, based on assessment of cardiac risk (by any method), or on measures of vascular inflammation (e.g. fat attenuation index). A de novo conceptual decision-analytic model that could be used to inform an early assessment of the cost effectiveness of CaRi-Heart is described. A combination of a short-term diagnostic model component and a long-term model component that evaluates the downstream consequences is anticipated to capture the diagnosis and the progression of coronary artery disease. Limitations The rapid review methods and pragmatic additional searches used to inform this Early Value Assessment mean that, although areas of potential uncertainty have been described, we cannot definitively state where there are evidence gaps. Conclusions The evidence about the clinical utility of CaRi-Heart Risk is underdeveloped and has considerable limitations, both in terms of risk of bias and applicability to United Kingdom clinical practice. There is some evidence that CaRi-Heart Risk may be predictive of 8-year risk of cardiac death, for patients undergoing computed tomography coronary angiography for suspected coronary artery disease. However, whether and to what extent CaRi-Heart represents an improvement relative to current standard of care remains uncertain. The evaluation of the CaRi-Heart device is ongoing and currently available data are insufficient to fully inform the cost-effectiveness modelling. Future work A large (n = 15,000) ongoing study, NCT05169333, the Oxford risk factors and non-invasive imaging study, with an estimated completion date of February 2030, may address some of the uncertainties identified in this Early Value Assessment. Study registration This study is registered as PROSPERO CRD42022366496. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: NIHR135672) and is published in full in Health Technology Assessment; Vol. 28, No. 31. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
| | | | - Eline Krijkamp
- Erasmus School of Health Policy and Management, Department of Health Technology Assessment, Erasmus University, Rotterdam, the Netherlands
| | - Mark Perry
- Kleijnen Systematic Reviews (KSR) Ltd, York, UK
| | - Caro Noake
- Kleijnen Systematic Reviews (KSR) Ltd, York, UK
| | | | - Isaac Corro-Ramos
- Institute for Medical Technology Assessment (iMTA), Erasmus University, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Chen M, Liu B, Li X, Li D, Fan L. Relationship between peri-coronary inflammation and coronary vascular function in patients with suspected coronary artery disease. Front Cardiovasc Med 2024; 11:1303529. [PMID: 38390440 PMCID: PMC10881729 DOI: 10.3389/fcvm.2024.1303529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Background In this study, we aim to investigate the relationship between the attenuation of peri-coronary adipose tissue (PCAT) in patients with suspected coronary artery disease (CAD) and the assessment of coronary vascular functions using coronary flow reserve (CFR). Methods We included 364 patients who underwent 13N-NH3 positron emission tomography/computed tomography and coronary computed tomography angiography (CCTA). We determined the relationship between fat attenuation index (FAI), PCAT volume, and other qualitative CT-derived anatomic parameters with CFR. Results We detected a decrease in CFR (<2.5) in 206 (57%) patients. At the patient level, those with reduced CFR showed a significantly higher prevalence of diffused atherosclerosis (41% vs. 23%; P < 0.001) and higher FAI (-75.5 HU vs. -77.1 HU; P = 0.014). In patients without obstructive CAD, FAI was significantly higher in those with reduced CFR (-75.5 HU vs. -77.7 HU, P = 0.026). On the vessel level, 1,092 vessels were analyzed, and 642 (59%) exhibited reduced CFR. The vessels with reduced CFR presented a significantly higher prevalence of obstructive CAD (37% vs. 26%; P < 0.001), diffused atherosclerosis (22% vs. 11%; P < 0.001), low-attenuation plaque (6% vs. 3%; P = 0.030), and positive remodeling (7% vs. 2%; P = 0.001). FAI was higher in vessels with reduced CFR (-80.8 HU vs. -81.8 HU; P = 0.045) than in normal CFR. In the patient-level analysis, obstructive CAD, diffused atherosclerosis, and FAI were independently linked with CFR. FAI was still associated with global CFR after adjusting for traditional risk factors (age, hypertension, diabetes, hyperlipidemia, and smoking). FAI remained independently associated with reduced CFR in patients without obstructive CAD. Conclusions Coronary perivascular inflammation evaluated by CCTA was independently associated with coronary vascular function. In patients without obstructive CAD, FAI was higher in the presence of reduced CFR. Altogether, FAI can help reveal microcirculatory damage in patients who do not exhibit epicardial artery stenosis.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Radiology, TEDA International Cardiovascular Hospital, Cardiovascular Clinical College of Tianjin Medical University, Tianjin, China
- Department of Radiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Bing Liu
- Department of Radiology, TEDA International Cardiovascular Hospital, Cardiovascular Clinical College of Tianjin Medical University, Tianjin, China
- Department of Radiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Xu Li
- Department of Radiology, TEDA International Cardiovascular Hospital, Cardiovascular Clinical College of Tianjin Medical University, Tianjin, China
- Department of Radiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Dong Li
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijuan Fan
- Department of Radiology, TEDA International Cardiovascular Hospital, Cardiovascular Clinical College of Tianjin Medical University, Tianjin, China
- Department of Radiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| |
Collapse
|
5
|
Ma R, van Assen M, Sidorenkov G, Ties D, Jan Pelgrim G, Stillman A, de Cecco C, van der Harst P, Vliegenthart R. Relationships of pericoronary and epicardial fat measurements in male and female patients with and without coronary artery disease. Eur J Radiol 2023; 169:111154. [PMID: 37944331 DOI: 10.1016/j.ejrad.2023.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Although pericoronary adipose tissue (PCAT) is a component of the epicardial adipose tissue (EAT) depot, they may have different associations to coronary artery disease (CAD). We explored relationships between pericoronary adipose tissue mean attenuation (PCATMA) and EAT measurements in coronary CT angiography (CCTA) in patients with and without CAD. MATERIAL AND METHODS CCTA scans of 185 non-CAD and 81 CAD patients (86.4% >50% stenosis) were included and retrospectively analyzed. PCATMA and EAT density/volume were measured and analyzed by sex, including associations with age, risk factors and tube voltage using linear regression models. RESULTS In non-CAD and CAD, mean PCATMA and EAT volume were higher in men than in women (non-CAD: -92.5 ± 10.6HU vs -96.2 ± 8.4HU, and 174.4 ± 69.1 cm3 vs 124.1 ± 57.3 cm3; CAD: -92.2 ± 9.0HU vs -97.4 ± 9.7HU, and 193.6 ± 62.5 cm3 vs 148.5 ± 50.5 cm3 (p < 0.05)). EAT density was slightly lower in men than women in non-CAD (-96.4 ± 6.3HU vs -94.4 ± 5.5HU (p < 0.05)), and similar in CAD (-98.2 ± 5.2HU vs 98.2 ± 6.4HU). There was strong correlation between PCATMA and EAT density (non-CAD: r = 0.725, p < 0.001, CAD: r = 0.686, p < 0.001) but no correlation between PCATMA and EAT volume (non-CAD: r = 0.018, p = 0.81, CAD: r = -0.055, p = 0.63). A weak inverse association was found between EAT density and EAT volume (non-CAD: r = -0.244, p < 0.001, CAD: r = -0.263, p = 0.02). In linear regression models, EAT density was significantly associated with PCATMA in both non-CAD and CAD patients independent of risk factors and tube voltage. CONCLUSION In CAD and non-CAD patients, EAT density, but not EAT volume, showed significant associations with PCATMA. Compared to women, men had higher PCATMA and EAT volume independently of disease status, but similar or slightly lower EAT density. Differences in trends and relations of PCATMA and EAT by sex could indicate that personalized interpretation and thresholding is needed.
Collapse
Affiliation(s)
- Runlei Ma
- University of Groningen, University Medical Center Groningen, Department of Radiology, the Netherlands; Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Radiology, China; Jiangsu Province Hospital of Chinese Medicine, Department of Radiology, China
| | - Marly van Assen
- Emory University, School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA, USA
| | - Grigory Sidorenkov
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, the Netherlands
| | - Daan Ties
- University of Groningen, University Medical Center Groningen, Department of Cardiology, the Netherlands
| | - Gert Jan Pelgrim
- University of Groningen, University Medical Center Groningen, Department of Radiology, the Netherlands
| | - Arthur Stillman
- Emory University, School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA, USA
| | - Carlo de Cecco
- Emory University, School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA, USA
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, the Netherlands; University Medical Center Utrecht, Department of Cardiology, Division of Heart and Lungs, the Netherlands
| | - Rozemarijn Vliegenthart
- University of Groningen, University Medical Center Groningen, Department of Radiology, the Netherlands.
| |
Collapse
|
6
|
Hoshino M, Sugiyama T, Kanaji Y, Hada M, Nagamine T, Nogami K, Ueno H, Sayama K, Matsuda K, Yonetsu T, Sasano T, Kakuta T. Multimodality coronary imaging to predict non-culprit territory unrecognized myocardial infarction in Non-ST-Elevation acute coronary syndrome. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:2051-2061. [PMID: 37486551 DOI: 10.1007/s10554-023-02903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE Unrecognized myocardial infarction (UMI) detected by cardiac magnetic resonance (CMR) imaging is associated with adverse outcomes in patients with acute and chronic coronary syndrome. This study aimed to assess the predictors of optical coherence tomography (OCT) and coronary computed tomography angiography (CCTA) findings for non-infarct-related (non-IR) territory UMI in patients presenting with non-ST-elevation acute coronary syndrome (NSTE-ACS). METHODS We investigated 69 patients with a first clinical episode of NSTE-ACS who underwent pre-percutaneous coronary intervention (PCI) 320-slice CCTA, uncomplicated urgent PCI with OCT assessment within 24 h of admission, and post-PCI CMR. UMI was assessed using late gadolinium enhancement to identify regions of hyperenhancement with an ischemic distribution pattern in non-IR territories. RESULTS Non-IR UMI was detected in 11 patients (15.9%). Lower ejection fraction, higher Gensini score, higher Agatston score, high pericoronary adipose tissue attenuation (PCATA), OCT-defined culprit lesion plaque rupture, and OCT-defined culprit lesion cholesterol crystal were significantly associated with the presence of non-IR UMI. On dividing the total cohort was divided into five groups according to the numbers of two OCT-derived risk factors and two CCTA-derived risk factors, the frequency of non-IR UMI frequency significantly increased according to the number of these relevant risk features (p < 0.001). Patients with all of the non-IR UMI risk factors showed 50% prevalence of non-IR UMI, compared with 2.2% of patients with low risk factors (≤ 2). CONCLUSIONS Integrated CCTA and culprit lesion OCT assessment may help identify the presence of non-IR UMI, potentially providing prognostic information in patients with first NSTE-ACS episode.
Collapse
Affiliation(s)
- Masahiro Hoshino
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Tomoyo Sugiyama
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Yoshihisa Kanaji
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Masahiro Hada
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Tatsuhiro Nagamine
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Kai Nogami
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Hiroki Ueno
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Kodai Sayama
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Kazuki Matsuda
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Taishi Yonetsu
- Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsunekazu Kakuta
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan.
| |
Collapse
|
7
|
Tan N, Dey D, Marwick TH, Nerlekar N. Pericoronary Adipose Tissue as a Marker of Cardiovascular Risk: JACC Review Topic of the Week. J Am Coll Cardiol 2023; 81:913-923. [PMID: 36858711 DOI: 10.1016/j.jacc.2022.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 03/03/2023]
Abstract
Vascular inflammation is a key driver in atherosclerotic progression and plaque rupture. Recent evidence has shown that coronary computed tomography provides a noninvasive method of quantifying coronary inflammation by mapping changes in pericoronary adipose tissue (PCAT) radiodensity, which are associated with cardiovascular diseases. However, there are significant knowledge gaps in the performance and measurement of PCAT that complicate its interpretation. In this review the authors aim to summarize the role of PCAT in cardiac imaging and explore the clinical implications and applicability as a novel biomarker of cardiovascular risk, as well as to discuss its limitations and potential pitfalls.
Collapse
Affiliation(s)
- Neville Tan
- Department of Cardiology, Western Health, Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Thomas H Marwick
- Department of Cardiology, Western Health, Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Nitesh Nerlekar
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Ma R, Fari R, van der Harst P, N De Cecco C, E Stillman A, Vliegenthart R, van Assen M. Evaluation of pericoronary adipose tissue attenuation on CT. Br J Radiol 2023; 96:20220885. [PMID: 36607825 PMCID: PMC10161916 DOI: 10.1259/bjr.20220885] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pericoronary adipose tissue (PCAT) is the fat deposit surrounding coronary arteries. Although PCAT is part of the larger epicardial adipose tissue (EAT) depot, it has different pathophysiological features and roles in the atherosclerosis process. While EAT evaluation has been studied for years, PCAT evaluation is a relatively new concept. PCAT, especially the mean attenuation derived from CT images may be used to evaluate the inflammatory status of coronary arteries non-invasively. The most commonly used measure, PCATMA, is the mean attenuation of adipose tissue of 3 mm thickness around the proximal right coronary artery with a length of 40 mm. PCATMA can be analyzed on a per-lesion, per-vessel or per-patient basis. Apart from PCATMA, other measures for PCAT have been studied, such as thickness, and volume. Studies have shown associations between PCATMA and anatomical and functional severity of coronary artery disease. PCATMA is associated with plaque components and high-risk plaque features, and can discriminate patients with flow obstructing stenosis and myocardial infarction. Whether PCATMA has value on an individual patient basis remains to be determined. Furthermore, CT imaging settings, such as kV levels and clinical factors such as age and sex affect PCATMA measurements, which complicate implementation in clinical practice. For PCATMA to be widely implemented, a standardized methodology is needed. This review gives an overview of reported PCAT methodologies used in current literature and the potential use cases in clinical practice.
Collapse
Affiliation(s)
- Runlei Ma
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Roberto Fari
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Carlo N De Cecco
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Arthur E Stillman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,University Medical Center Groningen, Data Science Center in Health (DASH), Groningen, the Netherlands
| | - Marly van Assen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Ren Z, Wen D, Xue R, Li S, Wang J, Li J, Wang Q, Zheng M. Nonalcoholic fatty liver disease is associated with myocardial ischemia by CT myocardial perfusion imaging, independent of clinical and coronary CT angiography characteristics. Eur Radiol 2022; 33:3857-3866. [PMID: 36571601 DOI: 10.1007/s00330-022-09306-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate whether patients with nonalcoholic fatty liver disease (NAFLD) have more myocardial malperfusion on CT myocardial perfusion imaging (CT-MPI), as well as to further assess if NAFLD is a predictor of myocardial ischemia independently. METHODS A total of 310 consecutive patients were included for analysis. All patients were divided into two groups according to the presence or absence of NAFLD, which was diagnosed by noncontrast cardiac CT partially covered liver and spleen. Clinical characteristics as well as imaging features including coronary artery calcium score, CCTA, and CT-MPI findings were analyzed. Univariable and multivariable logistic regression analyses were used to find out the relationship between NAFLD and myocardial ischemia. RESULTS NAFLD (unadjusted hazard ratio [HR]: 2.4, 95% confidence interval [CI]: 1.2 to 4.4, p = 0.008), male (HR: 2.6, 95% CI: 1.5 to 4.5, p = 0.001), obstructive CAD (HR: 2.3, 95% CI: 1.3 to 4.2, p = 0.004), and FAI ≥ -70.1 HU (HR: 3.1, 95% CI: 1.8 to 5.5, p < 0.001) were associated with myocardial ischemia in univariable analysis. After adjusting for traditional CAD risk factors and CT characteristics in the multivariable regression analysis, NAFLD (HR: 2.3, 95% CI: 1.2 to 4.4, p = 0.016) was an independent predictor of myocardial ischemia. CONCLUSION Our data suggest that myocardial ischemia was more prevalent in patients with NAFLD, and NAFLD is a predictor of myocardial ischemia independent of traditional cardiovascular risk factors and CCTA characteristics. KEY POINTS • NAFLD patients had higher calcium score, incidence of obstructive coronary artery disease, grade of CAD-RADS, quantitative plaque characteristics, and incidence of fat attenuation index ≥ -70.1 HU. • NAFLD patients had a higher incidence of myocardial ischemia, myocardial hypoperfusion, and hypoperfusion myocardial segments ratio. • NAFLD was a predictor of myocardial ischemia, independent of traditional cardiovascular risk factors, and CCTA characteristics.
Collapse
Affiliation(s)
- Zilong Ren
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Didi Wen
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Ruijia Xue
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Shuangxin Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Jing Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Jiayi Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Qiong Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Minwen Zheng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
10
|
Geng Y, Liu H, Wang X, Zhang J, Gong Y, Zheng D, Jiang J, Xia L. Effect of microcirculatory dysfunction on coronary hemodynamics: A pilot study based on computational fluid dynamics simulation. Comput Biol Med 2022; 146:105583. [DOI: 10.1016/j.compbiomed.2022.105583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/21/2022] [Accepted: 04/30/2022] [Indexed: 01/09/2023]
|
11
|
Yang S, Koo BK, Narula J. Interactions Between Morphological Plaque Characteristics and Coronary Physiology: From Pathophysiological Basis to Clinical Implications. JACC Cardiovasc Imaging 2021; 15:1139-1151. [PMID: 34922863 DOI: 10.1016/j.jcmg.2021.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022]
Abstract
High-risk coronary plaque refers to a distinct set of plaque characteristics prone to future coronary events. Coronary physiology represents a group of indexes reflective of the local physiological environment and hemodynamic changes in the macrovascular and microvascular system. Although a large body of evidence has supported the clinical relevance of these 2 factors, currently, identifying plaque morphology cannot reliably capture the lesion subset that causes hard events. Also, the guideline-directed approach based on physiological indexes cannot fully predict and prevent clinical events. In parallel, there is accumulating evidence that these 2 aspects of coronary artery disease influence each other with significant clinical implications, despite traditionally being considered to have separate effects on significances, treatments, and outcomes. In this state-of-the-art review, we explore the clinical evidence of pathophysiological interplay of physiological indexes related to local hemodynamics, epicardial stenosis, and microvascular dysfunction with plaque morphological characteristics that provide a better understanding of the nature of coronary events. Furthermore, we examine the emerging data on the complementary role between plaque morphology and coronary physiology in prognostication and how to apply this concept to overcome the limitations of individual assessment alone. Finally, we propose the potential benefit of integrative assessment of coronary anatomy, plaque quantity and quality, and physiological aspects of a target lesion and vessels for personalized risk profiling and optimized treatment strategy.
Collapse
Affiliation(s)
- Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea; Institute on Aging, Seoul National University, Seoul, Korea.
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|