1
|
Zou C, Chen R, Wang B, Fei Q, Song H, Zang L. Development of a deep learning radiomics model combining lumbar CT, multi-sequence MRI, and clinical data to predict high-risk cage subsidence after lumbar fusion: a retrospective multicenter study. Biomed Eng Online 2025; 24:27. [PMID: 40025592 PMCID: PMC11872306 DOI: 10.1186/s12938-025-01355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND To develop and validate a model that integrates clinical data, deep learning radiomics, and radiomic features to predict high-risk patients for cage subsidence (CS) after lumbar fusion. METHODS This study analyzed preoperative CT and MRI data from 305 patients undergoing lumbar fusion surgery from three centers. Using a deep learning model based on 3D vision transformations, the data were divided the dataset into training (n = 214), validation (n = 61), and test (n = 30) groups. Feature selection was performed using LASSO regression, followed by the development of a logistic regression model. The predictive ability of the model was assessed using various machine learning algorithms, and a combined clinical model was also established. RESULTS Ultimately, 11 traditional radiomic features, 5 deep learning radiomic features, and 1 clinical feature were selected. The combined model demonstrated strong predictive performance, with area under the curve (AUC) values of 0.941, 0.832, and 0.935 for the training, validation, and test groups, respectively. Notably, our model outperformed predictions made by two experienced surgeons. CONCLUSIONS This study developed a robust predictive model that integrates clinical features and imaging data to identify high-risk patients for CS following lumbar fusion. This model has the potential to improve clinical decision-making and reduce the need for revision surgeries, easing the burden on healthcare systems.
Collapse
Affiliation(s)
- Congying Zou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 5 JingYuan Road, Shijingshan District, Beijing, 100043, China
| | - Ruiyuan Chen
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 5 JingYuan Road, Shijingshan District, Beijing, 100043, China
| | - Baodong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 5 JingYuan Road, Shijingshan District, Beijing, 100043, China
| | - Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No 95, Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Hongxing Song
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Lei Zang
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Chaoyang District, Beijing, 100020, China.
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 5 JingYuan Road, Shijingshan District, Beijing, 100043, China.
| |
Collapse
|
2
|
Li Y, Luo R, Luo S, Liu M, Liu H. Influencing factors analysis of asymmetry in knee adduction moment among patients with unilateral knee osteoarthritis. BMC Musculoskelet Disord 2024; 25:832. [PMID: 39438855 PMCID: PMC11495046 DOI: 10.1186/s12891-024-07956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The knee adduction moment(KAM) of both lower limbs in patients with unilateral knee osteoarthritis(KOA) exhibits asymmetry during walking, but the factors influencing this asymmetry remain unclear. This study aimed to explore the influencing factors of KAM asymmetry in patients with unilateral KOA. METHODS A total of 148 patients with unilateral medial compartment KOA were selected for this retrospective study, and general data such as gender, age, and duration of disease were collected. The hip-knee-ankle (HKA) angle, degree of pain, and knee-extension muscle strength on the affected side were assessed through radiographic outcomes, the visual analog scale(VAS), and the Biodex isokinetic system. The peak KAM of both lower limbs was analyzed using a BTS motion-capture system and force platform. The asymmetry index(ASI) of KAM was calculated, and the patients were further categorized into the KAM symmetry group(ASI value ≤ 10%) and the KAM asymmetry group(ASI value>10%).Binary logistic regression analysis was employed to analyze the factors influencing the asymmetry of KAM. RESULTS 90 patients were categorized into the KAM asymmetry group, representing 60.8% of the cohort. A significant difference in the ASI value of KAM was observed between the two groups. Correlation analysis identified nine factors, including sex, age, and BMI, that were positively correlated with the ASI value of KAM. In contrast, knee-extension muscle strength and per-capita monthly household income were negatively correlated with the ASI value of KAM. Regression analysis revealed that being female(OR = 1.752), older age(OR = 2.472), increased BMI(OR = 1.535), larger varus angle(OR = 3.965), higher VAS score(OR = 2.617), Kellgren-Lawrence(K-L) grade IV(OR = 4.474), history of knee joint trauma(OR = 5.684), and living in a rural location(OR = 1.554) increased the risk of KAM asymmetry. Conversely, increased knee-extension muscle strength(OR = 0.758) and a per-capita monthly household income of 3000 ~ 6000 yuan(OR = 0.814) decreased the risk of KAM asymmetry. CONCLUSION Female gender, older age, increased BMI, larger varus angle, higher VAS score, K-L grade IV, history of knee joint trauma, and living in a rural location are identified as risk factors for KAM asymmetry. Conversely, increased knee-extension muscle strength and a per-capita monthly household income of 3000 ~ 6000 yuan serve as protective factors against this asymmetry.
Collapse
Affiliation(s)
- Yongjie Li
- Department of Rehabilitation Medicine, Guizhou Provincial Orthopedics Hospital, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, China
| | - Runxin Luo
- Department of Medicine and Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, 550200, China
| | - Shuwen Luo
- The First College of Clinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Mengling Liu
- Department of Rehabilitation Medicine, Guizhou Provincial Orthopedics Hospital, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, China
| | - Hongju Liu
- Department of Rehabilitation Medicine, Guizhou Provincial Orthopedics Hospital, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, China.
| |
Collapse
|
3
|
Zhang Y, Huang W, Jiao H, Kang L. PET radiomics in lung cancer: advances and translational challenges. EJNMMI Phys 2024; 11:81. [PMID: 39361110 PMCID: PMC11450131 DOI: 10.1186/s40658-024-00685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Radiomics is an emerging field of medical imaging that aims at improving the accuracy of diagnosis, prognosis, treatment planning and monitoring non-invasively through the automated or semi-automated quantitative analysis of high-dimensional image features. Specifically in the field of nuclear medicine, radiomics utilizes imaging methods such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) to evaluate biomarkers related to metabolism, blood flow, cellular activity and some biological pathways. Lung cancer ranks among the leading causes of cancer-related deaths globally, and radiomics analysis has shown great potential in guiding individualized therapy, assessing treatment response, and predicting clinical outcomes. In this review, we summarize the current state-of-the-art radiomics progress in lung cancer, highlighting the potential benefits and existing limitations of this approach. The radiomics workflow was introduced first including image acquisition, segmentation, feature extraction, and model building. Then the published literatures were described about radiomics-based prediction models for lung cancer diagnosis, differentiation, prognosis and efficacy evaluation. Finally, we discuss current challenges and provide insights into future directions and potential opportunities for integrating radiomics into routine clinical practice.
Collapse
Affiliation(s)
- Yongbai Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Hao Jiao
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China.
| |
Collapse
|
4
|
Ong W, Lee A, Tan WC, Fong KTD, Lai DD, Tan YL, Low XZ, Ge S, Makmur A, Ong SJ, Ting YH, Tan JH, Kumar N, Hallinan JTPD. Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging-A Systematic Review. Cancers (Basel) 2024; 16:2988. [PMID: 39272846 PMCID: PMC11394591 DOI: 10.3390/cancers16172988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In spinal oncology, integrating deep learning with computed tomography (CT) imaging has shown promise in enhancing diagnostic accuracy, treatment planning, and patient outcomes. This systematic review synthesizes evidence on artificial intelligence (AI) applications in CT imaging for spinal tumors. A PRISMA-guided search identified 33 studies: 12 (36.4%) focused on detecting spinal malignancies, 11 (33.3%) on classification, 6 (18.2%) on prognostication, 3 (9.1%) on treatment planning, and 1 (3.0%) on both detection and classification. Of the classification studies, 7 (21.2%) used machine learning to distinguish between benign and malignant lesions, 3 (9.1%) evaluated tumor stage or grade, and 2 (6.1%) employed radiomics for biomarker classification. Prognostic studies included three (9.1%) that predicted complications such as pathological fractures and three (9.1%) that predicted treatment outcomes. AI's potential for improving workflow efficiency, aiding decision-making, and reducing complications is discussed, along with its limitations in generalizability, interpretability, and clinical integration. Future directions for AI in spinal oncology are also explored. In conclusion, while AI technologies in CT imaging are promising, further research is necessary to validate their clinical effectiveness and optimize their integration into routine practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Aric Lee
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Wei Chuan Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Kuan Ting Dominic Fong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Daoyong David Lai
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shuliang Ge
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shao Jin Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Yong Han Ting
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Jiong Hao Tan
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
5
|
Liu Y, Huang W, Yang Y, Cai W, Sun Z. Recent advances in imaging and artificial intelligence (AI) for quantitative assessment of multiple myeloma. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:208-229. [PMID: 39309415 PMCID: PMC11411189 DOI: 10.62347/nllv9295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
Multiple myeloma (MM) is a malignant blood disease, but there have been significant improvements in the prognosis due to advancements in quantitative assessment and targeted therapy in recent years. The quantitative assessment of MM bone marrow infiltration and prognosis prediction is influenced by imaging and artificial intelligence (AI) quantitative parameters. At present, the primary imaging methods include computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). These methods are now crucial for diagnosing MM and evaluating myeloma cell infiltration, extramedullary disease, treatment effectiveness, and prognosis. Furthermore, the utilization of AI, specifically incorporating machine learning and radiomics, shows great potential in the field of diagnosing MM and distinguishing between MM and lytic metastases. This review discusses the advancements in imaging methods, including CT, MRI, and PET/CT, as well as AI for quantitatively assessing MM. We have summarized the key concepts, advantages, limitations, and diagnostic performance of each technology. Finally, we discussed the challenges related to clinical implementation and presented our views on advancing this field, with the aim of providing guidance for future research.
Collapse
Affiliation(s)
- Yongshun Liu
- Department of Nuclear Medicine, Peking University First HospitalBeijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First HospitalBeijing 100034, China
| | - Yihan Yang
- Department of Nuclear Medicine, Peking University First HospitalBeijing 100034, China
| | - Weibo Cai
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Zhaonan Sun
- Department of Medical Imaging, Peking University First HospitalBeijing 100034, China
| |
Collapse
|
6
|
Cao J, Li Q, Zhang H, Wu Y, Wang X, Ding S, Chen S, Xu S, Duan G, Qiu D, Sun J, Shi J, Liu S. Radiomics model based on MRI to differentiate spinal multiple myeloma from metastases: A two-center study. J Bone Oncol 2024; 45:100599. [PMID: 38601920 PMCID: PMC11004638 DOI: 10.1016/j.jbo.2024.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 04/12/2024] Open
Abstract
Purpose Spinal multiple myeloma (MM) and metastases are two common cancer types with similar imaging characteristics, for which differential diagnosis is needed to ensure precision therapy. The aim of this study is to establish radiomics models for effective differentiation between them. Methods Enrolled in this study were 263 patients from two medical institutions, including 127 with spinal MM and 136 with spinal metastases. Of them, 210 patients from institution I were used as the internal training cohort and 53 patients from Institution II were used as the external validation cohort. Contrast-enhanced T1-weighted imaging (CET1) and T2-weighted imaging (T2WI) sequences were collected and reviewed. Based on the 1037 radiomics features extracted from both CET1 and T2WI images, Logistic Regression (LR), AdaBoost (AB), Support Vector Machines (SVM), Random Forest (RF), and multiple kernel learning based SVM (MKL-SVM) were constructed. Hyper-parameters were tuned by five-fold cross-validation. The diagnostic efficiency among different radiomics models was compared by accuracy (ACC), sensitivity (SEN), specificity (SPE), area under the ROC curve (AUC), YI, positive predictive value (PPV), negative predictive value (NPY), and F1-score. Results Based on single-sequence, the RF model outperformed all other models. All models based on T2WI images performed better than those based on CET1. The efficiency of all models was boosted by incorporating CET1 and T2WI sequences, and the MKL-SVM model achieved the best performance with ACC, AUC, and F1-score of 0.862, 0.870, and 0.874, respectively. Conclusions The radiomics models constructed based on MRI achieved satisfactory diagnostic performance for differentiation of spinal MM and metastases, demonstrating broad application prospects for individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Jiashi Cao
- Department of Orthopedics, Navy Medical Center, the Navy Medical University, No. 338 Huaihai West Road, Shanghai 200052, China
| | - Qiong Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center/Cancer Hospital, No. 651 Dongfeng East Road, Guangzhou 510060, China
| | - Huili Zhang
- School of Communication and Information Engineering, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Yanyan Wu
- Department of Radiology, Changzheng Hospital of the Navy Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Xiang Wang
- Department of Radiology, Changzheng Hospital of the Navy Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Saisai Ding
- School of Communication and Information Engineering, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Song Chen
- Department of Radiology, Changzheng Hospital of the Navy Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Shaochun Xu
- Department of Radiology, Changzheng Hospital of the Navy Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Guangwen Duan
- Department of Radiology, Changzheng Hospital of the Navy Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Defu Qiu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiuyi Sun
- Department of Orthopedics, Navy Medical Center, the Navy Medical University, No. 338 Huaihai West Road, Shanghai 200052, China
| | - Jun Shi
- School of Communication and Information Engineering, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital of the Navy Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
7
|
Doran SJ, Barfoot T, Wedlake L, Winfield JM, Petts J, Glocker B, Li X, Leach M, Kaiser M, Barwick TD, Chaidos A, Satchwell L, Soneji N, Elgendy K, Sheeka A, Wallitt K, Koh DM, Messiou C, Rockall A. Curation of myeloma observational study MALIMAR using XNAT: solving the challenges posed by real-world data. Insights Imaging 2024; 15:47. [PMID: 38361108 PMCID: PMC10869673 DOI: 10.1186/s13244-023-01591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVES MAchine Learning In MyelomA Response (MALIMAR) is an observational clinical study combining "real-world" and clinical trial data, both retrospective and prospective. Images were acquired on three MRI scanners over a 10-year window at two institutions, leading to a need for extensive curation. METHODS Curation involved image aggregation, pseudonymisation, allocation between project phases, data cleaning, upload to an XNAT repository visible from multiple sites, annotation, incorporation of machine learning research outputs and quality assurance using programmatic methods. RESULTS A total of 796 whole-body MR imaging sessions from 462 subjects were curated. A major change in scan protocol part way through the retrospective window meant that approximately 30% of available imaging sessions had properties that differed significantly from the remainder of the data. Issues were found with a vendor-supplied clinical algorithm for "composing" whole-body images from multiple imaging stations. Historic weaknesses in a digital video disk (DVD) research archive (already addressed by the mid-2010s) were highlighted by incomplete datasets, some of which could not be completely recovered. The final dataset contained 736 imaging sessions for 432 subjects. Software was written to clean and harmonise data. Implications for the subsequent machine learning activity are considered. CONCLUSIONS MALIMAR exemplifies the vital role that curation plays in machine learning studies that use real-world data. A research repository such as XNAT facilitates day-to-day management, ensures robustness and consistency and enhances the value of the final dataset. The types of process described here will be vital for future large-scale multi-institutional and multi-national imaging projects. CRITICAL RELEVANCE STATEMENT This article showcases innovative data curation methods using a state-of-the-art image repository platform; such tools will be vital for managing the large multi-institutional datasets required to train and validate generalisable ML algorithms and future foundation models in medical imaging. KEY POINTS • Heterogeneous data in the MALIMAR study required the development of novel curation strategies. • Correction of multiple problems affecting the real-world data was successful, but implications for machine learning are still being evaluated. • Modern image repositories have rich application programming interfaces enabling data enrichment and programmatic QA, making them much more than simple "image marts".
Collapse
Affiliation(s)
- Simon J Doran
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
- National Cancer Imaging Translational Accelerator, London, UK.
| | - Theo Barfoot
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Jessica M Winfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust, London, UK
| | - James Petts
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Ben Glocker
- Department of Computing, Imperial College London, London, UK
| | - Xingfeng Li
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Martin Leach
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust, London, UK
| | - Martin Kaiser
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Haemato-Oncology Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Tara D Barwick
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - Aristeidis Chaidos
- Department of Haematology, Imperial College Healthcare NHS Trust, London, UK
| | - Laura Satchwell
- Research and Development Statistics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Neil Soneji
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - Khalil Elgendy
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander Sheeka
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - Kathryn Wallitt
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- National Cancer Imaging Translational Accelerator, London, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Andrea Rockall
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
8
|
Li Y, Dong B, Yuan P. The diagnostic value of machine learning for the classification of malignant bone tumor: a systematic evaluation and meta-analysis. Front Oncol 2023; 13:1207175. [PMID: 37746301 PMCID: PMC10513372 DOI: 10.3389/fonc.2023.1207175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Malignant bone tumors are a type of cancer with varying malignancy and prognosis. Accurate diagnosis and classification are crucial for treatment and prognosis assessment. Machine learning has been introduced for early differential diagnosis of malignant bone tumors, but its performance is controversial. This systematic review and meta-analysis aims to explore the diagnostic value of machine learning for malignant bone tumors. Methods PubMed, Embase, Cochrane Library, and Web of Science were searched for literature on machine learning in the differential diagnosis of malignant bone tumors up to October 31, 2022. The risk of bias assessment was conducted using QUADAS-2. A bivariate mixed-effects model was used for meta-analysis, with subgroup analyses by machine learning methods and modeling approaches. Results The inclusion comprised 31 publications with 382,371 patients, including 141,315 with malignant bone tumors. Meta-analysis results showed machine learning sensitivity and specificity of 0.87 [95% CI: 0.81,0.91] and 0.91 [95% CI: 0.86,0.94] in the training set, and 0.83 [95% CI: 0.74,0.89] and 0.87 [95% CI: 0.79,0.92] in the validation set. Subgroup analysis revealed MRI-based radiomics was the most common approach, with sensitivity and specificity of 0.85 [95% CI: 0.74,0.91] and 0.87 [95% CI: 0.81,0.91] in the training set, and 0.79 [95% CI: 0.70,0.86] and 0.79 [95% CI: 0.70,0.86] in the validation set. Convolutional neural networks were the most common model type, with sensitivity and specificity of 0.86 [95% CI: 0.72,0.94] and 0.92 [95% CI: 0.82,0.97] in the training set, and 0.87 [95% CI: 0.51,0.98] and 0.87 [95% CI: 0.69,0.96] in the validation set. Conclusion Machine learning is mainly applied in radiomics for diagnosing malignant bone tumors, showing desirable diagnostic performance. Machine learning can be an early adjunctive diagnostic method but requires further research and validation to determine its practical efficiency and clinical application prospects. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023387057.
Collapse
Affiliation(s)
| | - Bo Dong
- Department of Orthopedics, Xi’an Honghui Hospital, Xi’an Jiaotong University, Xi’an Shaanxi, China
| | | |
Collapse
|
9
|
Wu Z, Wang H, Zheng Y, Fei H, Dong C, Wang Z, Ren W, Xu W, Bian T. Lumbar MR-based radiomics nomogram for detecting minimal residual disease in patients with multiple myeloma. Eur Radiol 2023; 33:5594-5605. [PMID: 36973432 DOI: 10.1007/s00330-023-09540-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES Minimal residual disease (MRD) is a standard for assessing treatment response in multiple myeloma (MM). MRD negativity is considered to be the most powerful predictor of long-term good outcomes. This study aimed to develop and validate a radiomics nomogram based on magnetic resonance imaging (MRI) of the lumbar spine to detect MRD after MM treatment. METHODS A total of 130 MM patients (55 MRD negative and 75 MRD positive) who had undergone MRD testing through next-generation flow cytometry were divided into a training set (n = 90) and a test set (n = 40). Radiomics features were extracted from lumbar spinal MRI (T1-weighted images and fat-suppressed T2-weighted images) by means of the minimum redundancy maximum relevance method and the least absolute shrinkage and selection operator algorithm. A radiomics signature model was constructed. A clinical model was established using demographic features. A radiomics nomogram incorporating the radiomics signature and independent clinical factor was developed using multivariate logistic regression analysis. RESULTS Sixteen features were used to establish the radiomics signature. The radiomics nomogram included the radiomics signature and the independent clinical factor (free light chain ratio) and showed good performance in detecting the MRD status (area under the curve: 0.980 in the training set and 0.903 in the test set). CONCLUSIONS The lumbar MRI-based radiomics nomogram showed good performance in detecting MRD status in MM patients after treatment, and it is helpful for clinical decision-making. KEY POINTS • The presence or absence of minimal residual disease status has a strong predictive significance for the prognosis of patients with multiple myeloma. • A radiomics nomogram based on lumbar MRI is a potential and reliable tool for evaluating minimal residual disease status in MM.
Collapse
Affiliation(s)
- Zengjie Wu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Hexiang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingmei Zheng
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Hairong Fei
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Cheng Dong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhongjun Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Weifeng Ren
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Wenjian Xu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Tiantian Bian
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
10
|
Zhang S, Liu M, Li S, Cui J, Zhang G, Wang X. An MRI-based radiomics nomogram for differentiating spinal metastases from multiple myeloma. Cancer Imaging 2023; 23:72. [PMID: 37488622 PMCID: PMC10367256 DOI: 10.1186/s40644-023-00585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Spinal metastasis and multiple myeloma share many overlapping conventional radiographic imaging characteristics, thus, their differentiation may be challenging. The purpose of this study was to develop and validate an MRI-based radiomics nomogram for the differentiation of spinal metastasis and multiple myeloma. MATERIALS AND METHODS A total of 312 patients (training set: n = 146, validation set: n = 65, our center; external test set: n = 101, two other centers) with spinal metastasis (n = 196) and multiple myeloma (n = 116) were retrospectively enrolled. Demographics and MRI findings were assessed to build a clinical factor model. Radiomics features were extracted from MRI images. A radiomics model was constructed by the least absolute shrinkage and selection operator method. A radiomics nomogram combining the radiomics signature and independent clinical factors was constructed. And, one experienced radiologist reviewed the MRI images for all case. The diagnostic performance of the different models was evaluated by receiver operating characteristic curves. RESULTS A clinical factors model was built based on heterogeneous appearance and shape. Twenty-one features were used to build the radiomics signature. The area under the curve (AUC) values of the radiomics nomogram (0.853 and 0.762, respectively) were significantly higher than that of the clinical factor model (0.692 and 0.540, respectively) in both validation (p = 0.048) and external test (p < 0.001) sets. The AUC values of the radiomics nomogram model were higher than that of radiologist in training, validation and external test sets (all p < 0.05). Moreover, no significant difference in AUC values of radiomics nomogram model was found between the validation set and external test set (p = 0.212). CONCLUSION The radiomics nomogram can differentiate spinal metastasis and multiple myeloma with a moderate to good performance, and may be as a valuable method to assist in the clinical diagnosis and preoperative decision-making.
Collapse
Affiliation(s)
- Shuai Zhang
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Shandong, China
| | - Menghan Liu
- Depertment of Health Management, The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Sha Li
- Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Jingjing Cui
- United Imaging Intelligence Co., Ltd, Beijing, China
| | - Guang Zhang
- Depertment of Health Management, The First Affiliated Hospital of Shandong First Medical University, Shandong, China.
- Depertment of Health Management, The First Affiliated Hospital of Shandong First Medical University, No. 16766, Jingshi Road, Jinan, Shandong, 250014, China.
| | - Ximing Wang
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Shandong, China.
- Department of Radiology, Shandong Provincial Hospital, Shandong First Medical University, No.324 Jingwu Road, Jinan, Shandong, 250021, China.
| |
Collapse
|
11
|
Klontzas ME, Triantafyllou M, Leventis D, Koltsakis E, Kalarakis G, Tzortzakakis A, Karantanas AH. Radiomics Analysis for Multiple Myeloma: A Systematic Review with Radiomics Quality Scoring. Diagnostics (Basel) 2023; 13:2021. [PMID: 37370916 DOI: 10.3390/diagnostics13122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple myeloma (MM) is one of the most common hematological malignancies affecting the bone marrow. Radiomics analysis has been employed in the literature in an attempt to evaluate the bone marrow of MM patients. This manuscript aimed to systematically review radiomics research on MM while employing a radiomics quality score (RQS) to accurately assess research quality in the field. A systematic search was performed on Web of Science, PubMed, and Scopus. The selected manuscripts were evaluated (data extraction and RQS scoring) by three independent readers (R1, R2, and R3) with experience in radiomics analysis. A total of 23 studies with 2682 patients were included, and the median RQS was 10 for R1 (IQR 5.5-12) and R3 (IQR 8.3-12) and 11 (IQR 7.5-12.5) for R2. RQS was not significantly correlated with any of the assessed bibliometric data (impact factor, quartile, year of publication, and imaging modality) (p > 0.05). Our results demonstrated the low quality of published radiomics research in MM, similarly to other fields of radiomics research, highlighting the need to tighten publication standards.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, 71110 Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, 71003 Heraklion, Greece
| | | | - Dimitrios Leventis
- Department of Medical Imaging, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Emmanouil Koltsakis
- Department of Radiology, Karolinska University Hospital, 14152 Stockholm, Sweden
| | - Georgios Kalarakis
- Department of Radiology, Karolinska University Hospital, 14152 Stockholm, Sweden
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14152 Stockholm, Sweden
| | - Antonios Tzortzakakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14152 Stockholm, Sweden
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, 14186 Huddinge, Stockholm, Sweden
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, 71110 Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, 71003 Heraklion, Greece
| |
Collapse
|
12
|
Zeng P, Qu C, Liu J, Cui J, Liu X, Xiu D, Yuan H. Comparison of MRI and CT-based radiomics for preoperative prediction of lymph node metastasis in pancreatic ductal adenocarcinoma. Acta Radiol 2022:2841851221142552. [DOI: 10.1177/02841851221142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The preoperative prediction of lymph node metastasis (LNM) in pancreatic ductal adenocarcinoma (PDAC) is essential in prognosis and treatment strategy formulation. Purpose To compare the performance of computed tomography (CT) and magnetic resonance imaging (MRI) radiomics models for the preoperative prediction of LNM in PDAC. Material and Methods In total, 160 consecutive patients with PDAC were retrospectively included, who were divided into the training and validation sets (ratio of 8:2). Two radiologists evaluated LNM basing on morphological abnormalities. Radiomics features were extracted from T2-weighted imaging, T1-weighted imaging, and multiphase contrast enhanced MRI and multiphase CT, respectively. Overall, 1184 radiomics features were extracted from each volume of interest drawn. Only features with an intraclass correlation coefficient ≥0.75 were included. Three sequential feature selection steps—variance threshold, variance thresholding and least absolute shrinkage selection operator—were repeated 20 times with fivefold cross-validation in the training set. Two radiomics models based on multiphase CT and multiparametric MRI were built with the five most frequent features. Model performance was evaluated using the area under the curve (AUC) values. Results Multiparametric MRI radiomics model achieved improved AUCs (0.791 and 0.786 in the training and validation sets, respectively) than that of the CT radiomics model (0.672 and 0.655 in the training and validation sets, respectively) and of the radiologists’ assessment (0.600–0.613 and 0.560–0.587 in the training and validation sets, respectively). Conclusion Multiparametric MRI radiomics model may serve as a potential tool for preoperatively evaluating LNM in PDAC and had superior predictive performance to multiphase CT-based model and radiologists’ assessment.
Collapse
Affiliation(s)
- Piaoe Zeng
- Department of Radiology, Peking University Third Hospital, Beijing, PR China
| | - Chao Qu
- Department of General Surgery, Peking University Third Hospital, Beijing, PR China
| | - Jianfang Liu
- Department of Radiology, Peking University Third Hospital, Beijing, PR China
| | - Jingjing Cui
- Department of Research and Development, United Imaging Intelligence (Beijing) Co., Ltd., Beijing, PR China
| | - Xiaoming Liu
- Department of Research and Development, Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, PR China
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, PR China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, PR China
| |
Collapse
|
13
|
Chen K, Cao J, Zhang X, Wang X, Zhao X, Li Q, Chen S, Wang P, Liu T, Du J, Liu S, Zhang L. Differentiation between spinal multiple myeloma and metastases originated from lung using multi-view attention-guided network. Front Oncol 2022; 12:981769. [PMID: 36158659 PMCID: PMC9495278 DOI: 10.3389/fonc.2022.981769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Multiple myeloma (MM) and metastasis originated are the two common malignancy diseases in the spine. They usually show similar imaging patterns and are highly demanded to differentiate for precision diagnosis and treatment planning. The objective of this study is therefore to construct a novel deep-learning-based method for effective differentiation of two diseases, with the comparative study of traditional radiomics analysis. Methods We retrospectively enrolled a total of 217 patients with 269 lesions, who were diagnosed with spinal MM (79 cases, 81 lesions) or spinal metastases originated from lung cancer (138 cases, 188 lesions) confirmed by postoperative pathology. Magnetic resonance imaging (MRI) sequences of all patients were collected and reviewed. A novel deep learning model of the Multi-view Attention-Guided Network (MAGN) was constructed based on contrast-enhanced T1WI (CET1) sequences. The constructed model extracts features from three views (sagittal, coronal and axial) and fused them for a more comprehensive differentiation analysis, and the attention guidance strategy is adopted for improving the classification performance, and increasing the interpretability of the method. The diagnostic efficiency among MAGN, radiomics model and the radiologist assessment were compared by the area under the receiver operating characteristic curve (AUC). Results Ablation studies were conducted to demonstrate the validity of multi-view fusion and attention guidance strategies: It has shown that the diagnostic model using multi-view fusion achieved higher diagnostic performance [ACC (0.79), AUC (0.77) and F1-score (0.67)] than those using single-view (sagittal, axial and coronal) images. Besides, MAGN incorporating attention guidance strategy further boosted performance as the ACC, AUC and F1-scores reached 0.81, 0.78 and 0.71, respectively. In addition, the MAGN outperforms the radiomics methods and radiologist assessment. The highest ACC, AUC and F1-score for the latter two methods were 0.71, 0.76 & 0.54, and 0.69, 0.71, & 0.65, respectively. Conclusions The proposed MAGN can achieve satisfactory performance in differentiating spinal MM between metastases originating from lung cancer, which also outperforms the radiomics method and radiologist assessment.
Collapse
Affiliation(s)
- Kaili Chen
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Changzheng Hospital of the Naval Medical University, Huangpu, China
- *Correspondence: Juan Du, ; Shiyuan Liu, ; Lichi Zhang,
| | - Jiashi Cao
- Department of Orthopedics, No. 455 Hospital of Chinese People’s Liberation Army, Shanghai 455 Hospital, Navy Medical University, Shanghai, China
- Department of Orthopaedic Oncology, Spine Tumor Center, Shanghai Changzheng Hospital, Changzheng Hospital of the Navy Medical University, Huangpu, China
- *Correspondence: Juan Du, ; Shiyuan Liu, ; Lichi Zhang,
| | - Xin Zhang
- Institute for Medical Image Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Juan Du, ; Shiyuan Liu, ; Lichi Zhang,
| | - Xiang Wang
- Department of Radiology, Changzheng Hospital, Shanghai Changzheng Hospital, Navy Medical University, Huangpu, China
- *Correspondence: Juan Du, ; Shiyuan Liu, ; Lichi Zhang,
| | - Xiangyu Zhao
- Institute for Medical Image Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingchu Li
- Department of Radiology, Changzheng Hospital, Shanghai Changzheng Hospital, Navy Medical University, Huangpu, China
| | - Song Chen
- Department of Radiology, Changzheng Hospital, Shanghai Changzheng Hospital, Navy Medical University, Huangpu, China
| | - Peng Wang
- Department of Radiology, Changzheng Hospital, Shanghai Changzheng Hospital, Navy Medical University, Huangpu, China
| | - Tielong Liu
- Department of Orthopaedic Oncology, Spine Tumor Center, Shanghai Changzheng Hospital, Changzheng Hospital of the Navy Medical University, Huangpu, China
| | - Juan Du
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Changzheng Hospital of the Naval Medical University, Huangpu, China
- *Correspondence: Juan Du, ; Shiyuan Liu, ; Lichi Zhang,
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Shanghai Changzheng Hospital, Navy Medical University, Huangpu, China
- *Correspondence: Juan Du, ; Shiyuan Liu, ; Lichi Zhang,
| | - Lichi Zhang
- Institute for Medical Image Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Juan Du, ; Shiyuan Liu, ; Lichi Zhang,
| |
Collapse
|
14
|
Ong W, Zhu L, Zhang W, Kuah T, Lim DSW, Low XZ, Thian YL, Teo EC, Tan JH, Kumar N, Vellayappan BA, Ooi BC, Quek ST, Makmur A, Hallinan JTPD. Application of Artificial Intelligence Methods for Imaging of Spinal Metastasis. Cancers (Basel) 2022; 14:4025. [PMID: 36011018 PMCID: PMC9406500 DOI: 10.3390/cancers14164025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal metastasis is the most common malignant disease of the spine. Recently, major advances in machine learning and artificial intelligence technology have led to their increased use in oncological imaging. The purpose of this study is to review and summarise the present evidence for artificial intelligence applications in the detection, classification and management of spinal metastasis, along with their potential integration into clinical practice. A systematic, detailed search of the main electronic medical databases was undertaken in concordance with the PRISMA guidelines. A total of 30 articles were retrieved from the database and reviewed. Key findings of current AI applications were compiled and summarised. The main clinical applications of AI techniques include image processing, diagnosis, decision support, treatment assistance and prognostic outcomes. In the realm of spinal oncology, artificial intelligence technologies have achieved relatively good performance and hold immense potential to aid clinicians, including enhancing work efficiency and reducing adverse events. Further research is required to validate the clinical performance of the AI tools and facilitate their integration into routine clinical practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Lei Zhu
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Wenqiao Zhang
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Tricia Kuah
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Desmond Shi Wei Lim
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Yee Liang Thian
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Ee Chin Teo
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore 119074, Singapore
| | - Beng Chin Ooi
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
15
|
Klontzas ME, Karantanas AH. Research in Musculoskeletal Radiology: Setting Goals and Strategic Directions. Semin Musculoskelet Radiol 2022; 26:354-358. [PMID: 35654100 DOI: 10.1055/s-0042-1748319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The future of musculoskeletal (MSK) radiology is being built on research developments in the field. Over the past decade, MSK imaging research has been dominated by advancements in molecular imaging biomarkers, artificial intelligence, radiomics, and novel high-resolution equipment. Adequate preparation of trainees and specialists will ensure that current and future leaders will be prepared to embrace and critically appraise technological developments, will be up to date on clinical developments, such as the use of artificial tissues, will define research directions, and will actively participate and lead multidisciplinary research. This review presents an overview of the current MSK research landscape and proposes tangible future goals and strategic directions that will fortify the future of MSK radiology.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
16
|
Factors Influencing Rural Households’ Decision-Making Behavior on Residential Relocation: Willingness and Destination. LAND 2021. [DOI: 10.3390/land10121285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All the traditional models of centralized residence based on “building a new socialist countryside” and “maintaining a balance between the increase and the decrease” are top-down in nature and require farmers to make responses and readjustment to all possible policies and changes. Therefore, it’s important to understand farmers’ preferences and take their willingness and needs into account when designing and implementing the relative planning programs of centralized residence. In this paper, with the numerical value 10 as the criterion of Events Per Variable (EPV) and Variance Inflation Factor (VIF), four different types of binary logistic regression were respectively applied to analyze factors that may influence farmer households’ relocation willingness and relocation destination in the following five aspects: Individual characteristics, household characteristics, housing characteristics, farmland characteristics, and implementation environment of centralized residence. As indicated in the results, people would show more willingness to relocate when they were younger, had higher household income, lived in an older building, possessed a bigger building area, owned farmland with higher quality, or lived in an environment with a higher infrastructure match rate. In addition, household income was a common factor influencing households’ choice between nearby relocation sites (NRS) and urban areas as their relocation destinations. The building area and occupancy rate negatively affected households’ choice of NRS, while building age negatively affected that of urban areas. Based on these influencing factors, some policy suggestions are proposed in this paper in terms of job creation, implementation of zoning and classification strategies, improvement of the quality of land transfer services, and reconstruction of the rural landscapes.
Collapse
|