1
|
Song S, Zhang G, Yao Z, Chen R, Liu K, Zhang T, Zeng G, Wang Z, Liu R. Deep learning based on intratumoral heterogeneity predicts histopathologic grade of hepatocellular carcinoma. BMC Cancer 2025; 25:497. [PMID: 40102774 PMCID: PMC11917083 DOI: 10.1186/s12885-025-13781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVES The potential of medical imaging to non-invasively assess intratumoral heterogeneity (ITH) is increasingly being recognized. This study aimed to investigate the value of the ITH-based deep learning model for preoperative prediction of histopathologic grade in hepatocellular carcinoma (HCC). MATERIALS AND METHODS A total of 858 patients from primary cohort and two external cohorts were included. 3.0T or 1.5T axial portal venous phase MRI images were collected. We conducted radiomics feature-driven K-means clustering for automatic partition to reveal ITH. 2.5D and 3D deep learning models based on ResNet architecture were trained to extract deep learning hidden features of each subregion. The selected features were used to train Random Forest classifier, which constructed the feature-fusion model. RESULTS The extracted voxel-level radiomics features were unsupervised clustered by K-means to generate three subregions. In the 2.5D deep learning, the feature-fusion model based on ITH had superior predictive efficacy than the whole-tumor model (AUC: 0.82 vs. 0.72; p = 0.004). Even in the validation and external test sets, this model maintained a high AUC of 0.78-0.83, and net reclassification indices indicated that it could improve prediction by 25-28%. Regarding the prognostic value, overall survival (OS) and recurrence-free survival (RFS) could be significantly stratified by the 2.5D feature-fusion model, and multivariable Cox regressions indicated its signature was identified as a risk predictor for OS and RFS (p < 0.05). CONCLUSION The ITH-based feature-fusion model provided a non-invasive method for classifying tumor differentiation in HCC, which may serve as a promising strategy for stratification management.
Collapse
Affiliation(s)
- Shaoming Song
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Gong Zhang
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiyuan Yao
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Hepatobiliary Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Ruiqiu Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Kai Liu
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Tianchen Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Guineng Zeng
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zizheng Wang
- Department of Hepatobiliary Surgery, Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Rong Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Huang H, Wu Q, Qiao H, Chen S, Hu S, Wen Q, Zhou G. P53 status combined with MRI findings for prognosis prediction of single hepatocellular carcinoma. Magn Reson Imaging 2025; 116:110293. [PMID: 39631483 DOI: 10.1016/j.mri.2024.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
OBJECT To develop and validate a nomogram for predicting recurrence in individuals suffering single hepatocellular carcinoma (HCC) after curative hepatectomy. MATERIAL AND METHODS A retrospective analysis was conducted on 189 patients with single HCC undergoing curative resection in our center were randomized into training and validation cohorts. P53 status was determined using immunohistochemistry. Clinical data, such as age, and gender were collected. MRI findings, such as tumor size, intratumoral arteries, the presence of peritumoral enhancement and intratumoral necrosis were also recorded. Nomograms were established based on the predictors selected in the training cohort, and receiver operating characteristic (ROC) curve analyses were used to compare the predictive ability among single predictors and nomogram model. The Kaplan-Meier method was used to assess the impact of each predictor and nomogram model on HCC recurrence. The results were validated in the validation cohort. RESULTS Multivariate Cox regression analysis showed that P53 (P < 0.001), tumor size (P = 0.009), and intratumoral artery (P = 0.026) were the independent risk factors for HCC recurrence. The nomogram model demonstrated favorable C-index of 0.740 (95 %CI:0.653-0.826) and 0.767 (95 %CI: 0.633-0.900) in the training and validation cohorts, and the areas under the curve was 0.740 and 0.752, which was better than the performance of P53 and MR factors alone. Calibration curves indicated a good agreement between observed actual outcomes and predicted values. Kaplan-Meier curves indicated that nomogram model was powerful in discrimination and clinical usefulness. CONCLUSIONS The integrated nomogram combining P53 status and MRI findings can be a valuable prognostic tool for predicting postoperative recurrence of single HCC.
Collapse
Affiliation(s)
- Hong Huang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Qinghua Wu
- Department of Interventional Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongyan Qiao
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Sujing Chen
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qingqing Wen
- GE Healthcare, MR Research China, Beijing, China
| | - Guofeng Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
3
|
Huang W, Pan Y, Wang H, Jiang L, Liu Y, Wang S, Dai H, Ye R, Yan C, Li Y. Delta-radiomics Analysis Based on Multi-phase Contrast-enhanced MRI to Predict Early Recurrence in Hepatocellular Carcinoma After Percutaneous Thermal Ablation. Acad Radiol 2024; 31:4934-4945. [PMID: 38902111 DOI: 10.1016/j.acra.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024]
Abstract
RATIONALE AND OBJECTIVES It is critical to predict early recurrence (ER) after percutaneous thermal ablation (PTA) for hepatocellular carcinoma (HCC). We aimed to develop and validate a delta-radiomics nomogram based on multi-phase contrast-enhanced magnetic resonance imaging (MRI) to preoperatively predict ER of HCC after PTA. MATERIALS AND METHODS We retrospectively enrolled 164 patients with HCC and divided them into training, temporal validation, and other-scanner validation cohorts (n = 110, 29, and 25, respectively). The volumes of interest of the intratumoral and/or peritumoral regions were delineated on preoperative multi-phase MR images. Original radiomics features were extracted from each phase, and delta-radiomics features were calculated. Logistic regression was used to train the corresponding radiomics models. The clinical and radiological characteristics were evaluated and combined to establish a clinical-radiological model. A fusion model comprising the best radiomics scores and clinical-radiological risk factors was constructed and presented as a nomogram. The performance of each model was evaluated and recurrence-free survival (RFS) was assessed. RESULTS Child-Pugh grade B, high-risk tumor location, and an incomplete/absent tumor capsule were independent predictors of ER. The optimal radiomics model comprised 12 delta-radiomics features with areas under the curve (AUCs) of 0.834, 0.795, and 0.769 in the training, temporal validation, and other-scanner validation cohorts, respectively. The nomogram showed the best predictive performance with AUCs as 0.893, 0.854, and 0.827 in the three datasets. There was a statistically significant difference in RFS between the risk groups calculated using the delta-radiomics model and nomogram. CONCLUSIONS The nomogram combined with the delta-radiomic score and clinical-radiological risk factors could non-invasively predict ER of HCC after PTA.
Collapse
Affiliation(s)
- Wanrong Huang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yifan Pan
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Huifang Wang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Lu Jiang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yamei Liu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Shunli Wang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Hanting Dai
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Rongping Ye
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Chuan Yan
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yueming Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China.
| |
Collapse
|
4
|
Gou J, Li J, Li Y, Lu M, Wang C, Zhuo Y, Dong X. The Diagnostic Accuracy Between Radiomics Model and Non-radiomics Model for Preoperative of Microvascular Invasion of Solitary Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:4419-4433. [PMID: 38664142 DOI: 10.1016/j.acra.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 11/01/2024]
Abstract
RATIONALE AND OBJECTIVES Microvascular invasion (MVI) is a key prognostic factor for hepatocellular carcinoma (HCC). The predictive models for solitary HCC could potentially integrate more comprehensive tumor information. Owing to the diverse findings across studies, we aimed to compare radiomic and non-radiomic methods for preoperative MVI detection in solitary HCC. MATERIALS AND METHODS Articles were reviewed from databases including PubMed, Embase, Web of Science, and the Cochrane Library until April 7, 2023. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model within a 95% confidence interval (CI). Diagnostic accuracy was assessed using summary receiver-operating characteristic curves and the area under the curve (AUC). Meta-regression and Z-tests identified heterogeneity and compared the predictive accuracy. Subgroup analyses were performed to compare the AUC of two methods according to study type, study design, tumor size, modeling methods, and imaging modality. RESULTS The analysis incorporated 26 studies involving 3539 patients with solitary HCC. The radiomics models showed a pooled sensitivity and specificity of 0.79 (95%CI: 0.72-0.85) and 0.78 (95%CI: 0.73-0.82), with an AUC at 0.85 (95%CI: 0.82-0.88). Conversely, the non-radiomics models had sensitivity and specificity of 0.74 (95%CI: 0.65-0.81) and 0.88 (95%CI: 0.82-0.92) and an AUC of 0.88 (95%CI: 0.85-0.91). Subgroups with preoperative MRI, larger tumors, and functional imaging had higher accuracy than those using preoperative CT, smaller tumors, and conventional imaging. CONCLUSION Non-radiomic methods outperformed radiomic methods, but high heterogeneity calls across studies for cautious interpretation.
Collapse
Affiliation(s)
- Junjiu Gou
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jingqi Li
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yingfeng Li
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Mingjie Lu
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Chen Wang
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yi Zhuo
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Xue Dong
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
5
|
Lee JH, Hwang JA, Gu K, Shin J, Han S, Kim YK. Magnetic resonance elastography as a preoperative assessment for predicting intrahepatic recurrence in patients with hepatocellular carcinoma. Magn Reson Imaging 2024; 109:127-133. [PMID: 38513784 DOI: 10.1016/j.mri.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Magnetic resonance elastography (MRE) is a noninvasive tool for diagnosing hepatic fibrosis with high accuracy. We investigated the preoperative clinical and imaging predictors of intrahepatic recurrence after curative resection of hepatocellular carcinoma (HCC), and evaluated MRE as a predictor of intrahepatic recurrence. METHODS We retrospectively evaluated 80 patients who underwent preoperative contrast-enhanced magnetic resonance imaging (MRI) with two-dimensional MRE and curative resection for treatment-naïve HCC between May 2019 and December 2021. Liver stiffness (LS) was measured on the elastograms, and the optimal cutoff of LS for predicting intrahepatic recurrence was obtained using receiver operating characteristic (ROC) analysis. An LS above this cutoff was defined as MRE-recurrence. Preoperative imaging features of the tumor were assessed on MRI, including features in the Liver Imaging Reporting and Data System and microvascular invasion (MVI). Recurrence-free survival (RFS) rates were estimated using the Kaplan-Meier method, and differences were compared using the log-rank test. Using a Cox proportional hazards model, we conducted a multivariable analysis to investigate the factors affecting recurrence-free survival. RESULTS During a median follow-up period of 32 months (range, 4-52 months), thirteen patients (16.3%) developed intrahepatic recurrence. ROC analysis determined an LS cutoff of ≥4.35 kPa to define MRE-recurrence. The 4-year RFS rate was significantly higher in patients without MRE-recurrence than in those with MRE-recurrence (93.4% vs. 48.9%; p = 0.001). In multivariable analysis, MRE-recurrence (Hazard ratio [HR], 5.9; 95% confidence interval [CI], 1.5-23.1) and MVI (HR, 3.4; 95% CI, 1.0-11.3) were independent predictors of intrahepatic recurrence. CONCLUSIONS Patients without MRE-recurrence had significantly higher RFS rates than those with MRE-recurrence. MRE-recurrence and MVI were independent predictors of intrahepatic recurrence in patients after curative resection for HCC.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeong Ah Hwang
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Kyowon Gu
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jaeseung Shin
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seungchul Han
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Kon Kim
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Li Y, Li P, Ma J, Wang Y, Tian Q, Yu J, Zhang Q, Shi H, Zhou W, Huang G. Preoperative Three-Dimensional Morphological Tumor Features Predict Microvascular Invasion in Hepatocellular Carcinoma. Acad Radiol 2024; 31:1862-1869. [PMID: 37989682 DOI: 10.1016/j.acra.2023.10.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
RATIONALE AND OBJECTIVES The study was designed to evaluate microvascular invasion (MVI) using three-dimensional (3D) morphological indicators prior to surgery. MATERIALS AND METHODS This retrospective study included 156 patients with hepatocellular carcinoma (HCC) at our hospital from 2017 to 2018. Through thin-layer CT scanning and 3D reconstruction, the tumor surface inclination angles can be quantitatively analyzed to determine the surface irregularity rate (SIR), which serves as a comprehensive assessment method for tumor irregularity based on preoperative 3D morphological evaluation. Univariate and multivariate logistic regression analyses were employed to investigate the correlation with MVI. RESULTS The SIR was related to MVI (OR: 10.667, P < 0.001). Multivariate logistic regression analysis showed that the SIR was an independent risk factor for MVI. The area under the receiver operating characteristic curve (ROC) of prediction model composed of the morphological indicator SIR was 0.831 (95% confidence interval: 0.759-0.895). CONCLUSION The preoperative 3D morphological indicator SIR of a tumor is an accurate predictor of MVI, providing a valuable tool in clinical decision-making.
Collapse
Affiliation(s)
- Yumeng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Eastern Hepatobiliary Surgery Hospital, No. 700, Moyu North Road, Jiading District, Shanghai, China (Y.L., P.L., Y.W., Q.T., J.Y., W.Z., G.H.)
| | - Pengpeng Li
- Eastern Hepatobiliary Surgery Hospital, No. 700, Moyu North Road, Jiading District, Shanghai, China (Y.L., P.L., Y.W., Q.T., J.Y., W.Z., G.H.)
| | - Junjie Ma
- Department of Computer Science and Technology, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China (J.M.)
| | - Yuanyuan Wang
- Eastern Hepatobiliary Surgery Hospital, No. 700, Moyu North Road, Jiading District, Shanghai, China (Y.L., P.L., Y.W., Q.T., J.Y., W.Z., G.H.)
| | - Qiyu Tian
- Eastern Hepatobiliary Surgery Hospital, No. 700, Moyu North Road, Jiading District, Shanghai, China (Y.L., P.L., Y.W., Q.T., J.Y., W.Z., G.H.)
| | - Jian Yu
- Eastern Hepatobiliary Surgery Hospital, No. 700, Moyu North Road, Jiading District, Shanghai, China (Y.L., P.L., Y.W., Q.T., J.Y., W.Z., G.H.)
| | - Qinghui Zhang
- Shenzhen Yorktal Digital Medical Imaging Technology Company Ltd, Shenzhen, China (Q.Z.)
| | - Huazheng Shi
- Shanghai Universal cloud Medical Imaging Diagnostic Center, Shanghai, China (H.S.)
| | - Weiping Zhou
- Eastern Hepatobiliary Surgery Hospital, No. 700, Moyu North Road, Jiading District, Shanghai, China (Y.L., P.L., Y.W., Q.T., J.Y., W.Z., G.H.)
| | - Gang Huang
- Eastern Hepatobiliary Surgery Hospital, No. 700, Moyu North Road, Jiading District, Shanghai, China (Y.L., P.L., Y.W., Q.T., J.Y., W.Z., G.H.).
| |
Collapse
|
7
|
Zhang ZH, Jiang C, Qiang ZY, Zhou YF, Ji J, Zeng Y, Huang JW. Role of microvascular invasion in early recurrence of hepatocellular carcinoma after liver resection: A literature review. Asian J Surg 2024; 47:2138-2143. [PMID: 38443255 DOI: 10.1016/j.asjsur.2024.02.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Hepatectomy is widely considered a potential treatment for hepatocellular carcinoma (HCC). Unfortunately, one-third of HCC patients have tumor recurrence within 2 years after surgery (early recurrence), accounting for more than 60% of all recurrence patients. Early recurrence is associated with a worse prognosis. Previous studies have shown that microvascular invasion (MVI) is one of the key factors for early recurrence and poor prognosis in patients with HCC after surgery. This paper reviews the latest literature and summarizes the predictors of MVI, the correlation between MVI and early recurrence, the identification of suspicious nodules or subclinical lesions, and the treatment strategies for MVI-positive HCC. The aim is to explore the management of patients with MVI-positive HCC.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuang Jiang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ze-Yuan Qiang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Fan Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Ji
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ji-Wei Huang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Zhou L, Qu Y, Quan G, Zuo H, Liu M. Nomogram for Predicting Microvascular Invasion in Hepatocellular Carcinoma Using Gadoxetic Acid-Enhanced MRI and Intravoxel Incoherent Motion Imaging. Acad Radiol 2024; 31:457-466. [PMID: 37491178 DOI: 10.1016/j.acra.2023.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
RATIONALE AND OBJECTIVES Microvascular invasion (MVI) is an important risk factor in hepatocellular carcinoma (HCC), but it can only be determined through histopathological results. The aim of this study was to develop and validate a nomogram for preoperative prediction MVI in HCC using gadoxetic acid-enhanced magnetic resonance imaging (MRI) and intravoxel incoherent motion imaging (IVIM). MATERIALS AND METHODS From July 2017 to September 2022, 148 patients with surgically resected HCC who underwent preoperative gadoxetic acid-enhanced MRI and IVIM were included in this retrospective study. Clinical indicators, imaging features, and diffusion parameters were compared between the MVI-positive and MVI-negative groups using the chi-square test, Mann-Whitney U test, and independent sample t test. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance in predicting MVI. Univariate and multivariate analyses were conducted to identify the significant clinical-radiological variables associated with MVI. Subsequently, a predictive nomogram that integrates clinical-radiological risk factors and diffusion parameters was developed and validated. RESULTS Serum alpha-fetoprotein level, tumor size, nonsmooth tumor margin, peritumoral hypo-intensity on hepatobiliary phase (HBP), apparent diffusion coefficient value and D value were statistically significant different between MVI-positive group and MVI-negative group. The results of multivariate analysis identified tumor size (odds ratio [OR], 0.786; 95% confidence interval [CI], 0.675-0.915; P < .01), nonsmooth tumor margin (OR, 2.299; 95% CI, 1.005-5.257; P < .05), peritumoral hypo-intensity on HBP (OR, 2.786; 95% CI, 1.141-6.802; P < .05) and D (OR, 0.293; 95% CI,0.089-0.964; P < .05) was the independent risk factor for the status of MVI. In ROC analysis, the combination of peritumoral hypo-intensity on HBP and D demonstrated the highest area under the curve value (0.902) in prediction MVI status, with sensitivity 92.8% and specificity 87.7%. The nomogram exhibited excellent predictive performance with C-index of 0.936 (95% CI 0.895-0.976) in the patient cohort, and had well-fitted calibration curve. CONCLUSION The nomogram incorporating clinical-radiological risk factors and diffusion parameters achieved satisfactory preoperative prediction of the individualized risk of MVI in patients with HCC.
Collapse
Affiliation(s)
- Lisui Zhou
- Department of Radiology, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China (L.Z., H.Z., M.L.)
| | - Yuan Qu
- Department of Radiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China (Y.Q.)
| | - Guangnan Quan
- MR Research China, GE Healthcare China, Beijing, China (G.Q.)
| | - Houdong Zuo
- Department of Radiology, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China (L.Z., H.Z., M.L.)
| | - Mi Liu
- Department of Radiology, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China (L.Z., H.Z., M.L.).
| |
Collapse
|
9
|
Dong SY, Sun W, Xu B, Wang WT, Yang YT, Chen XS, Zeng MS, Rao SX. Quantitative image features of gadoxetic acid-enhanced MRI for predicting glypican-3 expression of small hepatocellular carcinoma ≤3 cm. Clin Radiol 2023; 78:e764-e772. [PMID: 37500336 DOI: 10.1016/j.crad.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
AIM To explore the value of quantitative image features of gadoxetic acid-enhanced magnetic resonance imaging (MRI) for predicting Gglypican-3 (GPC3) expression of single hepatocellular carcinoma (HCC) ≤3 cm. MATERIALS AND METHODS One hundred and forty-nine patients with histopathologically confirmed HCC were included retrospectively. Quantitative image features and clinicopathological parameters were analysed. The significant predictors for GPC3 expression were identified using multivariate logistic regression analyses. Nomograms were constructed from the prediction model and the progression-free survival (PFS) rate was evaluated by the Kaplan-Meier method. RESULTS The tumour-to-liver signal intensity (SI) ratio on the hepatobiliary phase (HBP; odds ratio [OR] = 0.004; p=0.001), serum alpha-fetoprotein (AFP) > 20 ng/ml (OR=6.175; p<0.001), and non-smooth tumour margin (OR=4.866; p=0.002) were independent significant factors for GPC3 expression. When the three factors were combined, the diagnostic specificity was 97.7% (42/43). The nomogram based on the predictive model performed satisfactorily (C-index: 0.852). Kaplan-Meier curves showed that patients with GPC3-positive HCCs have lower PFS rates than patients with GPC3-negative HCCs (Log-rank test, p=0.006). CONCLUSION The tumour-to-liver SI ratio on the HBP combined with serum AFP >20 ng/ml and non-smooth tumour margin are potential predictive factors for GPC3 expression of small HCC ≤3cm. GPC3 expression is correlated with a poor prognosis in HCC patients.
Collapse
Affiliation(s)
- S-Y Dong
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - W Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - B Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - W-T Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Y-T Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - X-S Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - M-S Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - S-X Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai 200032, China.
| |
Collapse
|
10
|
Wu F, Sun H, Shi Z, Zhou C, Huang P, Xiao Y, Yang C, Zeng M. Estimating Microvascular Invasion in Patients with Resectable Multinodular Hepatocellular Carcinoma by Using Preoperative Contrast-Enhanced MRI: Establishment and Validation of a Risk Score. J Hepatocell Carcinoma 2023; 10:1143-1156. [PMID: 37492267 PMCID: PMC10364817 DOI: 10.2147/jhc.s410237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Objective To determine the preoperative clinicoradiological factors to predict microvascular invasion (MVI) in patients with resectable multinodular hepatocellular carcinoma (mHCC), and further to establish and validate a stratified risk scoring system. Methods Two hundred and seventy-three patients with pathologically confirmed mHCC (≥2 lesions) without major vascular invasion and biliary tract tumor thrombosis, who underwent preoperative contrast-enhanced MRI and hepatectomy, were consecutively enrolled (training/validation cohort=193/80). Preoperative clinicoradiological variables were collected and analyzed. The multivariable logistic regression was performed to determine the independent predictors of MVI and create a risk score system. The C-index, calibration curve and decision curve were used to evaluate the performance of the risk score. A risk score-based prognostic stratification system was performed in mHCC patients. The risk score system was further verified in the validation cohort. Results AFP > 400 ng/mL, presence of satellite nodule, mosaic architecture and increased total tumor diameter were independent predictors of MVI while fat in mass was an independent protective factor of MVI. The risk score yielded satisfactory C-index values (training/validation cohort: 0.777/0.758) and fitted well in calibration curves. Decision curve analysis further confirmed its clinical utility. Based on the risk score, mHCC patients were stratified into high-/low-MVI-risk subgroups with significantly different recurrence-free survival (both P < 0.001). Conclusion The presented risk score incorporating clinicoradiological parameters could stratify mHCC patients into high-risk and low-risk subgroups and predict prognosis in patients with resectable mHCC.
Collapse
Affiliation(s)
- Fei Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Haitao Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zhang Shi
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Changwu Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Peng Huang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yuyao Xiao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Yang S, Zhang Z, Su T, Chen Q, Wang H, Jin L. Comparison of quantitative volumetric analysis and linear measurement for predicting the survival of Barcelona Clinic Liver Cancer 0- and A stage hepatocellular carcinoma after radiofrequency ablation. Diagn Interv Radiol 2023; 29:450-459. [PMID: 37154818 PMCID: PMC10679614 DOI: 10.4274/dir.2023.222055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE The prognostic role of the tumor volume in patients with hepatocellular carcinoma (HCC) at the Barcelona Clinic Liver Cancer (BCLC) 0 and A stages remains unclear. This study aims to compare the volumetric measurement with linear measurement in early HCC burden profile and clarify the optimal cut-off value of the tumor volume. METHODS The consecutive patients diagnosed with HCC who underwent initial and curative-intent radiofrequency ablation (RFA) were included retrospectively. The segmentation was performed semi-automatically, and enhanced tumor volume (ETV) as well as total tumor volume (TTV) were obtained. The patients were categorized into high- and low-tumor burden groups according to various cutoff values derived from commonly used diameter values, X-tile software, and decision-tree analysis. The inter- and intra-reviewer agreements were measured using the intra-class correlation coefficient. Univariate and multivariate time-to-event Cox regression analyses were performed to identify the prognostic factors of overall survival. RESULTS A total of 73 patients with 81 lesions were analyzed in the whole cohort with a median follow-up of 31.0 (interquartile range: 16.0–36.3). In tumor segmentation, excellent consistency was observed in intra- and inter-reviewer assessments. There was a strong correlation between diameter-derived spherical volume and ETV as well as ETV and TTV. As opposed to all linear candidates and 4,188 mm3 (sphere equivalent to 2 cm in diameter), ETV >14,137 mm3 (sphere equivalent to 3 cm in diameter) or 23,000 mm3 (sphere equivalent to 3.5 cm in diameter) was identified as an independent risk factor of survival. Considering the value of hazard ratio and convenience to use, when ETV was at 23,000 mm3, it was regarded as the optimal volumetric cut-off value in differentiating survival risk. CONCLUSION The volumetric measurement outperforms linear measurement on tumor burden evaluation for survival stratification in patients at BCLC 0 and A stages HCC after RFA.
Collapse
Affiliation(s)
- Siwei Yang
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiyuan Zhang
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tianhao Su
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiyang Chen
- Department of Ultrasound, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Haochen Wang
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Long Jin
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Jiang H, Wei H, Yang T, Qin Y, Wu Y, Chen W, Shi Y, Ronot M, Bashir MR, Song B. VICT2 Trait: Prognostic Alternative to Peritumoral Hepatobiliary Phase Hypointensity in HCC. Radiology 2023; 307:e221835. [PMID: 36786702 DOI: 10.1148/radiol.221835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Background Peritumoral hepatobiliary phase (HBP) hypointensity is an established prognostic imaging feature in hepatocellular carcinoma (HCC), often associated with microvascular invasion (MVI). Similar prognostic features are needed for non-HBP MRI. Purpose To propose a non-hepatobiliary-specific MRI tool with similar prognostic value to peritumoral HBP hypointensity. Materials and Methods From December 2011 to November 2021, consecutive patients with HCC who underwent preoperative contrast-enhanced MRI were retrospectively enrolled and followed up until recurrence. All MRI scans were reviewed by two blinded radiologists with 7 and 10 years of experiences with liver MRI. A scoring system based on non-hepatobiliary-specific features that highly correlated with peritumoral HBP hypointensity was identified in a stratified sampling-derived training set of the gadoxetate disodium (EOB) group by means of multivariable logistic regression, and its values to predict MVI and recurrence-free survival (RFS) were assessed. Results There were 660 patients (551 men; median age, 53 years; IQR, 45-61 years) enrolled. Peritumoral portal venous phase hypoenhancement (odds ratio [OR] = 8.8), incomplete "capsule" (OR = 3.3), corona enhancement (OR, 2.6), and peritumoral mild-moderate T2 hyperintensity (OR, 2.2) (all P < .001) were associated with peritumoral HBP hypointensity and constituted the "VICT2 trait" (test set area under the receiver operating characteristic curve = 0.84; 95% CI: 0.78, 0.90). For the EOB group, both peritumoral HBP hypointensity (OR for MVI = 2.5, P = .02; hazard ratio for RFS = 2.5, P < .001) and the VICT2 trait (OR for MVI = 5.1, P < .001; hazard ratio for RFS = 2.3, P < .001) were associated with MVI and RFS, despite a higher specificity of the VICT2 trait for MVI (89% vs 80%, P = .01). These values of the VICT2 trait were confirmed in the extracellular contrast agent group (OR for MVI = 4.0; hazard ratio for RFS = 1.7; both P < .001). Conclusion Based on four non-hepatobiliary-specific MRI features, the VICT2 trait was comparable to peritumoral hepatobiliary phase hypointensity in predicting microvascular invasion and postoperative recurrence of hepatocellular carcinoma. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Harmath in this issue.
Collapse
Affiliation(s)
- Hanyu Jiang
- From the Department of Radiology (H.J., H.W., T.Y., Y.Q., W.C., B.S.) and Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC (Y.S.), West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China (Y.W.); Université Paris Cité, UMR 1149, CRI, Paris & Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France (M.R.); Department of Radiology, Center for Advanced Magnetic Resonance in Medicine, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC (M.R.B.); and Department of Radiology, Sanya People's Hospital, Sanya, China (B.S.)
| | - Hong Wei
- From the Department of Radiology (H.J., H.W., T.Y., Y.Q., W.C., B.S.) and Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC (Y.S.), West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China (Y.W.); Université Paris Cité, UMR 1149, CRI, Paris & Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France (M.R.); Department of Radiology, Center for Advanced Magnetic Resonance in Medicine, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC (M.R.B.); and Department of Radiology, Sanya People's Hospital, Sanya, China (B.S.)
| | - Ting Yang
- From the Department of Radiology (H.J., H.W., T.Y., Y.Q., W.C., B.S.) and Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC (Y.S.), West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China (Y.W.); Université Paris Cité, UMR 1149, CRI, Paris & Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France (M.R.); Department of Radiology, Center for Advanced Magnetic Resonance in Medicine, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC (M.R.B.); and Department of Radiology, Sanya People's Hospital, Sanya, China (B.S.)
| | - Yun Qin
- From the Department of Radiology (H.J., H.W., T.Y., Y.Q., W.C., B.S.) and Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC (Y.S.), West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China (Y.W.); Université Paris Cité, UMR 1149, CRI, Paris & Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France (M.R.); Department of Radiology, Center for Advanced Magnetic Resonance in Medicine, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC (M.R.B.); and Department of Radiology, Sanya People's Hospital, Sanya, China (B.S.)
| | - Yuanan Wu
- From the Department of Radiology (H.J., H.W., T.Y., Y.Q., W.C., B.S.) and Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC (Y.S.), West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China (Y.W.); Université Paris Cité, UMR 1149, CRI, Paris & Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France (M.R.); Department of Radiology, Center for Advanced Magnetic Resonance in Medicine, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC (M.R.B.); and Department of Radiology, Sanya People's Hospital, Sanya, China (B.S.)
| | - Weixia Chen
- From the Department of Radiology (H.J., H.W., T.Y., Y.Q., W.C., B.S.) and Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC (Y.S.), West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China (Y.W.); Université Paris Cité, UMR 1149, CRI, Paris & Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France (M.R.); Department of Radiology, Center for Advanced Magnetic Resonance in Medicine, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC (M.R.B.); and Department of Radiology, Sanya People's Hospital, Sanya, China (B.S.)
| | - Yujun Shi
- From the Department of Radiology (H.J., H.W., T.Y., Y.Q., W.C., B.S.) and Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC (Y.S.), West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China (Y.W.); Université Paris Cité, UMR 1149, CRI, Paris & Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France (M.R.); Department of Radiology, Center for Advanced Magnetic Resonance in Medicine, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC (M.R.B.); and Department of Radiology, Sanya People's Hospital, Sanya, China (B.S.)
| | - Maxime Ronot
- From the Department of Radiology (H.J., H.W., T.Y., Y.Q., W.C., B.S.) and Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC (Y.S.), West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China (Y.W.); Université Paris Cité, UMR 1149, CRI, Paris & Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France (M.R.); Department of Radiology, Center for Advanced Magnetic Resonance in Medicine, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC (M.R.B.); and Department of Radiology, Sanya People's Hospital, Sanya, China (B.S.)
| | - Mustafa R Bashir
- From the Department of Radiology (H.J., H.W., T.Y., Y.Q., W.C., B.S.) and Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC (Y.S.), West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China (Y.W.); Université Paris Cité, UMR 1149, CRI, Paris & Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France (M.R.); Department of Radiology, Center for Advanced Magnetic Resonance in Medicine, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC (M.R.B.); and Department of Radiology, Sanya People's Hospital, Sanya, China (B.S.)
| | - Bin Song
- From the Department of Radiology (H.J., H.W., T.Y., Y.Q., W.C., B.S.) and Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC (Y.S.), West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China (Y.W.); Université Paris Cité, UMR 1149, CRI, Paris & Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France (M.R.); Department of Radiology, Center for Advanced Magnetic Resonance in Medicine, and Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC (M.R.B.); and Department of Radiology, Sanya People's Hospital, Sanya, China (B.S.)
| |
Collapse
|
13
|
Qu Q, Lu M, Xu L, Zhang J, Liu M, Jiang J, Zhao X, Zhang X, Zhang T. A model incorporating histopathology and preoperative gadoxetic acid-enhanced MRI to predict early recurrence of hepatocellular carcinoma without microvascular invasion after curative hepatectomy. Br J Radiol 2023; 96:20220739. [PMID: 36877238 PMCID: PMC10078874 DOI: 10.1259/bjr.20220739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
OBJECTIVES To assess the predictive value of preoperative gadoxetic acid (GA)-enhanced magnetic resonance imaging (MRI) features and postoperative histopathological grading for early recurrence of hepatocellular carcinoma (HCC) without microvascular invasion (MVI) after curative hepatectomy. METHODS A total of 85 MVI-negative HCC cases were retrospectively analyzed. Cox analyses were used to identify the independent predictors of early recurrence (within a 24 months span). The clinical prediction Model-1 or Model-2 was established without or with postoperative pathological factor, respectively. Nomogram models were constructed and receiver operating characteristic (ROC) curve analysis was used to assess the models' predictive ability. Internal validation of the prediction models for early HCC recurrence was performed using a bootstrap re-sampling approach. RESULTS In the multivariate cox regression analysis, Edmondson-Steiner grade, peritumoral hypointensity on hepatobiliary phase (HBP), and relative intensity ratio (RIR) in HBP were identified as independent variables associated with early recurrence. The C-index of the nomogram models and internal validation were both between 0.7 and 0.8, showing good model fitting and calibration effects. The area under the ROC curve (AUC) was 0.781 for Model-1 based on the two preoperative MRI factors. When a third factor, the Edmondson-Steiner grade, was included (Model-2), the AUC increased to 0.834, and the sensitivity increased from 71.4 to 96.4%. CONCLUSIONS Edmondson-Steiner grade, peritumoral hypointensity on HBP, and RIR on HBP can help predict early recurrence of MVI-negative HCC. In comparison with Model-1 (only imaging features), Model-2 (imaging features + histopathological grades) increases the sensitivity in predicting early recurrence of HCC without MVI. ADVANCES IN KNOWLEDGE Preoperative GA-enhanced MRI signs are of great value in predicting early postoperative recurrence of HCC without MVI, and a combined pathological model was established to evaluate the feasibility and effectiveness of this technique.
Collapse
Affiliation(s)
- Qi Qu
- Nantong University, Nantong, 226000, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, 226000, Jiangsu, China
| | - Mengtian Lu
- Nantong University, Nantong, 226000, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, 226000, Jiangsu, China
| | - Lei Xu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, 226000, Jiangsu, China
| | - Jiyun Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, 226000, Jiangsu, China
| | - Maotong Liu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, 226000, Jiangsu, China
| | - Jifeng Jiang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, 226000, Jiangsu, China
| | | | - Xueqin Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, 226000, Jiangsu, China
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, 226000, Jiangsu, China
| |
Collapse
|
14
|
Mo ZY, Chen PY, Lin J, Liao JY. Pre-operative MRI features predict early post-operative recurrence of hepatocellular carcinoma with different degrees of pathological differentiation. LA RADIOLOGIA MEDICA 2023; 128:261-273. [PMID: 36763316 PMCID: PMC10020263 DOI: 10.1007/s11547-023-01601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE To investigate the value of pre-operative gadoxetate disodium (Gd-EOB-DTPA) enhanced MRI predicting early post-operative recurrence (< 2 years) of hepatocellular carcinoma (HCC) with different degrees of pathological differentiation. METHODS Retrospective analysis of pre-operative MR imaging features of 177 patients diagnosed as suffering from HCC and that underwent radical resection. Multivariate logistic regression assessment was adopted to assess predictors for HCC recurrence with different degrees of pathological differentiation. The area under the curve (AUC) of receiver operating characteristics (ROC) was utilized to assess the diagnostic efficacy of the predictors. RESULTS Among the 177 patients, 155 (87.5%) were males, 22 (12.5%) were females; the mean age was 49.97 ± 10.71 years. Among the predictors of early post-operative recurrence of highly-differentiated HCC were an unsmooth tumor margin and an incomplete/without tumor capsule (p = 0.037 and 0.033, respectively) whereas those of early post-operative recurrence of moderately-differentiated HCC were incomplete/without tumor capsule, peritumoral enhancement along with peritumoral hypointensity (p = 0.006, 0.046 and 0.004, respectively). The predictors of early post-operative recurrence of poorly-differentiated HCC were peritumoral enhancement, peritumoral hypointensity, and tumor thrombosis (p = 0.033, 0.006 and 0.021, respectively). The AUCs of the multi-predictor diagnosis of early post-operative recurrence of highly-, moderately-, and poorly-differentiated HCC were 0.841, 0.873, and 0.875, respectively. The AUCs of the multi-predictor diagnosis were each higher than for those predicted separately. CONCLUSIONS The imaging parameters for predicting early post-operative recurrence of HCC with different degrees of pathological differentiation were different and combining these predictors can improve the diagnostic efficacy of early post-operative HCC recurrence.
Collapse
Affiliation(s)
- Zhi-ying Mo
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Pei-yin Chen
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Jie Lin
- Department of Bone Surgery, Wuzhou Peopleʹs Hospital, No. 139 Sanlong Road, Wuzhou, 543000 Guangxi China
| | - Jin-yuan Liao
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
15
|
Jiang S, Yang F, Zhang L, Sang X, Lu X, Zheng Y, Xu Y. A prognostic nomogram based on log odds of positive lymph nodes to predict the overall survival in biliary neuroendocrine neoplasms (NENs) patients after surgery. J Endocrinol Invest 2022; 45:2341-2351. [PMID: 35908009 DOI: 10.1007/s40618-022-01874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND The prognosis of biliary neuroendocrine neoplasms (NENs) patients is affected by the status of metastatic lymph nodes. The purpose of this study was to explore the prognostic value of the log odds of positive lymph nodes (LODDS) and develop a novel nomogram to predict the overall survival (OS) in biliary NENs patients. METHODS A total of 125 patients with histologically confirmed biliary NENs were selected from the Surveillance, Epidemiology and End Results (SEER) database and further divided into training and validation cohorts. The discrimination and calibration of the nomogram were evaluated using the concordance index (C-index), the area under the time-dependent receiver operating characteristic curve (time-dependent AUC), and calibration plots. The net benefits and clinical utility of the nomogram were quantified and compared with those of the SEER staging system using decision curve analysis (DCA), net reclassification index (NRI), and integrated discrimination improvement (IDI). The risk stratifications of the nomogram and the SEER staging system were compared. RESULTS LODDS showed the highest accuracy in predicting OS for biliary NENs. The C-index (0.789 for the training cohort and 0.890 for the validation cohort) and the time-dependent AUC (> 0.7) indicated the satisfactory discriminative ability of the nomogram. The calibration plots showed a high degree of consistency. The DCA, NRI, and IDI indicated that the nomogram performed significantly better than the SEER staging system. CONCLUSION A novel LODDS-incorporated nomogram was developed and validated to assist clinicians in evaluating the prognosis of biliary NENs patients.
Collapse
Affiliation(s)
- S Jiang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - F Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - L Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - X Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - X Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Y Zheng
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Y Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Wu Y, Zhu M, Liu Y, Cao X, Zhang G, Yin L. Peritumoral Imaging Manifestations on Gd-EOB-DTPA-Enhanced MRI for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:907076. [PMID: 35814461 PMCID: PMC9263828 DOI: 10.3389/fonc.2022.907076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The aim was to investigate the association between microvascular invasion (MVI) and the peritumoral imaging features of gadolinium ethoxybenzyl DTPA-enhanced magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) in hepatocellular carcinoma (HCC). METHODS Up until Feb 24, 2022, the PubMed, Embase, and Cochrane Library databases were carefully searched for relevant material. The software packages utilized for this meta-analysis were Review Manager 5.4.1, Meta-DiSc 1.4, and Stata16.0. Summary results are presented as sensitivity (SEN), specificity (SPE), diagnostic odds ratios (DORs), area under the receiver operating characteristic curve (AUC), and 95% confidence interval (CI). The sources of heterogeneity were investigated using subgroup analysis. RESULTS An aggregate of nineteen articles were remembered for this meta-analysis: peritumoral enhancement on the arterial phase (AP) was described in 13 of these studies and peritumoral hypointensity on the hepatobiliary phase (HBP) in all 19 studies. The SEN, SPE, DOR, and AUC of the 13 investigations on peritumoral enhancement on AP were 0.59 (95% CI, 0.41-0.58), 0.80 (95% CI, 0.75-0.85), 4 (95% CI, 3-6), and 0.73 (95% CI, 0.69-0.77), respectively. The SEN, SPE, DOR, and AUC of 19 studies on peritumoral hypointensity on HBP were 0.55 (95% CI, 0.45-0.64), 0.87 (95% CI, 0.81-0.91), 8 (95% CI, 5-12), and 0.80 (95% CI, 0.76-0.83), respectively. The subgroup analysis of two imaging features identified ten and seven potential factors for heterogeneity, respectively. CONCLUSION The results of peritumoral enhancement on the AP and peritumoral hypointensity on HBP showed high SPE but low SEN. This indicates that the peritumoral imaging features on Gd-EOB-DTPA-enhanced MRI can be used as a noninvasive, excluded diagnosis for predicting hepatic MVI in HCC preoperatively. Moreover, the results of this analysis should be updated when additional data become available. Additionally, in the future, how to improve its SEN will be a new research direction.
Collapse
Affiliation(s)
- Ying Wu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meilin Zhu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiming Liu
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xinyue Cao
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longlin Yin
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|