1
|
Yuan T, Zhong T, Song J. Vascular penetration sign: dual-phase enhanced CT manifestations of atypical liver abscess caused by Klebsiella pneumoniae. Eur Radiol 2025:10.1007/s00330-025-11460-0. [PMID: 39979622 DOI: 10.1007/s00330-025-11460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVES The aim of this study was to investigate the multislice spiral computed tomography (MSCT) features of atypical liver abscesses caused by Klebsiella pneumoniae (KP). METHODS A retrospective review was conducted on patients with atypical KP-caused liver abscesses, as verified by biopsy or surgery, from October 2019 to December 2023. All patients underwent dual-phase enhanced CT scan, and MSCT findings were analysed. RESULTS Seventy-two patients (58.5 ± 12.3 years, 43 males, 29 females) with atypical KP-induced liver abscess and 115 lesions were identified. Vascular penetration was detected in twelve lesions, presenting as vascular thickening, indistinct margins, and irregular invasive alterations. Among them, three lesions were initially misdiagnosed as primary hepatic lymphoma (PHL). Additionally, 50 lesions exhibited imaging patterns such as the "honeycomb", "petal", or "cluster" signs, and 40 lesions showed "lesion shrinkage" sign. Transient abnormal enhancement in hepatic parenchyma was observed in 83 lesions. CONCLUSION Vascular penetration with inflammatory infiltration might be a crucial sign in the diagnosis of atypical liver abscess caused by KP; correctly recognising this sign could reduce misdiagnosis. KEY POINTS Question Early imaging diagnosis of atypical liver abscesses caused by Klebsiella pneumoniae is significant because microbiology or blood cultures are time-consuming and may delay appropriate treatment. Findings The vascular penetration sign was noted in some Klebsiella pneumoniae atypical liver abscesses and play a vital role in the diagnosis of this disease. Clinical relevance The newly discovered vascular penetration sign in this study is an important sign for identifying atypical liver abscesses caused by Klebsiella pneumoniae. Accurate identification of this sign facilitates early clinical diagnosis and diminishes the risk of misdiagnosis.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Radiology, Mian Yang Central Hospital, Mianyang, China
| | - TangLi Zhong
- Department of Radiology, Mian Yang Central Hospital, Mianyang, China
| | - Jun Song
- Department of Radiology, Mian Yang Central Hospital, Mianyang, China.
| |
Collapse
|
2
|
Liu B, Wang S, Wen T, Qiu H, Xiang L, Huang Z, Wu H, Li D, Li H. Developing a Prognostic Model for Intrahepatic Cholangiocarcinoma Patients With Elevated Preoperative Carbohydrate Antigen 19-9 Levels: Volume-Adjusted CA19-9 (VACA) as a Novel Biomarker. Cancer Control 2025; 32:10732748251317692. [PMID: 39946719 PMCID: PMC11826845 DOI: 10.1177/10732748251317692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
PURPOSE The predictive sensitivity of carbohydrate antigen 19-9 (CA19-9) in assessing the prognosis of intrahepatic cholangiocarcinoma (ICC) remains inadequate. Integrating CA19-9 with tumor volume offers a potentially viable strategy for improving prognostic accuracy. This study aimed to develop a prognostic model utilizing volume-adjusted CA19-9 (VACA) for ICC patients. PATIENTS AND METHODS A retrospective analysis was conducted on data from 436 ICC patients. These patients from two centers were divided into the training (n = 291, Center 1) and validation (n = 145, Center 2) cohorts. Using the training cohort, univariate and multivariable Cox regression analyses were employed to identify clinicopathological characteristics significantly associated with overall survival (OS) and recurrence-free survival (RFS), which enabled the construction of prognostic nomograms both with and without VACA. The nomograms' discriminatory and calibration abilities were assessed using receiver operating characteristic (ROC) curves, decision curve analysis (DCA) curves, and calibration curves, applying both training and validation cohorts. RESULTS VACA emerged as an independent variable that significantly correlated with prognosis. The nomogram incorporating VACA demonstrated superior accuracy in predicting OS and RFS rates compared to the model without VACA. In the validation cohort, the nomogram with VACA yielded area under the ROC curve (AUC) values of 0.695 (95% CI = 0.597∼0.793) and 0.666 (95% CI = 0.559∼0.773) (1- year), 0.662 (95% CI = 0.518∼0.806) and 0.651 (95% CI = 0.446∼0.857) (3- years), and 0.701 (95% CI = 0.486∼0.916) and 0.703 (95% CI = 0.428∼0.978) (5- years) for OS and RFS, respectively, along with improved calibration and DCA curves. CONCLUSIONS VACA, formed by integrating tumor volume with CA19-9, exhibits promising prognostic capabilities. The nomogram incorporating data from two centers and utilizing VACA demonstrates robust prognostic performance and holds clinical utility. CONDENSED ABSTRACT Combining CA19-9 with tumor volume presents a potentially viable strategy for improving prognostic accuracy. The nomogram incorporating VACA demonstrates robust prognostic performance and holds clinical utility.
Collapse
Affiliation(s)
- Bo Liu
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Sheng Wang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Tao Wen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Haizhou Qiu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Xiang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Hong Wu
- Department of Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dewei Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
3
|
Fiz F, Rossi N, Langella S, Conci S, Serenari M, Ardito F, Cucchetti A, Gallo T, Zamboni GA, Mosconi C, Boldrini L, Mirarchi M, Cirillo S, Ruzzenente A, Pecorella I, Russolillo N, Borzi M, Vara G, Mele C, Ercolani G, Giuliante F, Cescon M, Guglielmi A, Ferrero A, Sollini M, Chiti A, Torzilli G, Ieva F, Viganò L. Radiomics of Intrahepatic Cholangiocarcinoma and Peritumoral Tissue Predicts Postoperative Survival: Development of a CT-Based Clinical-Radiomic Model. Ann Surg Oncol 2024; 31:5604-5614. [PMID: 38797789 DOI: 10.1245/s10434-024-15457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND For many tumors, radiomics provided a relevant prognostic contribution. This study tested whether the computed tomography (CT)-based textural features of intrahepatic cholangiocarcinoma (ICC) and peritumoral tissue improve the prediction of survival after resection compared with the standard clinical indices. METHODS All consecutive patients affected by ICC who underwent hepatectomy at six high-volume centers (2009-2019) were considered for the study. The arterial and portal phases of CT performed fewer than 60 days before surgery were analyzed. A manual segmentation of the tumor was performed (Tumor-VOI). A 5-mm volume expansion then was applied to identify the peritumoral tissue (Margin-VOI). RESULTS The study enrolled 215 patients. After a median follow-up period of 28 months, the overall survival (OS) rate was 57.0%, and the progression-free survival (PFS) rate was 34.9% at 3 years. The clinical predictive model of OS had a C-index of 0.681. The addition of radiomic features led to a progressive improvement of performances (C-index of 0.71, including the portal Tumor-VOI, C-index of 0.752 including the portal Tumor- and Margin-VOI, C-index of 0.764, including all VOIs of the portal and arterial phases). The latter model combined clinical variables (CA19-9 and tumor pattern), tumor indices (density, homogeneity), margin data (kurtosis, compacity, shape), and GLRLM indices. The model had performance equivalent to that of the postoperative clinical model including the pathology data (C-index of 0.765). The same results were observed for PFS. CONCLUSIONS The radiomics of ICC and peritumoral tissue extracted from preoperative CT improves the prediction of survival. Both the portal and arterial phases should be considered. Radiomic and clinical data are complementary and achieve a preoperative estimation of prognosis equivalent to that achieved in the postoperative setting.
Collapse
Affiliation(s)
- Francesco Fiz
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Ente Ospedaliero "Ospedali Galliera", Genoa, Italy
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital, Tübingen, Germany
| | - Noemi Rossi
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Serena Langella
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, Turin, Italy
| | - Simone Conci
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynaecology and Pediatrics, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Matteo Serenari
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Ardito
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of General Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Teresa Gallo
- Department of Radiology, Mauriziano Umberto I Hospital, Turin, Italy
| | - Giulia A Zamboni
- Department of Radiology, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Cristina Mosconi
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Luca Boldrini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | - Stefano Cirillo
- Department of Radiology, Mauriziano Umberto I Hospital, Turin, Italy
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynaecology and Pediatrics, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Ilaria Pecorella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Nadia Russolillo
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, Turin, Italy
| | - Martina Borzi
- Department of Radiology, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Giulio Vara
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Caterina Mele
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of General Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Felice Giuliante
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alfredo Guglielmi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynaecology and Pediatrics, University Hospital G.B. Rossi, University of Verona, Verona, Italy
| | - Alessandro Ferrero
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, Turin, Italy
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Ieva
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
- CHDS - Center for Health Data Science, Human Technopole, Milan, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Hepatobiliary Unit, Department of Minimally Invasive General and Oncologic Surgery, Humanitas Gavazzeni University Hospital, Bergamo, Italy.
| |
Collapse
|
4
|
Wang Y, Lou Y, Chen L, Yang X, Cao A, Du P. A hepatic sparganosis misdiagnosed as intrahepatic mass-forming cholangiocarcinoma: a case report and literature review. Front Oncol 2024; 14:1391256. [PMID: 38660131 PMCID: PMC11039945 DOI: 10.3389/fonc.2024.1391256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatic sparganosis (HS) is extremely rare and has not been previously reported in Eastern China. We report the diagnosis and treatment of a patient with HS from Xuzhou City, Jiangsu Province, China. The patient was admitted due to an acute biliary tract infection, and the symptoms improved after treatment at the Gastroenterology Department. During an ultrasound examination on admission, an abnormal echo was incidentally discovered at the junction of the left and right lobes of the liver. Thereafter, upper abdominal computed tomography (CT) and magnetic resonance imaging (MRI) non-contrast and contrast-enhanced examinations, and serum tumor biomarker examination were completed. After a multidisciplinary treatment (MDT) discussion at the Department of Hepatobiliary Surgery, the patient was diagnosed with intrahepatic mass-type cholangiocarcinoma (IMCC) and surgery was recommended. The patient underwent surgical treatment, and postoperative pathology revealed HS. No signs of intrahepatic recurrence were observed during the 1-year follow-up period.
Collapse
Affiliation(s)
- Yinjiao Wang
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Lou
- Department of Radiology, The 71st Group Army Hospital of the People’s Liberation Army of China, Xuzhou, China
| | - Lang Chen
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xin Yang
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Aihong Cao
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peng Du
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Guo L, Liu A, Geng X, Zhao Z, Nie Y, Wang L, Liu D, Li Y, Li Y, Li D, Wang Q, Li Z, Liu X, Li M. The role of spleen radiomics model for predicting prognosis in esophageal squamous cell carcinoma patients receiving definitive radiotherapy. Thorac Cancer 2024; 15:947-964. [PMID: 38480505 PMCID: PMC11045339 DOI: 10.1111/1759-7714.15276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The spleen plays an important role in systemic antitumor immune response, but whether spleen imaging features have predictive effect for prognosis and immune status was unknown. The aim of this study was to investigate computed tomography (CT)-based spleen radiomics to predict the prognosis of patients with esophageal squamous cell carcinoma (ESCC) underwent definitive radiotherapy (dRT) and to try to find its association with systemic immunity. METHODS This retrospective study included 201 ESCC patients who received dRT. Patients were randomly divided into training (n = 142) and validation (n = 59) groups. The pre- and delta-radiomic features were extracted from enhanced CT images. LASSO-Cox regression was used to select the radiomics signatures most associated with progression-free survival (PFS) and overall survival (OS). Independent prognostic factors were identified by univariate and multivariate Cox analyses. The ROC curve and C-index were used to evaluate the predictive performance. Finally, the correlation between spleen radiomics and immune-related hematological parameters was analyzed by spearman correlation analysis. RESULTS Independent prognostic factors involved TNM stage, treatment regimen, tumor location, pre- or delta-Rad-score. The AUC of the delta-radiomics combined model was better than other models in the training and validation groups in predicting PFS (0.829 and 0.875, respectively) and OS (0.857 and 0.835, respectively). Furthermore, some spleen delta-radiomic features are significantly correlated with delta-ALC (absolute lymphocyte count) and delta-NLR (neutrophil-to-lymphocyte ratio). CONCLUSIONS Spleen radiomics is expected to be a useful noninvasive tool for predicting the prognosis and evaluating systemic immune status for ESCC patients underwent dRT.
Collapse
Affiliation(s)
- Longxiang Guo
- Department of Radiation OncologyShandong Cancer Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Ao Liu
- Department of Radiation OncologyShandong Cancer Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Xiaotao Geng
- Department of Radiation OncologyWeifang People's HospitalWeifangChina
| | - Zongxing Zhao
- Department of Radiation OncologyLiaocheng People's Hospital, Shandong First Medical UniversityLiaochengChina
| | - Yu Nie
- Department of Tumor RadiotherapyShandong Second Provincial General HospitalJi'nanChina
| | - Lu Wang
- School of Clinical Medicine, Weifang Medical UniversityWeifangChina
| | - Defeng Liu
- Department of Radiation OncologyShandong Cancer Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Yi Li
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Yuanlin Li
- School of Clinical Medicine, Weifang Medical UniversityWeifangChina
| | - Dianxing Li
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Qiankun Wang
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Zhichao Li
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xiuli Liu
- Department of Radiation OncologyShandong Cancer Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Minghuan Li
- Department of Radiation OncologyShandong Cancer Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
6
|
Chen S, Wan L, Zhao R, Peng W, Liu X, Li L, Zhang H. Risk stratification for overall survival and recurrence-free survival after R0 resection for solitary intrahepatic mass-forming cholangiocarcinoma based on preoperative MRI and clinical features. Eur J Radiol 2023; 169:111190. [PMID: 37979460 DOI: 10.1016/j.ejrad.2023.111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE This study aimed to establish two nomograms for predicting overall survival (OS) and recurrence-free survival (RFS) in patients with solitary intrahepatic mass-forming cholangiocarcinoma (IMCC) based on preoperative magnetic resonance imaging (MRI) features. METHODS This retrospective study included 120 consecutive patients who were diagnosed with solitary IMCC. Preoperative MRI and clinical features were collected. Based on the univariate and multivariate Cox regression analyses, two nomograms were constructed to predict OS and RFS, respectively. The effective performance of the nomograms was evaluated using concordance index (C-index). The prognostic stratification systems for OS and RFS were developed and used to classify patients into high- and low-risk groups. RESULTS Suspicious lymph nodes, arterial phase (AP) enhancement patterns, and bile duct dilatation were independent predictors of OS, while suspicious lymph nodes, AP enhancement patterns, and necrosis were independent predictors of RFS. The nomograms achieved the C-index values of 0.705/0.710 for OS and 0.721/0.759 for RFS in the development/validation cohorts, which were significantly higher than those of the T and TNM stages (P < 0.05). Patients were stratified into high- and low-risk groups, the 1-year OS and RFS rates of high-risk patients were poorer than those of patients with low-risk in the development cohort (OS: 93.5% vs 76.3%, P < 0.001; RFS: 74.5% vs 22.4%, P < 0.001). Similar results were observed in the validation cohort. CONCLUSIONS Two nomograms were constructed based on preoperative MRI features in patients with solitary IMCC for predicting the OS and RFS and facilitate further prognostic stratification.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Lijuan Wan
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Rui Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Wenjing Peng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xiangchun Liu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Lin Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Hongmei Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
7
|
Fiz F, Rossi N, Langella S, Ruzzenente A, Serenari M, Ardito F, Cucchetti A, Gallo T, Zamboni G, Mosconi C, Boldrini L, Mirarchi M, Cirillo S, De Bellis M, Pecorella I, Russolillo N, Borzi M, Vara G, Mele C, Ercolani G, Giuliante F, Ravaioli M, Guglielmi A, Ferrero A, Sollini M, Chiti A, Torzilli G, Ieva F, Viganò L. Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical-Radiomic Model. Cancers (Basel) 2023; 15:4204. [PMID: 37686480 PMCID: PMC10486795 DOI: 10.3390/cancers15174204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Standard imaging cannot assess the pathology details of intrahepatic cholangiocarcinoma (ICC). We investigated whether CT-based radiomics may improve the prediction of tumor characteristics. All consecutive patients undergoing liver resection for ICC (2009-2019) in six high-volume centers were evaluated for inclusion. On the preoperative CT, we segmented the ICC (Tumor-VOI, i.e., volume-of-interest) and a 5-mm parenchyma rim around the tumor (Margin-VOI). We considered two types of pathology data: tumor grading (G) and microvascular invasion (MVI). The predictive models were internally validated. Overall, 244 patients were analyzed: 82 (34%) had G3 tumors and 139 (57%) had MVI. For G3 prediction, the clinical model had an AUC = 0.69 and an Accuracy = 0.68 at internal cross-validation. The addition of radiomic features extracted from the portal phase of CT improved the model performance (Clinical data+Tumor-VOI: AUC = 0.73/Accuracy = 0.72; +Tumor-/Margin-VOI: AUC = 0.77/Accuracy = 0.77). Also for MVI prediction, the addition of portal phase radiomics improved the model performance (Clinical data: AUC = 0.75/Accuracy = 0.70; +Tumor-VOI: AUC = 0.82/Accuracy = 0.73; +Tumor-/Margin-VOI: AUC = 0.82/Accuracy = 0.75). The permutation tests confirmed that a combined clinical-radiomic model outperforms a purely clinical one (p < 0.05). The addition of the textural features extracted from the arterial phase had no impact. In conclusion, the radiomic features of the tumor and peritumoral tissue extracted from the portal phase of preoperative CT improve the prediction of ICC grading and MVI.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (F.F.); (M.S.); (A.C.)
| | - Noemi Rossi
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy; (N.R.); (F.I.)
| | - Serena Langella
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (S.L.); (N.R.); (A.F.)
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (A.R.); (M.D.B.); (A.G.)
| | - Matteo Serenari
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (M.S.); (M.R.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
| | - Francesco Ardito
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.A.); (C.M.); (F.G.)
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
- Department of General Surgery, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy;
| | - Teresa Gallo
- Department of Radiology, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (T.G.); (S.C.)
| | - Giulia Zamboni
- Department of Radiology, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (G.Z.); (M.B.)
| | - Cristina Mosconi
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (C.M.); (G.V.)
| | - Luca Boldrini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mariateresa Mirarchi
- Department of General Surgery, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy;
| | - Stefano Cirillo
- Department of Radiology, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (T.G.); (S.C.)
| | - Mario De Bellis
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (A.R.); (M.D.B.); (A.G.)
| | - Ilaria Pecorella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
| | - Nadia Russolillo
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (S.L.); (N.R.); (A.F.)
| | - Martina Borzi
- Department of Radiology, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (G.Z.); (M.B.)
| | - Giulio Vara
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (C.M.); (G.V.)
| | - Caterina Mele
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.A.); (C.M.); (F.G.)
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
- Department of General Surgery, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy;
| | - Felice Giuliante
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.A.); (C.M.); (F.G.)
| | - Matteo Ravaioli
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (M.S.); (M.R.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
| | - Alfredo Guglielmi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (A.R.); (M.D.B.); (A.G.)
| | - Alessandro Ferrero
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (S.L.); (N.R.); (A.F.)
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (F.F.); (M.S.); (A.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (F.F.); (M.S.); (A.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
| | - Guido Torzilli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Francesca Ieva
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy; (N.R.); (F.I.)
- CHDS—Center for Health Data Science, Human Technopole, 20157 Milan, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
- Hepatobiliary Unit, Department of Minimally Invasive General & Oncologic Surgery, Humanitas Gavazzeni University Hospital, 24125 Bergamo, Italy
| |
Collapse
|
8
|
Cerrito L, Ainora ME, Borriello R, Piccirilli G, Garcovich M, Riccardi L, Pompili M, Gasbarrini A, Zocco MA. Contrast-Enhanced Imaging in the Management of Intrahepatic Cholangiocarcinoma: State of Art and Future Perspectives. Cancers (Basel) 2023; 15:3393. [PMID: 37444503 PMCID: PMC10341250 DOI: 10.3390/cancers15133393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) represents the second most common liver cancer after hepatocellular carcinoma, accounting for 15% of primary liver neoplasms. Its incidence and mortality rate have been rising during the last years, and total new cases are expected to increase up to 10-fold during the next two or three decades. Considering iCCA's poor prognosis and rapid spread, early diagnosis is still a crucial issue and can be very challenging due to the heterogeneity of tumor presentation at imaging exams and the need to assess a correct differential diagnosis with other liver lesions. Abdominal contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) plays an irreplaceable role in the evaluation of liver masses. iCCA's most typical imaging patterns are well-described, but atypical features are not uncommon at both CT and MRI; on the other hand, contrast-enhanced ultrasound (CEUS) has shown a great diagnostic value, with the interesting advantage of lower costs and no renal toxicity, but there is still no agreement regarding the most accurate contrastographic patterns for iCCA detection. Besides diagnostic accuracy, all these imaging techniques play a pivotal role in the choice of the therapeutic approach and eligibility for surgery, and there is an increasing interest in the specific imaging features which can predict tumor behavior or histologic subtypes. Further prognostic information may also be provided by the extraction of quantitative data through radiomic analysis, creating prognostic multi-parametric models, including clinical and serological parameters. In this review, we aim to summarize the role of contrast-enhanced imaging in the diagnosis and management of iCCA, from the actual issues in the differential diagnosis of liver masses to the newest prognostic implications.
Collapse
Affiliation(s)
| | - Maria Elena Ainora
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.B.); (G.P.); (M.G.); (L.R.); (M.P.); (A.G.); (M.A.Z.)
| | | | | | | | | | | | | | | |
Collapse
|