1
|
Qi K, Xu C, Yuan D, Zhang Y, Zhang M, Zhang W, Zhang J, You B, Gao J, Liu J. Feasibility of Ultra-low Radiation and Contrast Medium Dosage in Aortic CTA Using Deep Learning Reconstruction at 60 kVp: An Image Quality Assessment. Acad Radiol 2025; 32:1506-1516. [PMID: 39542806 DOI: 10.1016/j.acra.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To assess the viability of using ultra-low radiation and contrast medium (CM) dosage in aortic computed tomography angiography (CTA) through the application of low tube voltage (60kVp) and a novel deep learning image reconstruction algorithm (ClearInfinity, DLIR-CI). METHODS Iodine attenuation curves obtained from a phantom study informed the administration of CM protocols. Non-obese participants undergoing aortic CTA were prospectively allocated into two groups and then obtained three reconstruction groups. The conventional group (100kVp-CV group) underwent imaging at 100kVp and received 210 mg iodine/kg in combination with a hybrid iterative reconstruction algorithm (ClearView, HIR-CV). The experimental group was imaged at 60kVp with 105 mg iodine/kg, while images were reconstructed with HIR-CV (60kVp-CV group) and with DLIR-CI (60kVp-CI group). Student's t-test was used to compare differences in CM protocol and radiation dose. One-way ANOVA compared CT attenuation, image noise, SNR, and CNR among the three reconstruction groups, while the Kruskal-Wallis H test assessed subjective image quality scores. Post hoc analysis was performed with Bonferroni correction for multiple comparisons, and consistency analysis conducted in subjective image quality assessment was measured using Cohen's kappa. RESULTS The radiation dose (1.12 ± 0.23mSv vs. 2.03 ± 0.82mSv) and CM dosage (19.04 ± 3.03mL vs. 38.11 ± 6.47mL) provided the reduction of 45% and 50% in the experimental group compared to the conventional group. The CT attenuation, SNR, and CNR of 60kVp-CI were superior to or equal to those of 100kVp-CV. Compared to the 60kVp-CV group, images in 60kVp-CI showed higher SNR and CNR (all P < 0.001). There was no difference between the 60kVp-CI and 100kVp-CV group in terms of the subjective image quality of the aorta in various locations (all P > 0.05), with 60kVp-CI images were deemed diagnostically sufficient across all vascular segments. CONCLUSION For non-obese patients, the combined use of 60kVp and DLIR-CI algorithm can be preserving image quality while enabling radiation dose and contrast medium savings for aortic CTA compared to 100kVp using HIR-CV.
Collapse
Affiliation(s)
- Ke Qi
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou 450052, Henan Province, China (K.Q., D.Y., Y.Z., M.Z., W.Z., J.Z., B.Y., J.G., J.L.)
| | - Chensi Xu
- CT Business Unit, Neusoft Medical Systems Co., Ltd, No.177-1, Innovation Road, Hunnan District, Shenyang, Liaoning Province, China (C.X.)
| | - Dian Yuan
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou 450052, Henan Province, China (K.Q., D.Y., Y.Z., M.Z., W.Z., J.Z., B.Y., J.G., J.L.)
| | - Yicun Zhang
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou 450052, Henan Province, China (K.Q., D.Y., Y.Z., M.Z., W.Z., J.Z., B.Y., J.G., J.L.)
| | - Mengyuan Zhang
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou 450052, Henan Province, China (K.Q., D.Y., Y.Z., M.Z., W.Z., J.Z., B.Y., J.G., J.L.)
| | - Weiting Zhang
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou 450052, Henan Province, China (K.Q., D.Y., Y.Z., M.Z., W.Z., J.Z., B.Y., J.G., J.L.)
| | - Jiong Zhang
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou 450052, Henan Province, China (K.Q., D.Y., Y.Z., M.Z., W.Z., J.Z., B.Y., J.G., J.L.)
| | - Bojun You
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou 450052, Henan Province, China (K.Q., D.Y., Y.Z., M.Z., W.Z., J.Z., B.Y., J.G., J.L.)
| | - Jianbo Gao
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou 450052, Henan Province, China (K.Q., D.Y., Y.Z., M.Z., W.Z., J.Z., B.Y., J.G., J.L.)
| | - Jie Liu
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, Eastern Jianshe Road, Zhengzhou 450052, Henan Province, China (K.Q., D.Y., Y.Z., M.Z., W.Z., J.Z., B.Y., J.G., J.L.).
| |
Collapse
|
2
|
Wu X, Xia Y, Lou X, Huang K, Wu L, Gao C. Decoding breast cancer imaging trends: the role of AI and radiomics through bibliometric insights. Breast Cancer Res 2025; 27:29. [PMID: 40001088 PMCID: PMC11863798 DOI: 10.1186/s13058-025-01983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Radiomics and AI have been widely used in breast cancer imaging, but a comprehensive systematic analysis is lacking. Therefore, this study aims to conduct a bibliometrics analysis in this field to discuss its research status and frontier hotspots and provide a reference for subsequent research. METHODS Publications related to AI, radiomics, and breast cancer imaging were searched in the Web of Science Core Collection. CiteSpace plotted the relevant co-occurrence network according to authors and keywords. VOSviewer and Pajek were used to draw relevant co-occurrence maps according to country and institution. In addition, R was used to conduct bibliometric analysis of relevant authors, countries/regions, journals, keywords, and annual publications and citations based on the collected information. RESULTS A total of 2,701 Web of Science Core Collection publications were retrieved, including 2,486 articles (92.04%) and 215 reviews (7.96%). The number of publications increased rapidly after 2018. The United States of America (n = 17,762) leads in citations, while China (n = 902) leads in the number of publications. Sun Yat-sen University (n = 75) had the largest number of publications. Bin Zheng (n = 28) was the most published author. Nico Karssemeijer (n = 72.1429) was the author with the highest average citations. "Frontiers in Oncology" was the journal with the most publications, and "Radiology" had the highest IF. The keywords with the most frequent occurrence were "breast cancer", "deep learning", and "classification". The topic trends in recent years were "explainable AI", "neoadjuvant chemotherapy", and "lymphovascular invasion". CONCLUSION The application of radiomics and AI in breast cancer imaging has received extensive attention. Future research hotspots may mainly focus on the progress of explainable AI in the technical field and the prediction of lymphovascular invasion and neoadjuvant chemotherapy efficacy in clinical application.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufei Xia
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinjing Lou
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keling Huang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China.
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chen Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China.
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Zhu L, Dong H, Sun J, Wang L, Xing Y, Hu Y, Lu J, Yang J, Chu J, Yan C, Yuan F, Zhong J. Robustness of radiomics among photon-counting detector CT and dual-energy CT systems: a texture phantom study. Eur Radiol 2025; 35:871-884. [PMID: 39048741 PMCID: PMC11782343 DOI: 10.1007/s00330-024-10976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES To evaluate the robustness of radiomics features among photon-counting detector CT (PCD-CT) and dual-energy CT (DECT) systems. METHODS A texture phantom consisting of twenty-eight materials was scanned with one PCD-CT and four DECT systems (dual-source, rapid kV-switching, dual-layer, and sequential scanning) at three dose levels twice. Thirty sets of virtual monochromatic images at 70 keV were reconstructed. Regions of interest were delineated for each material with a rigid registration. Ninety-three radiomics were extracted per PyRadiomics. The test-retest repeatability between repeated scans was assessed by Bland-Altman analysis. The intra-system reproducibility between dose levels, and inter-system reproducibility within the same dose level, were evaluated by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). Inter-system variability among five scanners was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). RESULTS The test-retest repeatability analysis presented that 97.1% of features were repeatable between scan-rescans. The mean ± standard deviation ICC and CCC were 0.945 ± 0.079 and 0.945 ± 0.079 for intra-system reproducibility, respectively, and 86.0% and 85.7% of features were with ICC > 0.90 and CCC > 0.90, respectively, between different dose levels. The mean ± standard deviation ICC and CCC were 0.157 ± 0.174 and 0.157 ± 0.174 for inter-system reproducibility, respectively, and none of the features were with ICC > 0.90 or CCC > 0.90 within the same dose level. The inter-system variability suggested that 6.5% and 12.8% of features were with CV < 10% and QCD < 10%, respectively, among five CT systems. CONCLUSION The radiomics features were non-reproducible with significant variability in values among different CT techniques. CLINICAL RELEVANCE STATEMENT Radiomics features are non-reproducible with significant variability in values among photon-counting detector CT and dual-energy CT systems, necessitating careful attention to improve the cross-system generalizability of radiomic features before implementation of radiomics analysis in clinical routine. KEY POINTS CT radiomics stability should be guaranteed before the implementation in the clinical routine. Radiomics robustness was on a low level among photon-counting detectors and dual-energy CT techniques. Limited inter-system robustness of radiomic features may impact the generalizability of models.
Collapse
Affiliation(s)
- Lan Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Jingshen Chu
- Department of Science and Technology Development, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Yan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
4
|
Zhang H, Lu T, Wang L, Xing Y, Hu Y, Xu Z, Lu J, Yang J, Chu J, Zhang B, Zhong J. Robustness of radiomics within photon-counting detector CT: impact of acquisition and reconstruction factors. Eur Radiol 2025:10.1007/s00330-025-11374-x. [PMID: 39890616 DOI: 10.1007/s00330-025-11374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
OBJECTIVES To assess the impact of acquisition and reconstruction factors on the robustness of radiomics within photon-counting detector CT (PCD-CT). METHODS A phantom with twenty-eight texture materials was scanned with different acquisition and reconstruction factors including reposition, scan mode (standard vs high-pitch), tube voltage (120 kVp vs 140 kVp), slice thickness (1.0 mm vs 0.4 mm), radiation dose level (0.5 mGy, 1.0 mGy, 3.0 mGy, 5.0 mGy, vs 10.0 mGy), quantum iterative reconstruction level (0/4, 2/4, vs 4/4), and reconstruction kernel (Qr40, Qr44, vs Qr48). Thirteen sets of virtual monochromatic images at 70-keV were reconstructed. The regions of interest were drawn with rigid registrations. Ninety-three radiomics features were extracted from each material. The reproducibility of radiomics features was evaluated using the intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The variability of radiomics features was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). RESULTS The percentage of features with ICC > 0.90 and CCC > 0.90 were high when repositioned (88.2% and 88.2%) and tube voltage was changed (87.1% and 87.1%), but none of the features with ICC > 0.90 and CCC > 0.90 when high-pitch scan and different slice thickness were used. The percentage of features with CV < 10% and QCD < 10% were high when repositioned (47.3% and 68.8%) and tube voltage was changed (64.2% and 71.0%), but that with CV < 10% and QCD < 10% were low between standard and high-pitch scans (16.1% and 26.9%) and slice thickness (19.4% and 29.0%). CONCLUSIONS The PCD-CT radiomics was robust to tube voltage, radiation dose, reconstruction strength level, and kernel, but brittle to high-pitch scan and slice thickness. KEY POINTS Question The stability of radiomics features against acquisition and reconstruction factors within PCD-CT should be fully determined before academic research and clinical application. Findings The radiomics features are robust against tube voltage, radiation dose, reconstruction strength level, and kernel within PCD-CT but brittle to high-pitch scan and slice thickness. Clinical relevance The high-pitch scan and slice thickness that influence voxel size should be set with careful attention within PCD-CT, to allow a higher robustness of radiomics features before the implementation of radiomics analysis in clinical routine.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingwei Lu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihan Xu
- Siemens Healthineers, Shanghai, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jingshen Chu
- Department of Science and Technology Development, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benyan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Li X, Zhao Y, Chen W, Huang X, Ding Y, Cao S, Wang C, Zhang C. Nomogram for predicting cervical lymph node metastasis of papillary thyroid carcinoma using deep learning-based super-resolution ultrasound image. Discov Oncol 2024; 15:703. [PMID: 39580761 PMCID: PMC11586326 DOI: 10.1007/s12672-024-01601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
OBJECTIVES To investigate the feasibility and effectiveness of a deep learning (DL) super-resolution (SR) ultrasound image reconstruction model for predicting cervical lymph node status in patients with papillary thyroid carcinoma(PTC). METHODS In this retrospective study, researchers recruited 544 patients with PTC and randomly assigned them to training and test sets. SR ultrasound images were acquired using SR technology to improve image resolution, and artificial features and DL features were extracted from the original (OR) and SR images, respectively, to construct a ML, DL model. The best model was selected and aggregated with clinical parameters to construct the nomogram. The performance of the model is evaluated by ROC curves, calibration curves and decision curves. RESULTS In distinguishing the presence or absence of metastatic lymph nodes, the predictive performance of the SR_ResNet 101 and SR_SVM models based on SR outperformed those based on OR. In the test set, SR_SVM AUC was 0.878 (95% CI 0.8203-0.9358), accuracy 0.854, while OR_SVM AUC was 0.822 (95% CI 0.7500-0.8937), accuracy 0.665. SR_ResNet 101 AUC was 0.799 (95% CI 0.7175-0.8806), accuracy 0.793, and OR_ResNet101 AUC was 0.751 (95% CI 0.6620-0.8401), accuracy 0.713. Subsequently, Nomogram_A and Nomogram_B were constructed by integrating the SR_SVM model and SR_ResNet 101 model, respectively, with clinical parameters, while Nomogram_C was constructed solely based on clinical indicators. In the test set, Nomogram_A demonstrated the best performance with an AUC of 0.930 (95% CI 0.8913-0.9682) and accuracy was 0.829. Nomogram_B AUC 0.868 (95% CI 0.8102-0.9261) and accuracy was 0.829, while Nomogram_C AUC 0.880 (95% CI 0.8257-0.9349) and accuracy was 0.787. The DeLong test revealed that the diagnostic performance of Nomogram_A based on SR_SVM was significantly higher than that of Nomogram_B, Nomogram_C, and the level of Radiologist (P < 0.05). The calibration curves and Hosmer-Lemeshow tests confirmed a high degree of fit, and the decision curve analysis demonstrated clinical value and potential patient benefit. CONCLUSIONS The predictive model constructed using SR reconstructed ultrasound images demonstrated superior performance in predicting preoperative cervical lymph node metastasis in PTC compared to OR images. The nomogram prediction model based on SR images has the potential to enhance the accuracy of predictive models and aid in clinical decision-making.
Collapse
Affiliation(s)
- Xia Li
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yu Zhao
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wenhui Chen
- Department of Hepatobiliary and Pancreatic Surgery, Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xu Huang
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yan Ding
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shuangyi Cao
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chujun Wang
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chunquan Zhang
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
6
|
Park M, Lim S, Kim H, Kim JY, Lee Y. Optimization of smoothing parameter for block matching and 3D filtering algorithm in low-dose chest and abdominal computed tomography images. Appl Radiat Isot 2024; 210:111374. [PMID: 38805985 DOI: 10.1016/j.apradiso.2024.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Computed tomography (CT), known for its exceptionally high accuracy, is associated with a substantial dose of ionizing radiation. Low-dose protocols have been devised to address this issue; however, a reduction in the radiation dose can lead to a deficiency in the number of photons, resulting in quantum noise. Thus, the aim of this study was to optimize the smoothing parameter (σ-value) of the block matching and 3D filtering (BM3D) algorithm to effectively reduce noise in low-dose chest and abdominal CT images. Acquired images were subsequently analyze using quantitative evaluation metrics, including contrast to noise ratio (CNR), coefficient of variation (CV), and naturalness image quality evaluator (NIQE). Quantitative evaluation results demonstrated that the optimal σ-value for CNR, CV, and NIQE were 0.10, 0.11, and 0.09 in low-dose chest CT images respectively, whereas those in abdominal images were 0.12, 0.11, and 0.09, respectively. The average of the optimal σ-values, which produced the most improved results, was 0.10, considering both visual and quantitative evaluations. In conclusion, we demonstrated that the optimized BM3D algorithm with σ-value is effective for noise reduction in low-dose chest and abdominal CT images indicating its feasibility of in the clinical field.
Collapse
Affiliation(s)
- Minji Park
- Department of Health Science, General Graduate School of Gachon University, Incheon, Republic of Korea
| | - Sewon Lim
- Department of Health Science, General Graduate School of Gachon University, Incheon, Republic of Korea
| | - Hajin Kim
- Department of Health Science, General Graduate School of Gachon University, Incheon, Republic of Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Youngjin Lee
- Department of Radiological Science, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
7
|
Zhong J, Wang L, Yan C, Xing Y, Hu Y, Ding D, Ge X, Li J, Lu W, Shi X, Yuan F, Yao W, Zhang H. Deep learning image reconstruction generates thinner slice iodine maps with improved image quality to increase diagnostic acceptance and lesion conspicuity: a prospective study on abdominal dual-energy CT. BMC Med Imaging 2024; 24:159. [PMID: 38926711 PMCID: PMC11201298 DOI: 10.1186/s12880-024-01334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND To assess the improvement of image quality and diagnostic acceptance of thinner slice iodine maps enabled by deep learning image reconstruction (DLIR) in abdominal dual-energy CT (DECT). METHODS This study prospectively included 104 participants with 136 lesions. Four series of iodine maps were generated based on portal-venous scans of contrast-enhanced abdominal DECT: 5-mm and 1.25-mm using adaptive statistical iterative reconstruction-V (Asir-V) with 50% blending (AV-50), and 1.25-mm using DLIR with medium (DLIR-M), and high strength (DLIR-H). The iodine concentrations (IC) and their standard deviations of nine anatomical sites were measured, and the corresponding coefficient of variations (CV) were calculated. Noise-power-spectrum (NPS) and edge-rise-slope (ERS) were measured. Five radiologists rated image quality in terms of image noise, contrast, sharpness, texture, and small structure visibility, and evaluated overall diagnostic acceptability of images and lesion conspicuity. RESULTS The four reconstructions maintained the IC values unchanged in nine anatomical sites (all p > 0.999). Compared to 1.25-mm AV-50, 1.25-mm DLIR-M and DLIR-H significantly reduced CV values (all p < 0.001) and presented lower noise and noise peak (both p < 0.001). Compared to 5-mm AV-50, 1.25-mm images had higher ERS (all p < 0.001). The difference of the peak and average spatial frequency among the four reconstructions was relatively small but statistically significant (both p < 0.001). The 1.25-mm DLIR-M images were rated higher than the 5-mm and 1.25-mm AV-50 images for diagnostic acceptability and lesion conspicuity (all P < 0.001). CONCLUSIONS DLIR may facilitate the thinner slice thickness iodine maps in abdominal DECT for improvement of image quality, diagnostic acceptability, and lesion conspicuity.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Yan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Bos D, Demircioğlu A, Neuhoff J, Haubold J, Zensen S, Opitz MK, Drews MA, Li Y, Styczen H, Forsting M, Nassenstein K. Assessment of image quality and impact of deep learning-based software in non-contrast head CT scans. Sci Rep 2024; 14:11810. [PMID: 38782976 PMCID: PMC11116440 DOI: 10.1038/s41598-024-62394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
In this retrospective study, we aimed to assess the objective and subjective image quality of different reconstruction techniques and a deep learning-based software on non-contrast head computed tomography (CT) images. In total, 152 adult head CT scans (77 female, 75 male; mean age 69.4 ± 18.3 years) obtained from three different CT scanners using different protocols between March and April 2021 were included. CT images were reconstructed using filtered-back projection (FBP), iterative reconstruction (IR), and post-processed using a deep learning-based algorithm (PS). Post-processing significantly reduced noise in FBP-reconstructed images (up to 15.4% reduction) depending on the protocol, leading to improvements in signal-to-noise ratio of up to 19.7%. However, when deep learning-based post-processing was applied to FBP images compared to IR alone, the differences were inconsistent and partly non-significant, which appeared to be protocol or site specific. Subjective assessments showed no significant overall improvement in image quality for all reconstructions and post-processing. Inter-rater reliability was low and preferences varied. Deep learning-based denoising software improved objective image quality compared to FBP in routine head CT. A significant difference compared to IR was observed for only one protocol. Subjective assessments did not indicate a significant clinical impact in terms of improved subjective image quality, likely due to the low noise levels in full-dose images.
Collapse
Affiliation(s)
- Denise Bos
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Aydin Demircioğlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Julia Neuhoff
- Faculty of Medicine, University Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Johannes Haubold
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Sebastian Zensen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Marcel K Opitz
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Marcel A Drews
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Yan Li
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Hanna Styczen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Kai Nassenstein
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
9
|
Wang L, Guo T, Wang L, Yang W, Wang J, Nie J, Cui J, Jiang P, Li J, Zhang H. Improving radiomic modeling for the identification of symptomatic carotid atherosclerotic plaques using deep learning-based 3D super-resolution CT angiography. Heliyon 2024; 10:e29331. [PMID: 38644848 PMCID: PMC11033096 DOI: 10.1016/j.heliyon.2024.e29331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Rationale and objectives Radiomic models based on normal-resolution (NR) computed tomography angiography (CTA) images can fail to distinguish between symptomatic and asymptomatic carotid atherosclerotic plaques. This study aimed to explore the effectiveness of a deep learning-based three-dimensional super-resolution (SR) CTA radiomic model for improved identification of symptomatic carotid atherosclerotic plaques. Materials and methods A total of 193 patients with carotid atherosclerotic plaques were retrospectively enrolled and allocated into either a symptomatic (n = 123) or an asymptomatic (n = 70) groups. SR CTA images were derived from NR CTA images using deep learning-based three-dimensional SR technology. Handcrafted radiomic features were extracted from both the SR and NR CTA images and three risk models were developed based on manually measured quantitative CTA characteristics and NR and SR radiomic features. Model performances were assessed via receiver operating characteristic, calibration, and decision curve analyses. Results The SR model exhibited the optimal performance (area under the curve [AUC] 0.820, accuracy 0.802, sensitivity 0.854, F1 score 0.847) in the testing cohort, outperforming the other two models. The calibration curve analyses and Hosmer-Lemeshow test demonstrated that the SR model exhibited the best goodness of fit, and decision curve analysis revealed that SR model had the highest clinical value and potential patient benefits. Conclusions Deep learning-based three-dimensional SR technology could improve the CTA-based radiomic models in identifying symptomatic carotid plaques, potentially providing more accurate and valuable information to guide clinical decision-making to reduce the risk of ischemic stroke.
Collapse
Affiliation(s)
- Lingjie Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Tiedan Guo
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Li Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Wentao Yang
- Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jingying Wang
- Department of Endemic Disease Prevention and Control, Shanxi Province Disease Prevention and Control Center, Shanxi Province, 030001, China
| | - Jianlong Nie
- Shanghai United Imaging Intelligence, Co., Ltd., Shanghai City, 200030, China
| | - Jingjing Cui
- Shanghai United Imaging Intelligence, Co., Ltd., Shanghai City, 200030, China
| | - Pengbo Jiang
- Shanghai United Imaging Intelligence, Co., Ltd., Shanghai City, 200030, China
| | - Junlin Li
- Department of Imaging Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, China
| | - Hua Zhang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| |
Collapse
|
10
|
Varghese BA, Cen SY, Jensen K, Levy J, Andersen HK, Schulz A, Lei X, Duddalwar VA, Goodenough DJ. Investigating the role of imaging factors in the variability of CT-based texture analysis metrics. J Appl Clin Med Phys 2024; 25:e14192. [PMID: 37962032 PMCID: PMC11005980 DOI: 10.1002/acm2.14192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE This study assesses the robustness of first-order radiomic texture features namely interquartile range (IQR), coefficient of variation (CV) and standard deviation (SD) derived from computed tomography (CT) images by varying dose, reconstruction algorithms and slice thickness using scans of a uniform water phantom, a commercial anthropomorphic liver phantom, and a human liver in-vivo. MATERIALS AND METHODS Scans were acquired on a 16 cm detector GE Revolution Apex Edition CT scanner with variations across three different nominal slice thicknesses: 0.625, 1.25, and 2.5 mm, three different dose levels: CTDIvol of 13.86 mGy for the standard dose, 40% reduced dose and 60% reduced dose and two different reconstruction algorithms: a deep learning image reconstruction (DLIR-high) algorithm and a hybrid iterative reconstruction (IR) algorithm ASiR-V50% (AV50) were explored, varying one at a time. To assess the effect of non-linear modifications of images by AV50 and DLIR-high, images of the water phantom were also reconstructed using filtered back projection (FBP). Quantitative measures of IQR, CV and SD were extracted from twelve pre-selected, circular (1 cm diameter) regions of interest (ROIs) capturing different texture patterns across all scans. RESULTS Across all scans, imaging, and reconstruction settings, CV, IQR and SD were observed to increase with reduction in dose and slice thickness. An exception to this observation was found when using FBP reconstruction. Lower values of CV, IQR and SD were observed in DLIR-high reconstructions compared to AV50 and FBP. The Poisson statistics were more stringently noted in FBP than DLIR-high and AV50, due to the non-linear nature of the latter two algorithms. CONCLUSION Variation in image noise due to dose reduction algorithms, tube current, and slice thickness show a consistent trend across phantom and patient scans. Prospective evaluation across multiple centers, scanners and imaging protocols is needed for establishing quality assurance standards of radiomics.
Collapse
Affiliation(s)
- Bino Abel Varghese
- Keck Medical CenterDepartment of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Steven Yong Cen
- Keck Medical CenterDepartment of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kristin Jensen
- Department of Physics and Computational RadiologyOsloNorway
| | | | | | - Anselm Schulz
- Department of Radiology and Nuclear MedicineOslo University HospitalOsloNorway
| | - Xiaomeng Lei
- Keck Medical CenterDepartment of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vinay Anant Duddalwar
- Keck Medical CenterDepartment of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David John Goodenough
- Department of RadiologyGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
11
|
Akinci D'Antonoli T, Cavallo AU, Vernuccio F, Stanzione A, Klontzas ME, Cannella R, Ugga L, Baran A, Fanni SC, Petrash E, Ambrosini I, Cappellini LA, van Ooijen P, Kotter E, Pinto Dos Santos D, Cuocolo R. Reproducibility of radiomics quality score: an intra- and inter-rater reliability study. Eur Radiol 2024; 34:2791-2804. [PMID: 37733025 PMCID: PMC10957586 DOI: 10.1007/s00330-023-10217-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES To investigate the intra- and inter-rater reliability of the total radiomics quality score (RQS) and the reproducibility of individual RQS items' score in a large multireader study. METHODS Nine raters with different backgrounds were randomly assigned to three groups based on their proficiency with RQS utilization: Groups 1 and 2 represented the inter-rater reliability groups with or without prior training in RQS, respectively; group 3 represented the intra-rater reliability group. Thirty-three original research papers on radiomics were evaluated by raters of groups 1 and 2. Of the 33 papers, 17 were evaluated twice with an interval of 1 month by raters of group 3. Intraclass coefficient (ICC) for continuous variables, and Fleiss' and Cohen's kappa (k) statistics for categorical variables were used. RESULTS The inter-rater reliability was poor to moderate for total RQS (ICC 0.30-055, p < 0.001) and very low to good for item's reproducibility (k - 0.12 to 0.75) within groups 1 and 2 for both inexperienced and experienced raters. The intra-rater reliability for total RQS was moderate for the less experienced rater (ICC 0.522, p = 0.009), whereas experienced raters showed excellent intra-rater reliability (ICC 0.91-0.99, p < 0.001) between the first and second read. Intra-rater reliability on RQS items' score reproducibility was higher and most of the items had moderate to good intra-rater reliability (k - 0.40 to 1). CONCLUSIONS Reproducibility of the total RQS and the score of individual RQS items is low. There is a need for a robust and reproducible assessment method to assess the quality of radiomics research. CLINICAL RELEVANCE STATEMENT There is a need for reproducible scoring systems to improve quality of radiomics research and consecutively close the translational gap between research and clinical implementation. KEY POINTS • Radiomics quality score has been widely used for the evaluation of radiomics studies. • Although the intra-rater reliability was moderate to excellent, intra- and inter-rater reliability of total score and point-by-point scores were low with radiomics quality score. • A robust, easy-to-use scoring system is needed for the evaluation of radiomics research.
Collapse
Affiliation(s)
- Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.
| | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | | | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Agah Baran
- MVZ Diagnostikum Berlin Gmbh, Diagnostisches Zentrum, Berlin, Germany
| | | | - Ekaterina Petrash
- Radiology Department, Research Institute of Children Oncology and Haematology of National Medical Research Center of Oncology n.a.N.N. Blokhin of Ministry of Health of RF, Moscow, Russia
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Peter van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elmar Kotter
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
12
|
Zhong J, Chen L, Xing Y, Lu J, Shi Y, Wang Y, Deng Y, Jiang R, Lu W, Wang S, Hu Y, Ge X, Ding D, Zhang H, Zhu Y, Yao W. Just give the contrast? Appraisal of guidelines on intravenous iodinated contrast media use in patients with kidney disease. Insights Imaging 2024; 15:77. [PMID: 38499879 PMCID: PMC10948651 DOI: 10.1186/s13244-024-01644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE To appraise the quality of guidelines on intravenous iodinated contrast media (ICM) use in patients with kidney disease, and to compare the recommendations among them. METHODS We searched four literature databases, eight guideline libraries, and ten homepages of radiological societies to identify English and Chinese guidelines on intravenous ICM use in patients with kidney disease published between January 2018 and June 2023. The quality of the guidelines was assessed with the Scientific, Transparent, and Applicable Rankings (STAR) tool. RESULTS Ten guidelines were included, with a median STAR score of 46.0 (range 28.5-61.5). The guidelines performed well in "Recommendations" domain (31/40, 78%), while poor in "Registry" (0/20, 0%) and "Protocol" domains (0/20, 0%). Nine guidelines recommended estimated glomerular filtration rate (eGFR) < 30 mL/min/1.73 m2 as the cutoff for referring patients to discuss the risk-benefit balance of ICM administration. Three guidelines further suggested that patients with an eGFR < 45 mL/min/1.73 m2 and high-risk factors also need referring. Variable recommendations were seen in the acceptable time interval between renal function test and ICM administration, and that between scan and repeated scan. Nine guidelines recommended to use iso-osmolar or low-osmolar ICM, while no consensus has been reached for the dosing of ICM. Nine guidelines supported hydration after ICM use, but their protocols varied. Drugs or blood purification therapy were not recommended as preventative means. CONCLUSION Guidelines on intravenous ICM use in patients with kidney disease have heterogeneous quality. The scientific societies may consider joint statements on controversial recommendations for variable timing and protocols. CRITICAL RELEVANCE STATEMENT The heterogeneous quality of guidelines, and their controversial recommendations, leave gaps in workflow timing, dosing, and post-administration hydration protocols of contrast-enhanced CT scans for patients with kidney diseases, calling for more evidence to establish a safer and more practicable workflow. KEY POINTS • Guidelines concerning iodinated contrast media use in kidney disease patients vary. • Controversy remains in workflow timing, contrast dosing, and post-administration hydration protocols. • Investigations are encouraged to establish a safer iodinated contrast media use workflow.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Liwei Chen
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yuping Shi
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yibin Wang
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yi Deng
- University of Washington School of Pharmacy, Seattle, WA, 98105, USA
| | - Run Jiang
- Department of Pharmacovigilance, Shanghai Hansoh BioMedical Co., Ltd, Shanghai, 201203, China
| | - Wenjie Lu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Silian Wang
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, China.
| | - Ying Zhu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
13
|
Zhang D. Is a study on radiomics reproducibility reproducible? Let's see, but an open door anyway. Eur Radiol 2024; 34:2006-2007. [PMID: 37667144 DOI: 10.1007/s00330-023-10195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 09/06/2023]
Affiliation(s)
- Dongmiao Zhang
- School of Medical Imaging, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Zhong J, Wu Z, Wang L, Chen Y, Xia Y, Wang L, Li J, Lu W, Shi X, Feng J, Dong H, Zhang H, Yao W. Impacts of Adaptive Statistical Iterative Reconstruction-V and Deep Learning Image Reconstruction Algorithms on Robustness of CT Radiomics Features: Opportunity for Minimizing Radiomics Variability Among Scans of Different Dose Levels. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:123-133. [PMID: 38343265 PMCID: PMC10976956 DOI: 10.1007/s10278-023-00901-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 03/02/2024]
Abstract
This study aims to investigate the influence of adaptive statistical iterative reconstruction-V (ASIR-V) and deep learning image reconstruction (DLIR) on CT radiomics feature robustness. A standardized phantom was scanned under single-energy CT (SECT) and dual-energy CT (DECT) modes at standard and low (20 and 10 mGy) dose levels. Images of SECT 120 kVp and corresponding DECT 120 kVp-like virtual monochromatic images were generated with filtered back-projection (FBP), ASIR-V at 40% (AV-40) and 100% (AV-100) blending levels, and DLIR algorithm at low (DLIR-L), medium (DLIR-M), and high (DLIR-H) strength levels. Ninety-four features were extracted via Pyradiomics. Reproducibility of features was calculated between standard and low dose levels, between reconstruction algorithms in reference to FBP images, and within scan mode, using intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The average percentage of features with ICC > 0.90 and CCC > 0.90 between the two dose levels was 21.28% and 20.75% in AV-40 images, and 39.90% and 35.11% in AV-100 images, respectively, and increased from 15.43 to 45.22% and from 15.43 to 44.15% with an increasing strength level of DLIR. The average percentage of features with ICC > 0.90 and CCC > 0.90 in reference to FBP images was 26.07% and 25.80% in AV-40 images, and 18.88% and 18.62% in AV-100 images, respectively, and decreased from 27.93 to 17.82% and from 27.66 to 17.29% with an increasing strength level of DLIR. DLIR and ASIR-V algorithms showed low reproducibility in reference to FBP images, while the high-strength DLIR algorithm provides an opportunity for minimizing radiomics variability due to dose reduction.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jianxing Feng
- Haohua Technology Co., Ltd., Shanghai, 201100, China
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
15
|
Mese I, Altintas Taslicay C, Sivrioglu AK. Synergizing photon-counting CT with deep learning: potential enhancements in medical imaging. Acta Radiol 2024; 65:159-166. [PMID: 38146126 DOI: 10.1177/02841851231217995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
This review article highlights the potential of integrating photon-counting computed tomography (CT) and deep learning algorithms in medical imaging to enhance diagnostic accuracy, improve image quality, and reduce radiation exposure. The use of photon-counting CT provides superior image quality, reduced radiation dose, and material decomposition capabilities, while deep learning algorithms excel in automating image analysis and improving diagnostic accuracy. The integration of these technologies can lead to enhanced material decomposition and classification, spectral image analysis, predictive modeling for individualized medicine, workflow optimization, and radiation dose management. However, data requirements, computational resources, and regulatory and ethical concerns remain challenges that need to be addressed to fully realize the potential of this technology. The fusion of photon-counting CT and deep learning algorithms is poised to revolutionize medical imaging and transform patient care.
Collapse
Affiliation(s)
- Ismail Mese
- Department of Radiology, Health Sciences University, Erenkoy Mental Health and Neurology Training and Research Hospital, Istanbul, Turkey
| | | | | |
Collapse
|
16
|
Li S, Yuan L, Lu T, Yang X, Ren W, Wang L, Zhao J, Deng J, Liu X, Xue C, Sun Q, Zhang W, Zhou J. Deep learning imaging reconstruction of reduced-dose 40 keV virtual monoenergetic imaging for early detection of colorectal cancer liver metastases. Eur J Radiol 2023; 168:111128. [PMID: 37816301 DOI: 10.1016/j.ejrad.2023.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/07/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE To explore whether reduced-dose (RD) gemstone spectral imaging (GSI) and deep learning image reconstruction (DLIR) of 40 keV virtual monoenergetic image (VMI) enhanced the early detection and diagnosis of colorectal cancer liver metastases (CRLM). METHODS Thirty-five participants with pathologically confirmed colorectal cancer were prospectively enrolled from March to August 2022 after routine care abdominal computed tomography (CT). GSI mode was used for contrast-enhanced CT, and two portal venous phase CT images were obtained [standard-dose (SD) CT dose index (CTDIvol) = 15.51 mGy, RD CTDIvol = 7.95 mGy]. The 40 keV-VMI were reconstructed via filtered back projection (FBP) and iterative reconstruction (ASIR-V 60 %, AV60) of both SD and RD images. RD medium-strength deep learning image reconstruction (DLIR-M) and RD high-strength deep learning image reconstruction (DLIR-H) were used to reconstruct the 40 keV-VMI. The contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of the liver and the lesions were objectively evaluated. The overall image quality, lesion conspicuity, and diagnostic confidence were subjectively evaluated, to compare the differences in evaluation results among the different images. RESULTS All 35 participants (mean age: 59.51 ± 11.01 years; 14 females) underwent SD and RD GSI portal venous-phase CT scans. The dose-length product of the RD GSI scan was reduced by 49-53 % lower than that of the SD GSI scan (420.22 ± 31.95) vs (817.58 ± 60.56). A total of 219 lesions were identified, including 55 benign lesions and 164 metastases, with an average size of 7.37 ± 4.14 mm. SD-FBP detected 207 lesions, SD-AV60 detected 201 lesions, and DLIR-M and DLIR-H detected 199 and 190 lesions, respectively. For lesions ≤ 5 mm, there was no statistical difference between SD-FBP vs DLIR-M (χ2McNemar = 1.00, P = 0.32) and SD-AV60 vs DLIR-M (χ2McNemar = 0.33, P = 0.56) in the detection rate. The CNR, SNR, and noise of DLIR-M and DLIR-H 40 keV-VMI images were better than those of SD-FBP images (P < 0.01) but did not differ significantly from those of SD-AV60 images (P > 0.05). When the lesions ≤ 5 mm, there were statistical differences in the overall diagnostic sensitivity of lesions compared with SD-FBP, SD-AV60, DLIR-M and DLIR-H (P<0.01). There were no statistical differences in the sensitivity of lesions diagnosis between SD-FBP, SD-AV60 and DLIR-M (both P>0.05). However, the DLIR-M subjective image quality and lesion diagnostic confidence were higher for SD-FBP (both P < 0.01). CONCLUSION Reduced dose DLIR-M of 40 keV-VMI can be used for routine follow-up care of colorectal cancer patients, to optimize evaluations and ensure CT image quality. Meanwhile, the detection rate and diagnostic sensitivity and specificity of small lesions, early liver metastases is not obviously reduced.
Collapse
Affiliation(s)
- Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Long Yuan
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Ting Lu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Xinmei Yang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Wei Ren
- CT Imaging Research Center, GE Healthcare China, Beijing, 100176, China.
| | - Luotong Wang
- CT Imaging Research Center, GE Healthcare China, Beijing, 100176, China.
| | - Jun Zhao
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
| | - Juan Deng
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| | - Qiu Sun
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China.
| | - Wenjuan Zhang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China; Second clinical school, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
17
|
Zhong J, Wang L, Shen H, Li J, Lu W, Shi X, Xing Y, Hu Y, Ge X, Ding D, Yan F, Du L, Yao W, Zhang H. Improving lesion conspicuity in abdominal dual-energy CT with deep learning image reconstruction: a prospective study with five readers. Eur Radiol 2023; 33:5331-5343. [PMID: 36976337 DOI: 10.1007/s00330-023-09556-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES To evaluate image quality, diagnostic acceptability, and lesion conspicuity in abdominal dual-energy CT (DECT) using deep learning image reconstruction (DLIR) compared to those using adaptive statistical iterative reconstruction-V (Asir-V) at 50% blending (AV-50), and to identify potential factors impacting lesion conspicuity. METHODS The portal-venous phase scans in abdominal DECT of 47 participants with 84 lesions were prospectively included. The raw data were reconstructed to virtual monoenergetic image (VMI) at 50 keV using filtered back-projection (FBP), AV-50, and DLIR at low (DLIR-L), medium (DLIR-M), and high strength (DLIR-H). A noise power spectrum (NPS) was generated. CT number and standard deviation values of eight anatomical sites were measured. Signal-to-noise (SNR), and contrast-to-noise ratio (CNR) values were calculated. Five radiologists assessed image quality in terms of image contrast, image noise, image sharpness, artificial sensation, and diagnostic acceptability, and evaluated the lesion conspicuity. RESULTS DLIR further reduced image noise (p < 0.001) compared to AV-50 while better preserved the average NPS frequency (p < 0.001). DLIR maintained CT number values (p > 0.99) and improved SNR and CNR values compared to AV-50 (p < 0.001). DLIR-H and DLIR-M showed higher ratings in all image quality analyses than AV-50 (p < 0.001). DLIR-H provided significantly better lesion conspicuity than AV-50 and DLIR-M regardless of lesion size, relative CT attenuation to surrounding tissue, or clinical purpose (p < 0.05). CONCLUSIONS DLIR-H could be safely recommended for routine low-keV VMI reconstruction in daily contrast-enhanced abdominal DECT to improve image quality, diagnostic acceptability, and lesion conspicuity. KEY POINTS • DLIR is superior to AV-50 in noise reduction, with less shifts of the average spatial frequency of NPS towards low frequency, and larger improvements of NPS noise, noise peak, SNR, and CNR values. • DLIR-M and DLIR-H generate better image quality in terms of image contrast, noise, sharpness, artificial sensation, and diagnostic acceptability than AV-50, while DLIR-H provides better lesion conspicuity than AV-50 and DLIR-M. • DLIR-H could be safely recommended as a new standard for routine low-keV VMI reconstruction in contrast-enhanced abdominal DECT to provide better lesion conspicuity and better image quality than the standard AV-50.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lianjun Du
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
18
|
Zhong J, Pan Z, Chen Y, Wang L, Xia Y, Wang L, Li J, Lu W, Shi X, Feng J, Yan F, Zhang H, Yao W. Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability. Insights Imaging 2023; 14:79. [PMID: 37166511 PMCID: PMC10175529 DOI: 10.1186/s13244-023-01426-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVES To evaluate robustness of dual-energy CT (DECT) radiomics features of virtual unenhanced (VUE) image and virtual monoenergetic image (VMI) among different imaging platforms. METHODS A phantom with sixteen clinical-relevant densities was scanned on ten DECT platforms with comparable scan parameters. Ninety-four radiomic features were extracted via Pyradiomics from VUE images and VMIs at energy level of 70 keV (VMI70keV). Test-retest repeatability was assessed by Bland-Altman analysis. Inter-platform reproducibility of VUE images and VMI70keV was evaluated by coefficient of variation (CV) and quartile coefficient of dispersion (QCD) among platforms, and by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC) between platform pairs. The correlation between variability of CT number radiomics reproducibility was estimated. RESULTS 92.02% and 92.87% of features were repeatable between scan-rescans for VUE images and VMI70keV, respectively. Among platforms, 11.30% and 28.39% features of VUE images, and 15.16% and 28.99% features of VMI70keV were with CV < 10% and QCD < 10%. The average percentages of radiomics features with ICC > 0.90 and CCC > 0.90 between platform pairs were 10.00% and 9.86% in VUE images and 11.23% and 11.23% in VMI70keV. The CT number inter-platform reproducibility using CV and QCD showed negative correlations with percentage of the first-order radiomics features with CV < 10% and QCD < 10%, in both VUE images and VMI70keV (r2 0.3870-0.6178, all p < 0.001). CONCLUSIONS The majority of DECT radiomics features were non-reproducible. The differences in CT number were considered as an indicator of inter-platform DECT radiomics variation. Critical relevance statement: The majority of radiomics features extracted from the VUE images and the VMI70keV were non-reproducible among platforms, while synchronizing energy levels of VMI to reduce the CT number value variability may be a potential way to mitigate radiomics instability.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zilai Pan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Jianxing Feng
- Haohua Technology Co., Ltd., Shanghai, 201100, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|