1
|
Ran L, Yan X, Zhao Y, Yang Z, Chen Z, Jia F, Song X, Huang L, Xia L. Assessment of biventricular cardiac function using free-breathing artificial intelligence cine with motion correction: Comparison with standard multiple breath-holding cine. Eur J Radiol 2025; 188:112133. [PMID: 40373673 DOI: 10.1016/j.ejrad.2025.112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/17/2025]
Abstract
PURPOSE To assess the image quality and biventricular function utilizing a free-breathing artificial intelligence cine method with motion correction (FB AI MOCO). METHODS A total of 72 participants (mean age 38.3 ± 15.4 years, 40 males) prospectively enrolled in this single-center, cross-sectional study underwent cine scans using standard breath-holding (BH) cine and FB AI MOCO cine at 3.0 Tesla. The image quality of the cine images was evaluated with a 5-point Ordinal Likert scale based on blood-pool to myocardium contrast, endocardial edge definition, and artifacts, and overall quality score was calculated by the equal weight average of all three criteria, apparent signal to noise ratio (aSNR), estimated contrast to noise ratio (eCNR) were assessed. Biventricular functional parameters including Left Ventricular (LV), Right Ventricular (RV) End-Diastolic Volume (EDV), End-Systolic Volume (ESV), Stroke Volume (SV), Ejection Fraction (EF), and LV End-Diastolic Mass (LVEDM) were also assessed. Comparison between two sequences was assessed using paired t-test and Wilcoxon signed-rank test, correlation using Pearson correlation. The agreement of quantitative parameters was assessed using intraclass correlation coefficient (ICC) and Bland-Altman analysis. P < 0.05 was statistically significant. RESULTS The total acquisition time of the entire stack for FB AI MOCO cine (14.7 s ± 1.9 s) was notably shorter than that for standard BH cine (82.6 s ± 11.9 s, P < 0.001). The aSNR between FB AI MOCO cine and standard BH cine has no significantly difference (76.7 ± 20.7 vs. 79.8 ± 20.7, P = 0.193). The eCNR of FB AI MOCO cine was higher than standard BH cine (191.6 ± 54.0 vs. 155.8 ± 68.4, P < 0.001), as was the scores of blood-pool to myocardium contrast (4.6 ± 0.5 vs. 4.4 ± 0.6, P = 0.003). Qualitative scores including endocardial edge definition (4.2 ± 0.5 vs. 4.3 ± 0.7, P = 0.123), artifact presence (4.3 ± 0.6 vs. 4.1 ± 0.8, P = 0.085), and overall image quality (4.4 ± 0.4 vs. 4.3 ± 0.6, P = 0.448), showed no significant differences between the two methods. Representative RV and LV functional parameters - including RVEDV (102.2 (86.4, 120.4) ml vs. 104.0 (88.5, 120.3) ml, P = 0.294), RVEF (31.0 ± 11.1 % vs. 31.2 ± 11.0 %, P = 0.570), and LVEDV (106.2 (86.7, 131.3) ml vs. 105.8 (84.4, 130.3) ml, P = 0.450) - also did not differ significantly between the two methods. Strong correlations (r > 0.900) and excellent agreement (ICC > 0.900) were found for all biventricular functional parameters between the two sequences. In subgroups with reduced LVEF (<50 %, n = 24) or elevated heart rate (≥80 bpm, n = 17), no significant differences were observed in any biventricular functional metrics (P > 0.05 for all) between the two sequences. CONCLUSION In comparison to multiple BH cine, the FB AI MOCO cine achieved comparable image quality and biventricular functional parameters with shorter scan times, suggesting its promising potential for clinical applications.
Collapse
Affiliation(s)
- Lingping Ran
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghu Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxia Yang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Chen
- University of California, Los Angeles, CA, USA
| | - Fenggang Jia
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Xiaopeng Song
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Lu Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Oca Pernas R, Hormaza Aguirre N, Capelastegui Alber A, Zarranz Sarobe D, Pérez Fernández S, Delgado Sánchez-Gracián C. Fast cardiac magnetic resonance protocol. Feasibility of accelerated compressed sensing cine sequences in clinical practice. RADIOLOGIA 2025; 67:137-146. [PMID: 40187806 DOI: 10.1016/j.rxeng.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 04/07/2025]
Abstract
OBJECTIVE To demonstrate the feasibility of cardiac magnetic resonance (CMR) cine sequences with compressed-sensing (CS) acceleration in the assessment of ventricular anatomy, volume, and function; and to present a fast CRM protocol that improves scan efficiency. METHODS Prospective study of consecutive patients with indication for CMR who underwent CS short-axis (SA) cine imaging compared with conventional SA cine imaging. We analysed ejection fraction (EF), end-diastolic volume (EDV), stroke volume (SV), and myocardial thickness. Two blinded independent observers performed the reading. Inter- and intraobserver agreement was calculated for all the measurements. Image quality of conventional and CS cine sequences was also assessed. RESULTS A total of 50 patients were included, 22 women (44%) with a mean age of 57.3 ± 13.2 years. Mean left ventricular EF was 59.1% ± 10.4% with the reference steady-state free precession sequences, versus 58.7% ± 10.6% with CS; and right ventricular EF with conventional imaging was 59.3% ± 5.7%, versus 59.5% ± 6.1% with CS. Mean left ventricular EDV for conventional sequences and CS were 166.8 and 165.1 ml respectively; left ventricular SV was 94.5 versus 92.6 ml; right ventricular EDV was 159.3 versus 156.4 ml; and right ventricular SV was 93.6 versus 91.2 ml, respectively. Excellent intra and interobserver correlations were obtained for all parameters (Intraclass correlation coefficient between 0.932 and 0.99; CI: 95%). There were also no significant differences in ventricular thickness (12.9 ± 2.9 mm vs 12.7 ± 3.1 mm) (p < .001). The mean time of CS SA was <40 sec versus 6-8 min for the conventional SA. The mean duration of the complete study was 15 ± 3 min. CONCLUSIONS Cine CS sequences are feasible for assessing biventricular function, volume, and anatomy, enabling fast CMR protocols.
Collapse
Affiliation(s)
- R Oca Pernas
- Departamento de RM, OSATEK Deusto, Osakidetza-Servicio Vasco de Salud, Bilbao, Spain.
| | - N Hormaza Aguirre
- Servicio de Radiología, Hospital Universitario Cruces, Biocruces Bizkaia-Instituto de Investigación Médica, Barakaldo, Spain
| | - A Capelastegui Alber
- Departamento de RM, OSATEK Hospital de Galdakao, Osakidetza-Servicio Vasco de Salud, Galdakao, Spain
| | - D Zarranz Sarobe
- Departamento de RM, OSATEK Hospital de Urduliz, Osakidetza-Servicio Vasco de Salud, Urduliz, Spain
| | - S Pérez Fernández
- Bioestadística - Coordinación Científica, Biocruces Bizkaia, Instituto de Investigación Sanitaria, Barakaldo, Spain
| | | |
Collapse
|
3
|
Ma ZP, Zhu YM, Zhang XD, Zhao YX, Zheng W, Yuan SR, Li GY, Zhang TL. Investigating the Use of Generative Adversarial Networks-Based Deep Learning for Reducing Motion Artifacts in Cardiac Magnetic Resonance. J Multidiscip Healthc 2025; 18:787-799. [PMID: 39963324 PMCID: PMC11830935 DOI: 10.2147/jmdh.s492163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Objective To evaluate the effectiveness of deep learning technology based on generative adversarial networks (GANs) in reducing motion artifacts in cardiac magnetic resonance (CMR) cine sequences. Methods The training and testing datasets consisted of 2000 and 200 pairs of clear and blurry images, respectively, acquired through simulated motion artifacts in CMR cine sequences. These datasets were used to establish and train a deep learning GAN model. To assess the efficacy of the deep learning network in mitigating motion artifacts, 100 images with simulated motion artifacts and 37 images with real-world motion artifacts encountered in clinical practice were selected. Image quality pre- and post-optimization was assessed using metrics including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Leningrad Focus Measure, and a 5-point Likert scale. Results After GAN optimization, notable improvements were observed in the PSNR, SSIM, and focus measure metrics for the 100 images with simulated artifacts. These metrics increased from initial values of 23.85±2.85, 0.71±0.08, and 4.56±0.67, respectively, to 27.91±1.74, 0.83±0.05, and 7.74±0.39 post-optimization. Additionally, the subjective assessment scores significantly improved from 2.44±1.08 to 4.44±0.66 (P<0.001). For the 37 images with real-world artifacts, the Tenengrad Focus Measure showed a significant enhancement, rising from 6.06±0.91 to 10.13±0.48 after artifact removal. Subjective ratings also increased from 3.03±0.73 to 3.73±0.87 (P<0.001). Conclusion GAN-based deep learning technology effectively reduces motion artifacts present in CMR cine images, demonstrating significant potential for clinical application in optimizing CMR motion artifact management.
Collapse
Affiliation(s)
- Ze-Peng Ma
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, People’s Republic of China
- Hebei Key Laboratory of Precise Imaging of inflammation Tumors, Baoding, Hebei Province, 071000, People’s Republic of China
| | - Yue-Ming Zhu
- College of Electronic and Information Engineering, Hebei University, Baoding, Hebei Province, 071002, People’s Republic of China
| | - Xiao-Dan Zhang
- Department of Ultrasound, Affiliated Hospital of Hebei University, Baoding, Hebei Province, 071000, People’s Republic of China
| | - Yong-Xia Zhao
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, People’s Republic of China
| | - Wei Zheng
- College of Electronic and Information Engineering, Hebei University, Baoding, Hebei Province, 071002, People’s Republic of China
| | - Shuang-Rui Yuan
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, People’s Republic of China
| | - Gao-Yang Li
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, People’s Republic of China
| | - Tian-Le Zhang
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, People’s Republic of China
| |
Collapse
|
4
|
Wech T, Schad O, Sauer S, Kleineisel J, Petri N, Nordbeck P, Bley TA, Baeßler B, Petritsch B, Heidenreich JF. Joint image reconstruction and segmentation of real-time cardiovascular magnetic resonance imaging in free-breathing using a model based on disentangled representation learning. J Cardiovasc Magn Reson 2025; 27:101844. [PMID: 39864743 PMCID: PMC11874730 DOI: 10.1016/j.jocmr.2025.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND To investigate image quality and agreement of derived cardiac function parameters in a novel joint image reconstruction and segmentation approach based on disentangled representation learning, enabling real-time cardiac cine imaging during free-breathing. METHODS A multi-tasking neural network architecture, incorporating disentangled representation learning, was trained using simulated examinations based on data from a public repository along with cardiovascular magnetic resonance (CMR) scans specifically acquired for model development. An exploratory feasibility study evaluated the method on undersampled real-time acquisitions using an in-house developed spiral balanced steady-state free precession pulse sequence in eight healthy participants and five patients with intermittent atrial fibrillation. Images and predicted left ventricle segmentations were compared to the reference standard of electrocardiography (ECG)-gated segmented Cartesian cine with repeated breath-holds and corresponding manual segmentation. RESULTS On a 5-point Likert scale, image quality of the real-time breath-hold approach and Cartesian cine was comparable in healthy participants (RT-BH: 1.99 ± 0.98, Cartesian: 1.94 ± 0.86, p = 0.052), but slightly inferior in free-breathing (RT-FB: 2.40 ± 0.98, p < 0.001). In patients with arrhythmia, both real-time approaches demonstrated favorable image quality (RT-BH: 2.10 ± 1.28, p < 0.001, RT-FB: 2.40 ± 1.13, p < 0.01, Cartesian: 2.68 ± 1.13). Intra-observer reliability was good (intraclass correlation coefficient = 0.77, 95% confidence interval [0.75, 0.79], p < 0.001). In functional analysis, a positive bias was observed for ejection fractions derived from the proposed model compared to the clinical reference standard (RT-BH mean: 58.5 ± 5.6%, bias: +3.47%, 95% confidence interval [-0.86, 7.79%], RT-FB mean: 57.9 ± 10.6%, bias: +1.45%, [-3.02, 5.91%], Cartesian mean: 54.9 ± 6.7%). CONCLUSION The introduced real-time CMR imaging technique enables high-quality cardiac cine data acquisitions in 1-2 min, eliminating the need for ECG gating and breath-holds. This approach offers a promising alternative to the current clinical practice of segmented acquisition, with shorter scan times, improved patient comfort, and increased robustness to arrhythmia and patient non-compliance.
Collapse
Affiliation(s)
- Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center Würzburg, Würzburg, Germany.
| | - Oliver Schad
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Simon Sauer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Jonas Kleineisel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Nils Petri
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Peter Nordbeck
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Bettina Baeßler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Julius F Heidenreich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Wang F, Pu C, Ma S, Zhou J, Jiang Y, Yu F, Zhang S, Wu Y, Zhang L, He C, Hu H. The effects of flip angle and gadolinium contrast agent on single breath-hold compressed sensing cardiac magnetic resonance cine for biventricular global strain assessment. Front Cardiovasc Med 2024; 11:1286271. [PMID: 38347952 PMCID: PMC10859435 DOI: 10.3389/fcvm.2024.1286271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Background Due to its potential to significantly reduce scanning time while delivering accurate results for cardiac volume function, compressed sensing (CS) has gained traction in cardiovascular magnetic resonance (CMR) cine. However, further investigation is necessary to explore its feasibility and impact on myocardial strain results. Materials and methods A total of 102 participants [75 men, 46.5 ± 17.1 (SD) years] were included in this study. Each patient underwent four consecutive cine sequences with the same slice localization, including the reference multi-breath-hold balanced steady-state free precession (bSSFPref) cine, the CS cine with the same flip angle as bSSFPref before (CS45) and after (eCS45) contrast enhancement, and the CS cine (eCS70) with a 70-degree flip angle after contrast enhancement. Biventricular strain parameters were derived from cine images. Two-tailed paired t-tests were used for data analysis. Results Global radial strain (GRS), global circumferential strain (GCS), and global longitudinal strain (GLS) were observed to be significantly lower in comparison to those obtained from bSSFPref sequences for both the right and left ventricles (all p < 0.001). No significant difference was observed on biventricular GRS-LAX (long-axis) and GLS values derived from enhanced and unenhanced CS cine sequences with the same flip angle, but remarkable reductions were noted in GRS-SAX (short-axis) and GCS values (p < 0.001). After contrast injection, a larger flip angle caused a significant elevation in left ventricular strain results (p < 0.001) but did not affect the right ventricle. The increase in flip angle appeared to compensate for contrast agent affection on left ventricular GRS-SAX, GCS values, and right ventricular GRS-LAX, GLS values. Conclusion Despite incorporating gadolinium contrast agents and applying larger flip angles, single breath-hold CS cine sequences consistently yielded diminished strain values for both ventricles when compared with conventional cine sequences. Prior to employing this single breath-hold CS cine sequence to refine the clinical CMR examination procedure, it is crucial to consider its impact on myocardial strain results.
Collapse
Affiliation(s)
- Fuyan Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cailing Pu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siying Ma
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feidan Yu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Yan Wu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingjie Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chengbin He
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Wang F, Zhou J, Pu C, Yu F, Wu Y, Zhang L, Ma S, Hu H. Optimizing Clinical Cardiac MRI Workflow through Single Breath-Hold Compressed Sensing Cine: An Evaluation of Feasibility and Efficiency. J Clin Med 2024; 13:753. [PMID: 38337447 PMCID: PMC10856388 DOI: 10.3390/jcm13030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Although compressed sensing (CS) accelerated cine holds immense potential to replace conventional cardiovascular magnetic resonance (CMR) cine, how to use CS-based cine appropriately during clinical CMR examinations still needs exploring. METHODS A total of 104 patients (46.5 ± 17.1 years) participated in this prospective study. For each participant, a balanced steady state free precession (bSSFP) cine was acquired as a reference, followed by two CS accelerated cine sequences with identical parameters before and after contrast injection. Lastly, a CS accelerated cine sequence with an increased flip angle was obtained. We subsequently compared scanning time, image quality, and biventricular function parameters between these sequences. RESULTS All CS cine sequences demonstrated significantly shorter acquisition times compared to bSSFPref cine (p < 0.001). The bSSFPref cine showed higher left ventricular ejection fraction (LVEF) than all CS cine sequences (all p < 0.001), but no significant differences in LVEF were observed among the three CS cine sequences. Additionally, CS cine sequences displayed superior global image quality (p < 0.05) and fewer artifacts than bSSFPref cine (p < 0.005). Unenhanced CS cine and enhanced CS cine with increased flip angle showed higher global image quality than other cine sequences (p < 0.005). CONCLUSION Single breath-hold CS cine delivers precise biventricular function parameters and offers a range of benefits including shorter scan time, better global image quality, and diminished motion artifacts. This innovative approach holds great promise in replacing conventional bSSFP cine and optimizing the CMR examination workflow.
Collapse
Affiliation(s)
- Fuyan Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3# East Qingchun Road, Hangzhou 310016, China; (F.W.); (J.Z.); (C.P.); (F.Y.); (Y.W.); (L.Z.); (S.M.)
| | - Junjie Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3# East Qingchun Road, Hangzhou 310016, China; (F.W.); (J.Z.); (C.P.); (F.Y.); (Y.W.); (L.Z.); (S.M.)
- Department of Radiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, 1# Shangcheng Avenuee, Yiwu 322000, China
| | - Cailing Pu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3# East Qingchun Road, Hangzhou 310016, China; (F.W.); (J.Z.); (C.P.); (F.Y.); (Y.W.); (L.Z.); (S.M.)
| | - Feidan Yu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3# East Qingchun Road, Hangzhou 310016, China; (F.W.); (J.Z.); (C.P.); (F.Y.); (Y.W.); (L.Z.); (S.M.)
| | - Yan Wu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3# East Qingchun Road, Hangzhou 310016, China; (F.W.); (J.Z.); (C.P.); (F.Y.); (Y.W.); (L.Z.); (S.M.)
| | - Lingjie Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3# East Qingchun Road, Hangzhou 310016, China; (F.W.); (J.Z.); (C.P.); (F.Y.); (Y.W.); (L.Z.); (S.M.)
| | - Siying Ma
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3# East Qingchun Road, Hangzhou 310016, China; (F.W.); (J.Z.); (C.P.); (F.Y.); (Y.W.); (L.Z.); (S.M.)
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3# East Qingchun Road, Hangzhou 310016, China; (F.W.); (J.Z.); (C.P.); (F.Y.); (Y.W.); (L.Z.); (S.M.)
| |
Collapse
|
7
|
Shammi UA, Luan Z, Xu J, Hamid A, Flors L, Cassani J, Altes TA, Thomen RP, Van Doren SR. Improved visualization of free-running cardiac magnetic resonance by respiratory phase using principal component analysis. RESEARCH IN DIAGNOSTIC AND INTERVENTIONAL IMAGING 2023; 8:100035. [PMID: 39678163 PMCID: PMC11639450 DOI: 10.1016/j.redii.2023.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 12/17/2024]
Abstract
Rationale and objectives To support cardiac MR acquisitions during breathing without ECG, we developed software to mitigate the effects of respiratory displacement of the heart. The algorithm resolves respiratory motions and cardiac cycles from DICOM files. The new software automatically detects heartbeats from expiration and inspiration to decrease apparent respiratory motion. Materials and methods Our software uses principal component analysis to resolve respiratory motions from cardiac cycles. It groups heartbeats from expiration and inspiration to decrease apparent respiratory motion. The respiratory motion correction was evaluated on short-axis views (acquired with compressed sensing) of 11 healthy subjects and 8 cardiac patients. Two expert radiologists, blinded to the processing, assessed the dynamic images in terms of blood-myocardial contrast, endocardial interface definition, and motion artifacts. Results The smallest correlation coefficients between end-systolic frames of the original dynamic scans averaged 0.79. After segregation of cardiac cycles by respiratory phase, the mean correlation coefficients between cardiac cycles were 0.94±0.03 at end-expiration and 0.90±0.08 at end-inspiration. The improvements in correlation coefficients were significant in paired t-tests for healthy subjects and heart patients at end-expiration. Clinical assessment preferred cardiac cycles during end-expiration, which maintained or enhanced scores in 90% of healthy subjects and 83% of the heart patients. Performance remained high with arrhythmia and irregular breathing present. Conclusion Heartbeats collected from end-expiration mitigate respiratory motion and are accessible by applying the new software to DICOM files from real-time CMR. Inspiratory heartbeats are also accessible for examination of arrhythmias or abnormalities at end-inspiration.
Collapse
Affiliation(s)
- Ummul Afia Shammi
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Zhijian Luan
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Jia Xu
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Aws Hamid
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lucia Flors
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Joanne Cassani
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Talissa A. Altes
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Robert P. Thomen
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO, USA
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Steven R. Van Doren
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| |
Collapse
|
8
|
Longère B, Abassebay N, Gkizas C, Hennicaux J, Simeone A, Rodriguez Musso A, Carpentier P, Coisne A, Pang J, Schmidt M, Toupin S, Montaigne D, Pontana F. A new compressed sensing cine cardiac MRI sequence with free-breathing real-time acquisition and fully automated motion-correction: A comprehensive evaluation. Diagn Interv Imaging 2023; 104:538-546. [PMID: 37328394 DOI: 10.1016/j.diii.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE The purpose of this study was to compare a new free-breathing compressed sensing cine (FB-CS) cardiac magnetic resonance imaging (CMR) to the standard reference multi-breath-hold segmented cine (BH-SEG) CMR in an unselected population. MATERIALS AND METHODS From January to April 2021, 52 consecutive adult patients who underwent both conventional BH-SEG CMR and new FB-CS CMR with fully automated respiratory motion correction were retrospectively enrolled. There were 29 men and 23 women with a mean age of 57.7 ± 18.9 (standard deviation [SD]) years (age range: 19.0-90.0 years) and a mean cardiac rate of 74.6 ± 17.9 (SD) bpm. For each patient, short-axis stacks were acquired with similar parameters providing a spatial resolution of 1.8 × 1.8 × 8.0 mm3 and 25 cardiac frames. Acquisition and reconstruction times, image quality (Likert scale from 1 to 4), left and right ventricular volumes and ejection fractions, left ventricular mass, and global circumferential strain were assessed for each sequence. RESULTS FB-CS CMR acquisition time was significantly shorter (123.8 ± 28.4 [SD] s vs. 267.2 ± 39.3 [SD] s for BH-SEG CMR; P < 0.0001) at the penalty of a longer reconstruction time (271.4 ± 68.7 [SD] s vs. 9.9 ± 2.1 [SD] s for BH-SEG CMR; P < 0.0001). In patients without arrhythmia or dyspnea, FB-CS CMR provided subjective image quality that was not different from that of BH-SEG CMR (P = 0.13). FB-CS CMR improved image quality in patients with arrhythmia (n = 18; P = 0.002) or dyspnea (n = 7; P = 0.02), and the edge sharpness was improved at end-systole and end-diastole (P = 0.0001). No differences were observed between the two techniques in ventricular volumes and ejection fractions, left ventricular mass or global circumferential strain in patients in sinus rhythm or with cardiac arrhythmia. CONCLUSION This new FB-CS CMR addresses respiratory motion and arrhythmia-related artifacts without compromising the reliability of ventricular functional assessment.
Collapse
Affiliation(s)
- Benjamin Longère
- Univ. Lille, U1011-European Genomic Institute for Diabetes (EGID), 59000 Lille, France; Inserm, U1011, 59000 Lille, France; CHU Lille, Department of Cardiovascular Radiology, 59000 Lille, France; Institut Pasteur Lille, 59000 Lille, France.
| | - Neelem Abassebay
- CHU Lille, Department of Cardiovascular Radiology, 59000 Lille, France
| | - Christos Gkizas
- CHU Lille, Department of Cardiovascular Radiology, 59000 Lille, France
| | - Justin Hennicaux
- CHU Lille, Department of Cardiovascular Radiology, 59000 Lille, France
| | - Arianna Simeone
- CHU Lille, Department of Cardiovascular Radiology, 59000 Lille, France
| | | | - Paul Carpentier
- CHU Lille, Department of Cardiovascular Radiology, 59000 Lille, France
| | - Augustin Coisne
- Univ. Lille, U1011-European Genomic Institute for Diabetes (EGID), 59000 Lille, France; Inserm, U1011, 59000 Lille, France; CHU Lille, Department of Cardiovascular Radiology, 59000 Lille, France; Institut Pasteur Lille, 59000 Lille, France
| | - Jianing Pang
- MR R&D, Siemens Medical Solutions USA Inc., Chicago, IL 60611, USA
| | - Michaela Schmidt
- MR Product Innovation and Definition, Healthcare Sector, Siemens GmbH, 91052 Erlangen, Germany
| | - Solenn Toupin
- Scientific Partnerships, Siemens Healthcare France, 93200 Saint-Denis, France
| | - David Montaigne
- Univ. Lille, U1011-European Genomic Institute for Diabetes (EGID), 59000 Lille, France; Inserm, U1011, 59000 Lille, France; CHU Lille, Department of Cardiovascular Radiology, 59000 Lille, France; Institut Pasteur Lille, 59000 Lille, France
| | - François Pontana
- Univ. Lille, U1011-European Genomic Institute for Diabetes (EGID), 59000 Lille, France; Inserm, U1011, 59000 Lille, France; CHU Lille, Department of Cardiovascular Radiology, 59000 Lille, France; Institut Pasteur Lille, 59000 Lille, France
| |
Collapse
|