1
|
Zhou Y, Ye M, Ye H, Zeng S, Shu X, Pan Y, Wu A, Liu P, Zhang G, Cai S, Chen S. Semiautomated segmentation of breast tumor on automatic breast ultrasound image using a large-scale model with customized modules. Sci Rep 2025; 15:17329. [PMID: 40389504 PMCID: PMC12089366 DOI: 10.1038/s41598-025-97098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/02/2025] [Indexed: 05/21/2025] Open
Abstract
To verify the capability of the Segment Anything Model for medical images in 3D (SAM-Med3D), tailored with low-rank adaptation (LoRA) strategies, in segmenting breast tumors in Automated Breast Ultrasound (ABUS) images. This retrospective study collected data from 329 patients diagnosed with breast cancer (average age 54 years). The dataset was randomly divided into training (n = 204), validation (n = 29), and test sets (n = 59). Two experienced radiologists manually annotated the regions of interest of each sample in the dataset, which served as ground truth for training and evaluating the SAM-Med3D model with additional customized modules. For semi-automatic tumor segmentation, points were randomly sampled within the lesion areas to simulate the radiologists' clicks in real-world scenarios. The segmentation performance was evaluated using the Dice coefficient. A total of 492 cases (200 from the "Tumor Detection, Segmentation, and Classification Challenge on Automated 3D Breast Ultrasound (TDSC-ABUS) 2023 challenge") were subjected to semi-automatic segmentation inference. The average Dice Similariy Coefficient (DSC) scores for the training, validation, and test sets of the Lishui dataset were 0.75, 0.78, and 0.75, respectively. The Breast Imaging Reporting and Data System (BI-RADS) categories of all samples range from BI-RADS 3 to 6, yielding an average DSC coefficient between 0.73 and 0.77. By categorizing the samples (lesion volumes ranging from 1.64 to 100.03 cm3) based on lesion size, the average DSC falls between 0.72 and 0.77.And the overall average DSC for the TDSC-ABUS 2023 challenge dataset was 0.79, with the test set achieving a sora-of-art scores of 0.79. The SAM-Med3D model with additional customized modules demonstrates good performance in semi-automatic 3D ABUS breast cancer tumor segmentation, indicating its feasibility for application in computer-aided diagnosis systems.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Breast Surgery, The Fifth Affliated Hospital of Wenzhou Medical University, LiShui Municipal Central Hospital, Lishui, 323000, China
| | - Mingtao Ye
- Institute of Intelligent Media Computing, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Haiyang Ye
- Institute of Intelligent Media Computing, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuqi Zeng
- Department of Breast Surgery, The Fifth Affliated Hospital of Wenzhou Medical University, LiShui Municipal Central Hospital, Lishui, 323000, China
| | - Xi Shu
- Department of Breast Surgery, The Fifth Affliated Hospital of Wenzhou Medical University, LiShui Municipal Central Hospital, Lishui, 323000, China
| | - Ying Pan
- Department of Breast Surgery, The Fifth Affliated Hospital of Wenzhou Medical University, LiShui Municipal Central Hospital, Lishui, 323000, China
| | - Aifen Wu
- Department of Ultrasound, The Fifth Affliated Hospital of Wenzhou Medical University, LiShui Municipal Central Hospital, Lishui, 323000, China
| | - Pengpeng Liu
- Department of Breast Surgery, The Fifth Affliated Hospital of Wenzhou Medical University, LiShui Municipal Central Hospital, Lishui, 323000, China
| | - Guodao Zhang
- Institute of Intelligent Media Computing, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shibin Cai
- Department of Breast Surgery, The Fifth Affliated Hospital of Wenzhou Medical University, LiShui Municipal Central Hospital, Lishui, 323000, China.
| | - Shuzheng Chen
- Department of Breast Surgery, The Fifth Affliated Hospital of Wenzhou Medical University, LiShui Municipal Central Hospital, Lishui, 323000, China.
- Department of Breast Surgery, Lishui Maternal and Child Health Care Hospital, Lishui, 323050, China.
| |
Collapse
|
2
|
Zang L, Liu J, Zhang H, Zhu S, Zhu M, Wang Y, Kang Y, Chen J, Xu Q. A deep learning model based on Mamba for automatic segmentation in cervical cancer brachytherapy. Sci Rep 2025; 15:10152. [PMID: 40128537 PMCID: PMC11933318 DOI: 10.1038/s41598-025-94431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
This study developed and evaluated an automatic segmentation model based on the Mamba framework (AM-UNet) for rapid and precise delineation of high-risk clinical target volume (HRCTV) and organs at risk (OARs) in cervical cancer brachytherapy. Using 694 CT scans from 179 cervical cancer patients, the performance of five models (AM-UNet, UNet, DeepLab V3, UNETR and nnU-Net) was compared. The models were assessed using the Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and dose-volume index (DVI). AM-UNet achieved mean DSCs of 0.862, 0.937, 0.823, and 0.725 for HRCTV, bladder, rectum, and sigmoid, respectively. Subjective evaluations showed 93.07% of AM-UNet predicted HRCTV were rated as clinically acceptable or needing minor adjustments, with no unacceptable cases. Dosimetric differences between AM-UNet-generated and manually delineated contours were within 1%, highlighting its potential for improving clinical workflows in brachytherapy.
Collapse
Affiliation(s)
- Lele Zang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, Fujian, China
| | - Jing Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, Fujian, China
| | - Huiqi Zhang
- Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, 350011, Fujian, China
| | - Shitao Zhu
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350116, China
| | - Mingxuan Zhu
- Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, 350011, Fujian, China
| | - Yuqin Wang
- Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, 350011, Fujian, China
| | - Yaxin Kang
- Department of Radiation Oncology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, 350011, Fujian, China
| | - Jihong Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| | - Qin Xu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, Fujian, China.
| |
Collapse
|
3
|
Kenig N, Monton Echeverria J, Muntaner Vives A. Artificial Intelligence in Surgery: A Systematic Review of Use and Validation. J Clin Med 2024; 13:7108. [PMID: 39685566 DOI: 10.3390/jcm13237108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Artificial Intelligence (AI) holds promise for transforming healthcare, with AI models gaining increasing clinical use in surgery. However, new AI models are developed without established standards for their validation and use. Before AI can be widely adopted, it is crucial to ensure these models are both accurate and safe for patients. Without proper validation, there is a risk of integrating AI models into practice without sufficient evidence of their safety and accuracy, potentially leading to suboptimal patient outcomes. In this work, we review the current use and validation methods of AI models in clinical surgical settings and propose a novel classification system. Methods: A systematic review was conducted in PubMed and Cochrane using the keywords "validation", "artificial intelligence", and "surgery", following PRISMA guidelines. Results: The search yielded a total of 7627 articles, of which 102 were included for data extraction, encompassing 2,837,211 patients. A validation classification system named Surgical Validation Score (SURVAS) was developed. The primary applications of models were risk assessment and decision-making in the preoperative setting. Validation methods were ranked as high evidence in only 45% of studies, and only 14% of the studies provided publicly available datasets. Conclusions: AI has significant applications in surgery, but validation quality remains suboptimal, and public data availability is limited. Current AI applications are mainly focused on preoperative risk assessment and are suggested to improve decision-making. Classification systems such as SURVAS can help clinicians confirm the degree of validity of AI models before their application in practice.
Collapse
Affiliation(s)
- Nitzan Kenig
- Department of Plastic Surgery, Quironsalud Palmaplanas Hospital, 07010 Palma, Spain
| | | | - Aina Muntaner Vives
- Department Otolaryngology, Son Llatzer University Hospital, 07198 Palma, Spain
| |
Collapse
|
4
|
Guo F, Hu H, Peng H, Liu J, Tang C, Zhang H. Research progress on machine algorithm prediction of liver cancer prognosis after intervention therapy. Am J Cancer Res 2024; 14:4580-4596. [PMID: 39417194 PMCID: PMC11477842 DOI: 10.62347/beao1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The treatment for liver cancer has transitioned from traditional surgical resection to interventional therapies, which have become increasingly popular among patients due to their minimally invasive nature and significant local efficacy. However, with advancements in treatment technologies, accurately assessing patient response and predicting long-term survival has become a crucial research topic. Over the past decade, machine algorithms have made remarkable progress in the medical field, particularly in hepatology and prognosis studies of hepatocellular carcinoma (HCC). Machine algorithms, including deep learning and machine learning, can identify prognostic patterns and trends by analyzing vast amounts of clinical data. Despite significant advancements, several issues remain unresolved in the prognosis prediction of liver cancer using machine algorithms. Key challenges and main controversies include effectively integrating multi-source clinical data to improve prediction accuracy, addressing data privacy and ethical concerns, and enhancing the transparency and interpretability of machine algorithm decision-making processes. This paper aims to systematically review and analyze the current applications and potential of machine algorithms in predicting the prognosis of patients undergoing interventional therapy for liver cancer, providing theoretical and empirical support for future research and clinical practice.
Collapse
Affiliation(s)
- Feng Guo
- Department of Interventional Diagnosis and Treatment, Yongzhou Central Hospital, Yongzhou Clinical College, University of South ChinaYongzhou 425000, Hunan, China
| | - Hao Hu
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430079, Hubei, China
| | - Hao Peng
- Department of Abdominal Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshi 445000, Hubei, China
| | - Jia Liu
- Department of Oncology, The First People’s Hospital of Changde CityChangde 415003, Hunan, China
| | - Chengbo Tang
- Department of Interventional Diagnosis and Treatment, Yongzhou Central Hospital, Yongzhou Clinical College, University of South ChinaYongzhou 425000, Hunan, China
| | - Hao Zhang
- Department of Interventional Vascular Surgery, First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital)Changsha 410000, Hunan, China
| |
Collapse
|
5
|
Haghshomar M, Rodrigues D, Kalyan A, Velichko Y, Borhani A. Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies. Front Oncol 2024; 14:1362737. [PMID: 38779098 PMCID: PMC11109422 DOI: 10.3389/fonc.2024.1362737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Liver tumors, whether primary or metastatic, have emerged as a growing concern with substantial global health implications. Timely identification and characterization of liver tumors are pivotal factors in order to provide optimum treatment. Imaging is a crucial part of the detection of liver tumors; however, conventional imaging has shortcomings in the proper characterization of these tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and radiomics have recently emerged as investigational opportunities with the potential to enhance the detection and characterization of liver lesions. These advancements offer opportunities for better diagnostic accuracy, prognostication, and thereby improving patient care. In particular, these techniques have the potential to predict the histopathology, genotype, and immunophenotype of tumors based on imaging data, hence providing guidance for personalized treatment of such tumors. In this review, we outline the progression and potential of AI in the field of liver oncology imaging, specifically emphasizing manual radiomic techniques and deep learning-based representations. We discuss how these tools can aid in clinical decision-making challenges. These challenges encompass a broad range of tasks, from prognosticating patient outcomes, differentiating benign treatment-related factors and actual disease progression, recognizing uncommon response patterns, and even predicting the genetic and molecular characteristics of the tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of these AI-based techniques.
Collapse
Affiliation(s)
| | | | | | | | - Amir Borhani
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Maino C, Vernuccio F, Cannella R, Franco PN, Giannini V, Dezio M, Pisani AR, Blandino AA, Faletti R, De Bernardi E, Ippolito D, Gatti M, Inchingolo R. Radiomics and liver: Where we are and where we are headed? Eur J Radiol 2024; 171:111297. [PMID: 38237517 DOI: 10.1016/j.ejrad.2024.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
Hepatic diffuse conditions and focal liver lesions represent two of the most common scenarios to face in everyday radiological clinical practice. Thanks to the advances in technology, radiology has gained a central role in the management of patients with liver disease, especially due to its high sensitivity and specificity. Since the introduction of computed tomography (CT) and magnetic resonance imaging (MRI), radiology has been considered the non-invasive reference modality to assess and characterize liver pathologies. In recent years, clinical practice has moved forward to a quantitative approach to better evaluate and manage each patient with a more fitted approach. In this setting, radiomics has gained an important role in helping radiologists and clinicians characterize hepatic pathological entities, in managing patients, and in determining prognosis. Radiomics can extract a large amount of data from radiological images, which can be associated with different liver scenarios. Thanks to its wide applications in ultrasonography (US), CT, and MRI, different studies were focused on specific aspects related to liver diseases. Even if broadly applied, radiomics has some advantages and different pitfalls. This review aims to summarize the most important and robust studies published in the field of liver radiomics, underlying their main limitations and issues, and what they can add to the current and future clinical practice and literature.
Collapse
Affiliation(s)
- Cesare Maino
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy.
| | - Federica Vernuccio
- Institute of Radiology, University Hospital of Padova, Padova 35128, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Paolo Niccolò Franco
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Michele Dezio
- Department of Radiology, Miulli Hospital, Acquaviva delle Fonti 70021, Bari, Italy
| | - Antonio Rosario Pisani
- Nuclear Medicine Unit, Interdisciplinary Department of Medicine, University of Bari, Bari 70121, Italy
| | - Antonino Andrea Blandino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Elisabetta De Bernardi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4, University of Milano Bicocca, Milano 20100, Italy; School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Davide Ippolito
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy; School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Riccardo Inchingolo
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| |
Collapse
|
7
|
Wang J, Peng Y, Jing S, Han L, Li T, Luo J. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+. BMC Cancer 2023; 23:1060. [PMID: 37923988 PMCID: PMC10623778 DOI: 10.1186/s12885-023-11432-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/21/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVE Radiomic and deep learning studies based on magnetic resonance imaging (MRI) of liver tumor are gradually increasing. Manual segmentation of normal hepatic tissue and tumor exhibits limitations. METHODS 105 patients diagnosed with hepatocellular carcinoma were retrospectively studied between Jan 2015 and Dec 2020. The patients were divided into three sets: training (n = 83), validation (n = 11), and internal testing (n = 11). Additionally, 9 cases were included from the Cancer Imaging Archive as the external test set. Using the arterial phase and T2WI sequences, expert radiologists manually delineated all images. Using deep learning, liver tumors and liver segments were automatically segmented. A preliminary liver segmentation was performed using the UNet + + network, and the segmented liver mask was re-input as the input end into the UNet + + network to segment liver tumors. The false positivity rate was reduced using a threshold value in the liver tumor segmentation. To evaluate the segmentation results, we calculated the Dice similarity coefficient (DSC), average false positivity rate (AFPR), and delineation time. RESULTS The average DSC of the liver in the validation and internal testing sets was 0.91 and 0.92, respectively. In the validation set, manual and automatic delineation took 182.9 and 2.2 s, respectively. On an average, manual and automatic delineation took 169.8 and 1.7 s, respectively. The average DSC of liver tumors was 0.612 and 0.687 in the validation and internal testing sets, respectively. The average time for manual and automatic delineation and AFPR in the internal testing set were 47.4 s, 2.9 s, and 1.4, respectively, and those in the external test set were 29.5 s, 4.2 s, and 1.6, respectively. CONCLUSION UNet + + can automatically segment normal hepatic tissue and liver tumors based on MR images. It provides a methodological basis for the automated segmentation of liver tumors, improves the delineation efficiency, and meets the requirement of extraction set analysis of further radiomics and deep learning.
Collapse
Affiliation(s)
- Jing Wang
- Department of General medicine, The First Medical Center Department of Chinese PLA General Hospital, Peking, 100039, China
| | - Yanyang Peng
- Department of Radiology, First Medical Center of General Hospital of People's Liberation Army, Peking, China
| | - Shi Jing
- Department of Oncology, Huaihe Hospital, Henan University, Kaifeng, 475000, China
| | - Lujun Han
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Cancer for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, China.
- Translational Medical Center of Huaihe Hospital, Henan University, 115 West Gate Street, Kaifeng, 475000, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
- Translational Medical Center of Huaihe Hospital, Henan University, 115 West Gate Street, Kaifeng, 475000, China.
| | - Junpeng Luo
- Translational Medical Center of Huaihe Hospital, Henan University, 115 West Gate Street, Kaifeng, 475000, China.
- Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|