1
|
Characterisation of MHC class I genes in the koala. Immunogenetics 2017; 70:125-133. [PMID: 28669101 DOI: 10.1007/s00251-017-1018-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Koala (Phascolarctos cinereus) populations are on the decline across the majority of Australia's mainland. Two major diseases threatening the long-term survival of affected koala populations are caused by obligate intracellular pathogens: Chlamydia and koala retrovirus (KoRV). To improve our understanding of the koala immune system, we characterised their major histocompatibility complex (MHC) class I genes, which are centrally involved in presenting foreign peptides derived from intracellular pathogens to cytotoxic T cells. A total of 11 class I genes were identified in the koala genome. Three genes, Phci-UA, UB and UC, showed relatively high genetic variability and were expressed in all 12 examined tissues, whereas the other eight genes had tissue-specific expression and limited polymorphism. Evidence of diversifying selection was detected in Phci-UA and UC, while gene conversion may have played a role in creating new alleles at Phci-UB. We propose that Phci-UA, UB and UC are likely classical MHC genes of koalas, and further research is needed to understand their role in koala chlamydial and KoRV infections.
Collapse
|
2
|
Krasnec KV, Papenfuss AT, Miller RD. The UT family of MHC class I loci unique to non-eutherian mammals has limited polymorphism and tissue specific patterns of expression in the opossum. BMC Immunol 2016; 17:43. [PMID: 27825298 PMCID: PMC5101759 DOI: 10.1186/s12865-016-0181-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) class I family of genes encode for molecules that have well-conserved structures, but have evolved to perform diverse functions. The availability of the gray, short-tailed opossum, Monodelphis domestica whole genome sequence has allowed for analysis of MHC class I gene content in this marsupial. Utilization of a novel method to search for MHC related domain structures revealed a previously unknown family of MHC class I-related genes. These genes, named UT1-17, are clustered on chromosome 1 in the opossum, unlinked to the MHC region. UT genes are only found in marsupial and monotreme genomes, consistent with being ancient in mammals yet lost in eutherian mammals. This study investigates the expression and polymorphism of the UT loci in the opossum to gain insight into their possible function. RESULTS Of the 17 opossum UT genes, most have restricted tissue transcription patterns, with the thymus and skin being the most common sites. Full-length structure of 11 UT transcripts revealed genes varying between five and eight exons, typical for class I family members. There were only two alternative splice variants found. The UT genes also have limited polymorphism and little evidence of positive selection. One locus, UT8, was chosen for further analysis due to its conservation amongst marsupials and generic characteristics. UT8 transcription is limited to developing αβ thymocytes, and is absent from mature αβ T cells in peripheral lymphoid tissues. CONCLUSION The overall characteristics and features of UT genes including low polymorphism and restricted tissue expression make it likely that the molecules encoded by UT genes perform roles other than antigenic peptide presentation.
Collapse
Affiliation(s)
- Katina V Krasnec
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, East Melbourne, 3002, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Robert D Miller
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Papenfuss AT, Feng ZP, Krasnec K, Deakin JE, Baker ML, Miller RD. Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage. BMC Genomics 2015; 16:535. [PMID: 26194104 PMCID: PMC4509613 DOI: 10.1186/s12864-015-1745-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
Background Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. Results Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. Conclusions We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown, however, their predicted structure may be consistent with presentation of antigens to T-cells. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1745-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Zhi-Ping Feng
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Katina Krasnec
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Janine E Deakin
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia.,Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Michelle L Baker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131-0001, USA.,Australian Animal Health Laboratory, CSIRO, East Geelong, VIC, 3219, Australia
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
4
|
Abts KC, Ivy JA, DeWoody JA. Immunomics of the koala (Phascolarctos cinereus). Immunogenetics 2015; 67:305-21. [PMID: 25761531 DOI: 10.1007/s00251-015-0833-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/19/2015] [Indexed: 12/20/2022]
Abstract
The study of the koala transcriptome has the potential to advance our understanding of its immunome--immunological reaction of a given host to foreign antigens--and to help combat infectious diseases (e.g., chlamydiosis) that impede ongoing conservation efforts. We used Illumina sequencing of cDNA to characterize genes expressed in two different koala tissues of immunological importance, blood and spleen. We generated nearly 600 million raw sequence reads, and about 285 million of these were subsequently assembled and condensed into ~70,000 subcomponents that represent putative transcripts. We annotated ~16% of these subcomponents and identified those related to infection and the immune response, including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), major histocompatibility complex (MHC) genes, and koala retrovirus (KoRV). Using phylogenetic analyses, we identified 29 koala genes in these target categories and report their concordance with currently accepted gene groups. By mapping multiple sequencing reads to transcripts, we identified 56 putative SNPs in genes of interest. The distribution of these SNPs indicates that MHC genes (34 SNPs) are more diverse than KoRV (12 SNPs), TLRs (8 SNPs), or RLRs (2 SNPs). Our sequence data also indicate that KoRV sequences are highly expressed in the transcriptome. Our efforts have produced full-length sequences for potentially important immune genes in koala, which should serve as targets for future investigations that aim to conserve koala populations.
Collapse
Affiliation(s)
- Kendra C Abts
- Department of Forestry and Natural Resources, Purdue University, 195 Marsteller St, West Lafayette, IN, 47907, USA,
| | | | | |
Collapse
|
5
|
Krasnec KV, Sharp AR, Williams TL, Miller RD. The opossum MHC genomic region revisited. Immunogenetics 2015; 67:259-64. [PMID: 25737310 DOI: 10.1007/s00251-015-0826-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/29/2015] [Indexed: 10/23/2022]
Abstract
The gray short-tailed opossum Monodelphis domestica is one of the few marsupial species for which a high quality whole genome sequence is available and the major histocompatibility complex (MHC) region has been annotated. Previous analyses revealed only a single locus within the opossum MHC region, designated Modo-UA1, with the features expected for encoding a functionally classical class I α-chain. Nine other class I genes found within the MHC are highly divergent and have features usually associated with non-classical roles. The original annotation, however, was based on an early version of the opossum genome assembly. More recent analyses of allelic variation in individual opossums revealed too many Modo-UA1 sequences per individual to be accounted for by a single MHC class I locus found in the genome assembly. A reanalysis of a later generation assembly, MonDom5, revealed the presence of two additional loci, now designated Modo-UA3 and UA4, in a region that was expanded and more complete than in the earlier assembly. Modo-UA1, UA3, and UA4 are all transcribed, although Modo-UA4 transcripts are rarer. Modo-UA4 is also relatively non-polymorphic. Evidence presented support the accuracy of the later assembly and the existence of three related class I genes in the opossum, making opossums more typical of mammals and most tetrapods by having multiple apparent classical MHC class I loci.
Collapse
Affiliation(s)
- Katina V Krasnec
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | | | | | |
Collapse
|
6
|
Cheng Y, Belov K. Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2014; 66:727-35. [PMID: 25267059 DOI: 10.1007/s00251-014-0804-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is a carnivorous marsupial that is under threat of extinction due to an unusual transmissible disease called Devil Facial Tumour Disease (DFTD). Previous studies on the classical MHC genes have provided important insights into immune responses in this endangered species; however, so far, very little is known about the non-classical MHC genes of this species, which can also play significant roles in the immune system. Here, we report characterisation of five non-classical class I genes in the Tasmanian devil, including Saha-UD, -UK, -UM, -MR1 and -CD1. Saha-UD has been isolated previously and is known to have low genetic polymorphism, though its categorisation as classical or non-classical gene has remained undetermined. In this study, we observed tissue-specific expression of Saha-UD, suggesting that it is more characteristic of a non-classical gene. Restricted tissue expression patterns were also observed for other genes, with an exception of Saha-MR1 being ubiquitously expressed in all examined tissues. Saha-UK, -UM and -MR1 were found to be genetically monomorphic, while four alleles were found at Saha-CD1 with signs of positive selection detected within the α1 domain. Among the four Saha-CD1 alleles, one predominant allele (Saha-CD1*01) showed a high allele frequency of 0.906 in the Tasmanian devil population, resulting in a low heterozygosity (0.188) at this locus. Alternative splicing takes place in Saha-CD1, giving rise to a full-length transcript and a splice variant lacking intact antigen-binding, β2m-binding, transmembrane and cytoplasmic domains.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Faculty of Veterinary Science, University of Sydney, Office 302, RMC Gunn Building B19, Sydney, NSW, 2006, Australia,
| | | |
Collapse
|
7
|
Abstract
Marsupial immune responses were previously touted as ‘primitive’ but we now know that the marsupial immune system is complex and on par with that of eutherian mammals. In this manuscript we review the field of marsupial immunology, focusing on basic anatomy, developmental immunology, immunogenetics and evolution. We concentrate on advances to our understanding of marsupial immune gene architecture, made possible by the recent sequencing of the opossum, tammar wallaby and Tasmanian devil genomes. Characterisation of immune gene sequences now paves the way for the development of immunological assays that will allow us to more accurately study health and disease in marsupials.
Collapse
|
8
|
Siddle HV, Deakin JE, Coggill P, Whilming LG, Harrow J, Kaufman J, Beck S, Belov K. The tammar wallaby major histocompatibility complex shows evidence of past genomic instability. BMC Genomics 2011; 12:421. [PMID: 21854592 PMCID: PMC3179965 DOI: 10.1186/1471-2164-12-421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 08/19/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) is a group of genes with a variety of roles in the innate and adaptive immune responses. MHC genes form a genetically linked cluster in eutherian mammals, an organization that is thought to confer functional and evolutionary advantages to the immune system. The tammar wallaby (Macropus eugenii), an Australian marsupial, provides a unique model for understanding MHC gene evolution, as many of its antigen presenting genes are not linked to the MHC, but are scattered around the genome. RESULTS Here we describe the 'core' tammar wallaby MHC region on chromosome 2q by ordering and sequencing 33 BAC clones, covering over 4.5 MB and containing 129 genes. When compared to the MHC region of the South American opossum, eutherian mammals and non-mammals, the wallaby MHC has a novel gene organization. The wallaby has undergone an expansion of MHC class II genes, which are separated into two clusters by the class III genes. The antigen processing genes have undergone duplication, resulting in two copies of TAP1 and three copies of TAP2. Notably, Kangaroo Endogenous Retroviral Elements are present within the region and may have contributed to the genomic instability. CONCLUSIONS The wallaby MHC has been extensively remodeled since the American and Australian marsupials last shared a common ancestor. The instability is characterized by the movement of antigen presenting genes away from the core MHC, most likely via the presence and activity of retroviral elements. We propose that the movement of class II genes away from the ancestral class II region has allowed this gene family to expand and diversify in the wallaby. The duplication of TAP genes in the wallaby MHC makes this species a unique model organism for studying the relationship between MHC gene organization and function.
Collapse
Affiliation(s)
- Hannah V Siddle
- Faculty of Veterinary Science, University of Sydney, NSW 2006, AUSTRALIA
- University of Cambridge, Department of Pathology, Cambridge CB2 1QP, UK
| | - Janine E Deakin
- ARC Centre of Excellence for Kangaroo Genomics, Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Penny Coggill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Hall, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Laurens G Whilming
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Hall, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jennifer Harrow
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Hall, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jim Kaufman
- University of Cambridge, Department of Pathology, Cambridge CB2 1QP, UK
| | - Stephan Beck
- UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, NSW 2006, AUSTRALIA
| |
Collapse
|
9
|
Baker ML, Melman SD, Huntley J, Miller RD. Evolution of the opossum major histocompatibility complex: evidence for diverse alternative splice patterns and low polymorphism among class I genes. Immunology 2008; 128:e418-31. [PMID: 19191910 DOI: 10.1111/j.1365-2567.2008.02994.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The opossum major histocompatibility complex (MHC) shares a similar organization with that of non-mammals while containing a diverse set of class I genes more like that of eutherian (placental) mammals. There are 11 class I loci in the opossum MHC region, seven of which are known to be transcribed. The previously described Monodelphis domestica (Modo)-UA1 and Modo-UG display characteristics consistent with their being classical and non-classical class I genes, respectively. Here we describe the characteristics of the remaining five transcribed class I loci (Modo-UE, -UK, -UI, -UJ and -UM). All five genes have peptide-binding grooves with low or no polymorphism, contain unpaired cysteines with the potential to produce homodimer formation and display genomic organizational features that would be unusual for classical class I loci. In addition, Modo-UJ and -UM were expressed in alternatively spliced mRNA forms, including a potentially soluble isoform of Modo-UJ. Thus, the MHC region of the opossum contains a single class I gene that is clearly classical and six other class I genes each with its own unique characteristics that probably perform roles other than or in addition to antigen presentation.
Collapse
Affiliation(s)
- Michelle L Baker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
The strategic importance of the genome sequence of the gray, short-tailed opossum, Monodelphis domestica, accrues from both the unique phylogenetic position of metatherian (marsupial) mammals and the fundamental biologic characteristics of metatherians that distinguish them from other mammalian species. Metatherian and eutherian (placental) mammals are more closely related to one another than to other vertebrate groups, and owing to this close relationship they share fundamentally similar genetic structures and molecular processes. However, during their long evolutionary separation these alternative mammals have developed distinctive anatomical, physiologic, and genetic features that hold tremendous potential for examining relationships between the molecular structures of mammalian genomes and the functional attributes of their components. Comparative analyses using the opossum genome have already provided a wealth of new evidence regarding the importance of noncoding elements in the evolution of mammalian genomes, the role of transposable elements in driving genomic innovation, and the relationships between recombination rate, nucleotide composition, and the genomic distributions of repetitive elements. The genome sequence is also beginning to enlarge our understanding of the evolution and function of the vertebrate immune system, and it provides an alternative model for investigating mechanisms of genomic imprinting. Equally important, availability of the genome sequence is fostering the development of new research tools for physical and functional genomic analyses of M. domestica that are expanding its versatility as an experimental system for a broad range of research applications in basic biology and biomedically oriented research.
Collapse
|
11
|
Parra ZE, Baker ML, Hathaway J, Lopez AM, Trujillo J, Sharp A, Miller RD. Comparative genomic analysis and evolution of the T cell receptor loci in the opossum Monodelphis domestica. BMC Genomics 2008; 9:111. [PMID: 18312668 PMCID: PMC2275272 DOI: 10.1186/1471-2164-9-111] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All jawed-vertebrates have four T cell receptor (TCR) chains: alpha (TRA), beta (TRB), gamma (TRG) and delta (TRD). Marsupials appear unique by having an additional TCR: mu (TRM). The evolutionary origin of TRM and its relationship to other TCR remain obscure, and is confounded by previous results that support TRM being a hybrid between a TCR and immunoglobulin locus. The availability of the first marsupial genome sequence allows investigation of these evolutionary relationships. RESULTS The organization of the conventional TCR loci, encoding the TRA, TRB, TRG and TRD chains, in the opossum Monodelphis domestica are highly conserved with and of similar complexity to that of eutherians (placental mammals). There is a high degree of conserved synteny in the genomic regions encoding the conventional TCR across mammals and birds. In contrast the chromosomal region containing TRM is not well conserved across mammals. None of the conventional TCR loci contain variable region gene segments with homology to those found in TRM; rather TRM variable genes are most similar to that of immunoglobulin heavy chain genes. CONCLUSION Complete genomic analyses of the opossum TCR loci continue to support an origin of TRM as a hybrid between a TCR and immunoglobulin locus. None of the conventional TCR loci contain evidence that such a recombination event occurred, rather they demonstrate a high degree of stability across distantly related mammals. TRM, therefore, appears to be derived from receptor genes no longer extant in placental mammals. These analyses provide the first genomic scale structural detail of marsupial TCR genes, a lineage of mammals used as models of early development and human disease.
Collapse
Affiliation(s)
- Zuly E Parra
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Pan HJ, Wan QH, Fang SG. Molecular characterization of major histocompatibility complex class I genes from the giant panda (Ailuropoda melanoleuca). Immunogenetics 2008; 60:185-93. [DOI: 10.1007/s00251-008-0281-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
13
|
Daly K, Church WB, Nicholas K, Williamson P. Comparative modeling of marsupial MHC class I molecules identifies structural polymorphisms affecting functional motifs. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2007; 307:611-24. [PMID: 17853390 DOI: 10.1002/jez.413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules are transmembrane glycoproteins that present antigenic peptides to CD8+ T cells and are subsequently important for the initiation of an immune response. In this study novel MHC class I sequences from the tammar wallaby (Macropus eugenii) have been characterized. Analysis and comparative modeling of these and existing marsupial molecules reveals potential functional polymorphisms within peptide-binding grooves, MHC assembly motifs and the T cell receptor recognition interface. In addition, we show that a previously identified marsupial-specific insertion is within a region, which is known as a putative NK cell receptor (Ly49A) binding site in the mouse, suggesting that this site may be functionally active in marsupials. Further, the analysis highlighted differences in structural and sequence based grouping of marsupial MHC class I molecules.
Collapse
Affiliation(s)
- Kerry Daly
- Centre for Advanced Technologies in Animal Genetics and Reproduction, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
14
|
Siddle HV, Sanderson C, Belov K. Characterization of major histocompatibility complex class I and class II genes from the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2007; 59:753-60. [PMID: 17673996 DOI: 10.1007/s00251-007-0238-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 06/21/2007] [Indexed: 11/25/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is currently threatened by an emerging wildlife disease, devil facial tumour disease. The disease is decreasing devil numbers dramatically and may lead to the extinction of the species. At present, nothing is known about the immune genes or basic immunology of the devil. In this study, we report the construction of the first genetic library for the Tasmanian devil, a spleen cDNA library, and the isolation of full-length MHC Class I and Class II genes. We describe six unique Class II beta chain sequences from at least three loci, which belong to the marsupial Class II DA gene family. We have isolated 13 unique devil Class I sequences, representing at least seven Class I loci, two of which are most likely non-classical genes. The MHC Class I sequences from the devil have little heterogeneity, indicating recent divergence. The MHC genes described here are most likely involved in antigen presentation and are an important first step for studying MHC diversity and immune response in the devil.
Collapse
Affiliation(s)
- Hannah V Siddle
- Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, University of Sydney, RMC Gunn B19, Sydney, NSW, 2006, Australia
| | | | | |
Collapse
|
15
|
Axtner J, Sommer S. Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 2007; 59:417-26. [PMID: 17351770 DOI: 10.1007/s00251-007-0205-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
The generation and maintenance of allelic polymorphism in genes of the major histocompatibility complex (MHC) is a central issue in evolutionary genetics. Recently, the focus has changed from ex situ to in situ populations to understand the mechanisms that determine adaptive MHC polymorphism under natural selection. Birth-and-death evolution and gene conversion events are considered to generate sequence diversity in MHC genes, which subsequently is maintained by balancing selection through parasites. The ongoing arms race between the host and parasites leads to an adaptive selection pressure upon the MHC, evident in high rates of non-synonymous vs synonymous substitution rates. We characterised the MHC class II DRB exon 2 of free living bank voles, Clethrionomys glareolus by single-strand conformation polymorphism and direct sequencing. Unlike other arvicolid species, the DRB locus of the bank vole is at least quadruplicated. No evidence for gene conversion events in the Clgl-DRB sequences was observed. We found not only high allelic polymorphism with 26 alleles in 36 individuals but also high rates of silent polymorphism. Exceptional for MHC class II genes is a purifying selection pressure upon the majority of MHC-DRB sequences. Further, we analysed the association between certain DRB alleles and the parasite burden with gastrointestinal trichostrongyle nematodes Heligmosomum mixtum and Heligmosomoides glareoli and found significant quality differences between specific alleles with respect to infection intensity. Our findings suggest a snapshot in an evolutionary process of ongoing birth-and-death evolution. One allele cluster has lost its function and is already silenced, another is loosing its adaptive value in terms of gastrointestinal nematode resistance, while a third group of alleles indicates all signs of classical functional MHC alleles.
Collapse
Affiliation(s)
- Jan Axtner
- Animal Ecology & Conservation, University Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | | |
Collapse
|
16
|
Deakin JE, Siddle HV, Cross JGR, Belov K, Graves JAM. Class I genes have split from the MHC in the tammar wallaby. Cytogenet Genome Res 2007; 116:205-11. [PMID: 17317961 DOI: 10.1159/000098188] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 11/02/2006] [Indexed: 11/19/2022] Open
Abstract
Genes within the Major Histocompatibility Complex (MHC) are critical to the immune response and immunoregulation. Comparative studies have revealed that the MHC has undergone many changes throughout evolution yet in tetrapods the three different classes of MHC genes have maintained linkage, suggesting that there may be some functional advantage obtained by maintaining this clustering of MHC genes. Here we present data showing that class II and III genes, the antigen processing gene TAP2, and MHC framework genes are found together in the tammar wallaby on chromosome 2. Surprisingly class I loci were not found on chromosome 2 but were mapped to ten different locations spread across six chromosomes. This distribution of class I loci in the wallaby on nearly all autosomes is not a characteristic of all marsupials and may be a relatively recent phenomenon. It highlights the need for the inclusion of more than one marsupial species in comparative studies and raises questions regarding the functional significance of the clustering of MHC genes.
Collapse
Affiliation(s)
- J E Deakin
- ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, Australia.
| | | | | | | | | |
Collapse
|
17
|
Baker ML, Miller RD. Evolution of mammalian CD1: marsupial CD1 is not orthologous to the eutherian isoforms and is a pseudogene in the opossum Monodelphis domestica. Immunology 2007; 121:113-21. [PMID: 17244156 PMCID: PMC2265927 DOI: 10.1111/j.1365-2567.2007.02545.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
CD1 is a member of the major histocompatibility complex (MHC) class I family of proteins that present lipid antigens to T cells and natural killer (NK) T cells; it is found in both eutherian mammals and birds. In eutherians, duplication of the CD1 gene has resulted in multiple isoforms. A marsupial CD1 homologue was identified in a set of expressed sequence tags from the thymus of the bandicoot Isoodon macrourus. Southern blot and genomic sequence analyses revealed that CD1 is a single copy gene in both I. macrourus and a distantly related marsupial, the opossum Monodelphis domestica, which is currently the only marsupial species for which a whole genome sequence is available. We found that the opossum CD1 is located in a genomic region with a high degree of conserved synteny to the chromosomal regions containing human and mouse CD1. A phylogenetic analysis of mammalian CD1 revealed that marsupial CD1 is not orthologous to the eutherian CD1 isoforms, consistent with the latter having emerged by duplication after the separation of marsupials and eutherians 170-180 million years ago. The I. macrourus CD1 gene is actively transcribed and appears to encode a functional protein. In contrast, transcription of the M. domestica CD1 was not detected in any tissue and the predicted CD1 gene sequence contains a number of deletions that appear to render the locus a pseudogene.
Collapse
Affiliation(s)
- Michelle L Baker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque NM 87131, USA.
| | | |
Collapse
|
18
|
Gouin N, Wright AM, Miska KB, Parra ZE, Samollow PB, Baker ML, Miller RD. Modo-UG, a marsupial nonclassical MHC class I locus. Immunogenetics 2006; 58:396-406. [PMID: 16738937 DOI: 10.1007/s00251-006-0115-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 03/22/2006] [Indexed: 11/30/2022]
Abstract
Modo-UG is a class I gene located in the MHC of the marsupial Monodelphis domestica, the gray, short-tailed opossum. Modo-UG is expressed as three alternatively spliced mRNA forms, all of which encode a transmembrane form with a short cytoplasmic tail that lacks phosphorylation sites typically found in classical class I molecules. The three alternative mRNAs would encode a full-length form, an isoform lacking the alpha2 domain, and one lacking both alpha2 and alpha3 domains. Genotyping both captive-bred and wild M. domestica from different geographic regions revealed no variation in the residues that make up Modo-UG's peptide-binding groove. Modo-UG's low polymorphism is contrasting to that of a nearby class I locus, Modo-UA1, which has a highly polymorphic peptide-binding region. Absence of functional polymorphism in Modo-UG is therefore not a general feature of opossum class I genes but the result of negative selection. Modo-UG is the first MHC linked marsupial class I to be described that appears to clearly have nonclassical features.
Collapse
Affiliation(s)
- Nicolas Gouin
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, 78245, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Siddle HV, Deakin JE, Baker ML, Miller RD, Belov K. Isolation of major histocompatibility complex Class I genes from the tammar wallaby (Macropus eugenii). Immunogenetics 2006; 58:487-93. [PMID: 16568263 DOI: 10.1007/s00251-006-0107-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 02/15/2006] [Indexed: 01/01/2023]
Abstract
The major histocompatibility complex (MHC) plays an essential role in the adaptive immune system of vertebrates through antigen recognition. Although MHC genes are found in all vertebrates, the MHC region is dynamic and has changed throughout vertebrate evolution, making it an important tool for comparative genomics. Marsupials occupy an important position in mammalian phylogeny, yet the MHC of few marsupials has been studied in detail. We report the isolation and analysis of expressed MHC Class I genes from the tammar wallaby, a model marsupial used extensively for the study of mammalian reproduction, genetics, and immunology. We determined that there are at least 11 Class I loci in the tammar genome and isolated six expressed Class I sequences from spleen and testes cDNA libraries, representing at least four loci. Two of the Class I sequences contain substitutions at sites known to be important for antigen binding, perhaps impacting their ability to bind peptides, or the types of peptide to which they bind. Phylogenetic analysis of tammar wallaby Class I sequences and other mammalian Class I sequences suggests that some tammar wallaby and red-necked wallaby loci evolved from common ancestral genes.
Collapse
Affiliation(s)
- Hannah V Siddle
- Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
20
|
Gouin N, Deakin JE, Miska KB, Miller RD, Kammerer CM, Graves JAM, VandeBerg JL, Samollow PB. Linkage mapping and physical localization of the major histocompatibility complex region of the marsupial Monodelphis domestica. Cytogenet Genome Res 2006; 112:277-85. [PMID: 16484784 DOI: 10.1159/000089882] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 06/28/2005] [Indexed: 12/14/2022] Open
Abstract
We used genetic linkage mapping and fluorescence in situ hybridization (FISH) to conduct the first analysis of genic organization and chromosome localization of the major histocompatibility complex (MHC) of a marsupial, the gray, short-tailed opossum Monodelphis domestica. Family based linkage analyses of two M. domestica MHC Class I genes (UA1, UG) and three MHC Class II genes (DAB, DMA, and DMB) revealed that these genes were tightly linked and positioned in the central region of linkage group 3 (LG3). This cluster of MHC genes was physically mapped to the centromeric region of chromosome 2q by FISH using a BAC clone containing the UA1 gene. An interesting finding from the linkage analyses is that sex-specific recombination rates were virtually identical within the MHC region. This stands in stark contrast to the genome-wide situation, wherein males exhibit approximately twice as much recombination as females, and could have evolutionary implications for maintaining equality between males and females in the ability to generate haplotype diversity in this region. These analyses also showed that three non-MHC genes that flank the MHC region on human chromosome 6, myelin oligodendrocyte glycoprotein (MOG), bone morphogenetic protein 6 (BMP6), and prolactin (PRL), are split among two separate linkage groups (chromosomes) in M. domestica. Comparative analysis with eight other vertebrate species suggests strong conservation of the BMP6-PRL synteny among birds and mammals, although the BMP6-PRL-MHC-ME1 synteny is not conserved.
Collapse
Affiliation(s)
- N Gouin
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Belov K, Deakin JE, Papenfuss AT, Baker ML, Melman SD, Siddle HV, Gouin N, Goode DL, Sargeant TJ, Robinson MD, Wakefield MJ, Mahony S, Cross JGR, Benos PV, Samollow PB, Speed TP, Graves JAM, Miller RD. Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex. PLoS Biol 2006; 4:e46. [PMID: 16435885 PMCID: PMC1351924 DOI: 10.1371/journal.pbio.0040046] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/12/2005] [Indexed: 11/19/2022] Open
Abstract
The first sequenced marsupial genome promises to reveal unparalleled insights into mammalian evolution. We have used the Monodelphis domestica (gray short-tailed opossum) sequence to construct the first map of a marsupial major histocompatibility complex (MHC). The MHC is the most gene-dense region of the mammalian genome and is critical to immunity and reproductive success. The marsupial MHC bridges the phylogenetic gap between the complex MHC of eutherian mammals and the minimal essential MHC of birds. Here we show that the opossum MHC is gene dense and complex, as in humans, but shares more organizational features with non-mammals. The Class I genes have amplified within the Class II region, resulting in a unique Class I/II region. We present a model of the organization of the MHC in ancestral mammals and its elaboration during mammalian evolution. The opossum genome, together with other extant genomes, reveals the existence of an ancestral "immune supercomplex" that contained genes of both types of natural killer receptors together with antigen processing genes and MHC genes.
Collapse
Affiliation(s)
- Katherine Belov
- 1Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, The University of Sydney, Camden, Australia
| | - Janine E Deakin
- 2ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, Australia
| | - Anthony T Papenfuss
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Michelle L Baker
- 4Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Sandra D Melman
- 4Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Hannah V Siddle
- 1Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, The University of Sydney, Camden, Australia
| | - Nicolas Gouin
- 5Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - David L Goode
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Tobias J Sargeant
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Mark D Robinson
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Matthew J Wakefield
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Shaun Mahony
- 6National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Joseph G. R Cross
- 2ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, Australia
| | - Panayiotis V Benos
- 7Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Paul B Samollow
- 8Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Terence P Speed
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jennifer A. Marshall Graves
- 2ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, Australia
| | - Robert D Miller
- 4Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
22
|
Samollow PB. Status and applications of genomic resources for the gray, short-tailed opossum, Monodelphis domestica, an American marsupial model for comparative biology. AUST J ZOOL 2006. [DOI: 10.1071/zo05059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Owing to its small size, favourable reproductive characteristics, and simple husbandry, the gray, short-tailed opossum, Monodelphis domestica, has become the most widely distributed and intensively utilised laboratory-bred research marsupial in the world today. This article provides an overview of the current state and future projections of genomic resources for this species and discusses the potential impact of this growing resource base on active research areas that use M. domestica as a model system. The resources discussed include: fully arrayed, bacterial artificial chromosome (BAC) libraries; an expanding linkage map; developing full-genome BAC-contig and chromosomal fluorescence in situ hybridisation maps; public websites providing access to the M. domestica whole-genome-shotgun sequence trace database and the whole-genome sequence assembly; and a new project underway to create an expressed-sequence database and microchip expression arrays for functional genomics applications. Major research areas discussed span a variety of genetic, evolutionary, physiologic, reproductive, developmental, and behavioural topics, including: comparative immunogenetics; genomic imprinting; reproductive biology; neurobiology; photobiology and carcinogenesis; genetics of lipoprotein metabolism; developmental and behavioural endocrinology; sexual differentiation and development; embryonic and fetal development; meiotic recombination; genome evolution; molecular evolution and phylogenetics; and more.
Collapse
|