1
|
Dennison KL, Chack AC, Hickman MP, Harenda QE, Shull JD. Ept7, a quantitative trait locus that controls estrogen-induced pituitary lactotroph hyperplasia in rat, is orthologous to a locus in humans that has been associated with numerous cancer types and common diseases. PLoS One 2018; 13:e0204727. [PMID: 30261014 PMCID: PMC6160183 DOI: 10.1371/journal.pone.0204727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenoma is a common intracranial neoplasm that is observed in approximately 10% of unselected individuals at autopsy. Prolactin-producing adenomas, i.e., prolactinomas, comprise approximately 50% of all pituitary adenomas and represent the most common class of pituitary tumor. Multiple observations suggest that estrogens may contribute to development of prolactinoma; however, direct evidence for a causal role of estrogens in prolactinoma etiology is lacking. Rat models of estrogen-induced prolactinoma have been utilized extensively to identify the factors, pathways and processes that are involved in pituitary tumor development. The objective of this study was to localize to high resolution Ept7 (Estrogen-induced pituitary tumor), a quantitative trait locus (QTL) that controls lactotroph responsiveness to estrogens and was mapped to rat chromosome 7 (RNO7) in an intercross between BN and ACI rats. Data presented and discussed herein localize the Ept7 causal variant(s) to a 1.91 Mb interval of RNO7 that contains two protein coding genes, A1bg and Myc, and Pvt1, which yields multiple non-protein coding transcripts of unknown function. The Ept7 orthologous region in humans is located at 8q24.21 and has been linked in genome wide association studies to risk of 8 distinct epithelial cancers, including breast, ovarian, and endometrial cancers; 3 distinct types of B cell lymphoma; multiple inflammatory and autoimmune diseases; and orofacial cleft defects. In addition, the Ept7 locus in humans has been associated with variation in normal hematologic and development phenotypes, including height. Functional characterization of Ept7 should ultimately enhance our understanding of the genetic etiology of prolactinoma and these other diseases.
Collapse
Affiliation(s)
- Kirsten L. Dennison
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Aaron C. Chack
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Maureen Peters Hickman
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Quincy Eckert Harenda
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - James D. Shull
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
2
|
Jerry DJ, Shull JD, Hadsell DL, Rijnkels M, Dunphy KA, Schneider SS, Vandenberg LN, Majhi PD, Byrne C, Trentham-Dietz A. Genetic variation in sensitivity to estrogens and breast cancer risk. Mamm Genome 2018; 29:24-37. [PMID: 29487996 DOI: 10.1007/s00335-018-9741-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/15/2018] [Indexed: 12/16/2022]
Abstract
Breast cancer risk is intimately intertwined with exposure to estrogens. While more than 160 breast cancer risk loci have been identified in humans, genetic interactions with estrogen exposure remain to be established. Strains of rodents exhibit striking differences in their responses to endogenous ovarian estrogens (primarily 17β-estradiol). Similar genetic variation has been observed for synthetic estrogen agonists (ethinyl estradiol) and environmental chemicals that mimic the actions of estrogens (xenoestrogens). This review of literature highlights the extent of variation in responses to estrogens among strains of rodents and compiles the genetic loci underlying pathogenic effects of excessive estrogen signaling. Genetic linkage studies have identified a total of the 35 quantitative trait loci (QTL) affecting responses to 17β-estradiol or diethylstilbestrol in five different tissues. However, the QTL appear to act in a tissue-specific manner with 9 QTL affecting the incidence or latency of mammary tumors induced by 17β-estradiol or diethylstilbestrol. Mammary gland development during puberty is also exquisitely sensitive to the actions of endogenous estrogens. Analysis of mammary ductal growth and branching in 43 strains of inbred mice identified 20 QTL. Regions in the human genome orthologous to the mammary development QTL harbor loci associated with breast cancer risk or mammographic density. The data demonstrate extensive genetic variation in regulation of estrogen signaling in rodent mammary tissues that alters susceptibility to tumors. Genetic variants in these pathways may identify a subset of women who are especially sensitive to either endogenous estrogens or environmental xenoestrogens and render them at increased risk of breast cancer.
Collapse
Affiliation(s)
- D Joseph Jerry
- Department of Veterinary & Animal Sciences, 661 North Pleasant Street, Integrated Life Sciences Building, Amherst, MA, 01003, USA. .,Pioneer Valley Life Sciences Institute, Baystate Medical Center, 3601 Main Street, Springfield, MA, 01199, USA.
| | - James D Shull
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA.,UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Darryl L Hadsell
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Karen A Dunphy
- Department of Veterinary & Animal Sciences, 661 North Pleasant Street, Integrated Life Sciences Building, Amherst, MA, 01003, USA
| | - Sallie S Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, 3601 Main Street, Springfield, MA, 01199, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Prabin Dhangada Majhi
- Department of Veterinary & Animal Sciences, 661 North Pleasant Street, Integrated Life Sciences Building, Amherst, MA, 01003, USA
| | - Celia Byrne
- Department of Preventive Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Amy Trentham-Dietz
- Department of Population Health Sciences and the Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Shull JD, Dennison KL, Chack AC, Trentham-Dietz A. Rat models of 17β-estradiol-induced mammary cancer reveal novel insights into breast cancer etiology and prevention. Physiol Genomics 2018; 50:215-234. [PMID: 29373076 DOI: 10.1152/physiolgenomics.00105.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous laboratory and epidemiologic studies strongly implicate endogenous and exogenous estrogens in the etiology of breast cancer. Data summarized herein suggest that the ACI rat model of 17β-estradiol (E2)-induced mammary cancer is unique among rodent models in the extent to which it faithfully reflects the etiology and biology of luminal types of breast cancer, which together constitute ~70% of all breast cancers. E2 drives cancer development in this model through mechanisms that are largely dependent upon estrogen receptors and require progesterone and its receptors. Moreover, mammary cancer development appears to be associated with generation of oxidative stress and can be modified by multiple dietary factors, several of which may attenuate the actions of reactive oxygen species. Studies of susceptible ACI rats and resistant COP or BN rats provide novel insights into the genetic bases of susceptibility and the biological processes regulated by genetic determinants of susceptibility. This review summarizes research progress resulting from use of these physiologically relevant rat models to advance understanding of breast cancer etiology and prevention.
Collapse
Affiliation(s)
- James D Shull
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| | - Kirsten L Dennison
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| | - Aaron C Chack
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| | - Amy Trentham-Dietz
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
4
|
Kurz SG, Dennison KL, Samanas NB, Hickman MP, Eckert QA, Walker TL, Cupp AS, Shull JD. Ept7 influences estrogen action in the pituitary gland and body weight of rats. Mamm Genome 2014; 25:244-52. [PMID: 24448715 DOI: 10.1007/s00335-014-9504-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/30/2013] [Indexed: 11/29/2022]
Abstract
Estrogens control many aspects of pituitary gland biology, including regulation of lactotroph homeostasis and synthesis and secretion of prolactin. In rat models, these actions are strain specific and heritable, and multiple quantitative trait loci (QTL) have been mapped that impact the responsiveness of the lactotroph to estrogens. One such QTL, Ept7, was mapped to RNO7 in female progeny generated in an intercross between BN rats, in which the lactotroph population is insensitive to estrogens, and ACI rats, which develop lactotroph hyperplasia/adenoma and associated hyperprolactinemia in response to estrogen treatment. The primary objective of this study was to confirm the existence of Ept7 and to quantify the impact of this QTL on responsiveness of the pituitary gland of female and male rats to 17β-estradiol (E2) and diethylstilbestrol (DES), respectively. Secondary objectives were to determine if Ept7 influences the responsiveness of the male reproductive tract to DES and to identify other discernible phenotypes influenced by Ept7. To achieve these objectives, a congenic rat strain that harbors BN alleles across the Ept7 interval on the genetic background of the ACI strain was generated and characterized to define the effect of administered estrogens on the anterior pituitary gland and male reproductive tissues. Data presented herein indicate Ept7 exerts a marked effect on development of lactotroph hyperplasia in response to estrogen treatment, but does not affect atrophy of the male reproductive tissues in response to hormone treatment. Ept7 was also observed to exert gender specific effects on body weight in young adult rats.
Collapse
Affiliation(s)
- Scott G Kurz
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gray LE, Ryan B, Hotchkiss AK, Crofton KM. Rebuttal of "Flawed Experimental Design Reveals the Need for Guidelines Requiring Appropriate Positive Controls in Endocrine Disruption Research" by (Vom Saal 2010). Toxicol Sci 2010; 115:614-620. [PMID: 29910598 PMCID: PMC6002156 DOI: 10.1093/toxsci/kfq073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Bryce Ryan
- University of Redlands, Biology Department, Redlands, CA
| | | | | |
Collapse
|
6
|
Kurz SG, Hansen KK, McLaughlin MT, Shivaswamy V, Schaffer BS, Gould KA, McComb RD, Meza JL, Shull JD. Tissue-specific actions of the Ept1, Ept2, Ept6, and Ept9 genetic determinants of responsiveness to estrogens in the female rat. Endocrinology 2008; 149:3850-9. [PMID: 18420736 PMCID: PMC2488241 DOI: 10.1210/en.2008-0173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ept1, Ept2, Ept6, and Ept9 are quantitative trait loci mapped in crosses between the ACI and Copenhagen (COP) rat strains as genetic determinants of responsiveness of the pituitary gland to estrogens. We have developed four congenic rat strains, each of which carries, on the genetic background of the ACI rat strain, alleles from the COP rat strain that span one of these quantitative trait loci. Relative to the female ACI rats, female ACI.COP-Ept1 rats exhibited reduced responsiveness to 17beta-estradiol (E2) in the pituitary gland, as evidenced by quantification of pituitary mass and circulating prolactin, and in the mammary gland, as evidenced by reduced susceptibility to E2-induced mammary cancer. The ACI.COP-Ept2 rat strain exhibited reduced responsiveness to E2 in the pituitary gland but did not differ from the ACI strain in regard to susceptibility to E2-induced mammary cancer. Interestingly, female Ept2 congenic rats exhibited increased responsiveness to E2 in the thymus, as evidenced by enhanced thymic atrophy. The ACI.COP-Ept6 rat strain exhibited increased responsiveness to E2 in the pituitary gland, which was associated with a qualitative phenotype suggestive of enhanced pituitary vascularization. The ACI.COP-Ept9 rat strain exhibited reduced responsiveness to E2 in the anterior pituitary gland, relative to the ACI rat strain. Neither Ept6 nor Ept9 impacted responsiveness to E2 in the mammary gland or thymus. These data indicate that each of these Ept genetic determinants of estrogen action is unique in regard to the tissues in which it exerts its effects and/or the direction of its effect on estrogen responsiveness.
Collapse
Affiliation(s)
- Scott G Kurz
- Department of Genetics, Cell Biology and Anatomy, 6005 Durham Research Center, 985805 Nebraska Medical Center, Omaha, Nebraska 68198-5805, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shull JD, Lachel CM, Murrin CR, Pennington KL, Schaffer BS, Strecker TE, Gould KA. Genetic control of estrogen action in the rat: mapping of QTLs that impact pituitary lactotroph hyperplasia in a BN x ACI intercross. Mamm Genome 2007; 18:657-69. [PMID: 17876666 DOI: 10.1007/s00335-007-9052-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/11/2007] [Indexed: 10/22/2022]
Abstract
Estrogens are important regulators of growth and development and contribute to the etiology of several types of cancer. Different inbred rat strains exhibit marked, cell-type-specific differences in responsiveness to estrogens as well as differences in susceptibility to estrogen-induced tumorigenesis. Regulation of pituitary lactotroph homeostasis is one estrogen-regulated response that differs dramatically between different inbred rat strains. In this article we demonstrate that the growth response of the anterior pituitary gland of female ACI rats to 17beta-estradiol (E2) markedly exceeds that of identically treated female Brown Norway (BN) rats. We further demonstrate that pituitary mass, a surrogate indicator of absolute lactotroph number, behaves as a quantitative trait in E2-treated F(2) progeny generated in a genetic cross originating with BN females and ACI males. Composite interval mapping analyses of the (BNxACI)F(2) population revealed quantitative trait loci (QTLs) that exert significant effects on E2-induced pituitary growth on rat chromosome 4 (RNO4) (Ept5) and RNO7 (Ept7). Continuous treatment with E2 rapidly induces mammary cancer in female ACI rats but not BN rats, and QTLs that impact susceptibility to E2-induced mammary cancer in the (BNxACI)F(2) population described here have been mapped to RNO3 (Emca5), RNO4 (Emca6), RNO5 (Emca8), RNO6 (Emca7), and RNO7 (Emca4). Ept5 and Emca6 map to distinct regions of RNO4. However, Ept7 and Emca4 map to the same region of RNO7. No correlation between pituitary mass and mammary cancer number at necropsy was observed within the (BNxACI)F(2) population. This observation, together with the QTL mapping data, indicate that with the exception of the Ept7/Emca4 locus on RNO7, the genetic determinants of E2-induced pituitary growth differ from the genetic determinants of susceptibility to E2-induced mammary cancer.
Collapse
Affiliation(s)
- James D Shull
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805, USA.
| | | | | | | | | | | | | |
Collapse
|