1
|
Yang GN, Strudwick XL, Bonder CS, Kopecki Z, Cowin AJ. Increased Expression of Flightless I in Cutaneous Squamous Cell Carcinoma Affects Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2021; 22:ijms222413203. [PMID: 34948000 PMCID: PMC8703548 DOI: 10.3390/ijms222413203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) accounts for 25% of cutaneous malignancies diagnosed in Caucasian populations. Surgical removal in combination with radiation and chemotherapy are effective treatments for cSCC. Nevertheless, the aggressive metastatic forms of cSCC still have a relatively poor patient outcome. Studies have linked actin cytoskeletal dynamics and the Wnt/β-catenin signaling pathway as important modulators of cSCC pathogenesis. Previous studies have also shown that the actin-remodeling protein Flightless (Flii) is a negative regulator of cSCC. The aim of this study was to investigate if the functional effects of Flii on cSCC involve the Wnt/β-catenin signaling pathway. Flii knockdown was performed using siRNA in a human late stage aggressive metastatic cSCC cell line (MET-1) alongside analysis of Flii genetic murine models of 3-methylcholanthrene induced cSCC. Flii was increased in a MET-1 cSCC cell line and reducing Flii expression led to fewer PCNA positive cells and a concomitant reduction in cellular proliferation and symmetrical division. Knockdown of Flii led to decreased β-catenin and a decrease in the expression of the downstream effector of β-catenin signaling protein SOX9. 3-Methylcholanthrene (MCA)-induced cSCC in Flii overexpressing mice showed increased markers of cancer metastasis including talin and keratin-14 and a significant increase in SOX9 alongside a reduction in Flii associated protein (Flap-1). Taken together, this study demonstrates a role for Flii in regulating proteins involved in cSCC proliferation and tumor progression and suggests a potential role for Flii in aggressive metastatic cSCC.
Collapse
Affiliation(s)
- Gink N. Yang
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5000, Australia;
| | - Xanthe L. Strudwick
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
| | - Claudine S. Bonder
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5000, Australia;
- Adelaide Medical School, University of Adelaide, Adelaide 5000, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-8-83025018
| |
Collapse
|
2
|
Overexpression of Flii during Murine Embryonic Development Increases Symmetrical Division of Epidermal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22158235. [PMID: 34361001 PMCID: PMC8348627 DOI: 10.3390/ijms22158235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023] Open
Abstract
Epidermal progenitor cells divide symmetrically and asymmetrically to form stratified epidermis and hair follicles during late embryonic development. Flightless I (Flii), an actin remodelling protein, is implicated in Wnt/β-cat and integrin signalling pathways that govern cell division. This study investigated the effect of altering Flii on the divisional orientation of epidermal progenitor cells (EpSCs) in the basal layer during late murine embryonic development and early adolescence. The effect of altering Flii expression on asymmetric vs. symmetric division was assessed in vitro in adult human primary keratinocytes and in vivo at late embryonic development stages (E16, E17 and E19) as well as adolescence (P21 day-old) in mice with altered Flii expression (Flii knockdown: Flii+/−, wild type: WT, transgenic Flii overexpressing: FliiTg/Tg) using Western blot and immunohistochemistry. Flii+/− embryonic skin showed increased asymmetrical cell division of EpSCs with an increase in epidermal stratification and elevated talin, activated-Itgb1 and Par3 expression. FliiTg/Tg led to increased symmetrical cell division of EpSCs with increased cell proliferation rate, an elevated epidermal SOX9, Flap1 and β-cat expression, a thinner epidermis, but increased hair follicle number and depth. Flii promotes symmetric division of epidermal progenitor cells during murine embryonic development.
Collapse
|
3
|
Strudwick XL, Cowin AJ. Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing. Front Cell Dev Biol 2020; 8:603508. [PMID: 33330501 PMCID: PMC7732498 DOI: 10.3389/fcell.2020.603508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Flightless I is an actin-binding member of the gelsolin family of actin-remodeling proteins that inhibits actin polymerization but does not possess actin severing ability. Flightless I functions as a regulator of many cellular processes including proliferation, differentiation, apoptosis, and migration all of which are important for many physiological processes including wound repair, cancer progression and inflammation. More than simply facilitating cytoskeletal rearrangements, Flightless I has other important roles in the regulation of gene transcription within the nucleus where it interacts with nuclear hormone receptors to modulate cellular activities. In conjunction with key binding partners Leucine rich repeat in the Flightless I interaction proteins (LRRFIP)1/2, Flightless I acts both synergistically and competitively to regulate a wide range of cellular signaling including interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome and the MyD88-TLR4 pathways. In this review we outline the current knowledge about this important cytoskeletal protein and describe its many functions across a range of health conditions and pathologies. We provide perspectives for future development of Flightless I as a potential target for clinical translation and insights into potential therapeutic approaches to manipulate Flightless I functions.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
4
|
Rajeev G, Melville E, Cowin AJ, Prieto-Simon B, Voelcker NH. Porous Alumina Membrane-Based Electrochemical Biosensor for Protein Biomarker Detection in Chronic Wounds. Front Chem 2020; 8:155. [PMID: 32211379 PMCID: PMC7067747 DOI: 10.3389/fchem.2020.00155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
A label-free electrochemical detection platform for the sensitive and rapid detection of Flightless I (Flii) protein, a biomarker of wound chronicity, has been developed using nanoporous anodic alumina (NAA) membranes modified with Flii antibody recognition sites. The electrochemical detection is based on the nanochannel blockage experienced upon Flii capture by immobilized antibodies within the nanochannels. This capture impedes the diffusion of redox species [[Fe(CN)6]4-/3-] toward a gold electrode attached at the backside of the modified NAA membrane. Partial blockage causes a decrease in the oxidation current of the redox species at the electrode surface which is used as an analytical signal by the reported biosensor. The resulting biosensing system allows detection of Flii at the levels found in wounds. Two types of assays were tested, sandwich and direct, showing <3 and 2 h analysis time, respectively, a significant reduction in time from the nearly 48 h required for the conventional Western blot assay. Slightly higher sensitivity values were observed for the sandwich-based strategy. With faster analysis, lack of matrix effects, robustness, ease of use and cost-effectiveness, the developed sensing platform has the potential to be translated into a point-of-care (POC) device for chronic wound management and as a simple alternative characterization tool in Flii research.
Collapse
Affiliation(s)
- Gayathri Rajeev
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Elizabeth Melville
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Beatriz Prieto-Simon
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Nicolas H Voelcker
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC, Australia.,Melbourne Centre for Nanofabrication, Clayton, VIC, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Marei H, Malliri A. GEFs: Dual regulation of Rac1 signaling. Small GTPases 2017; 8:90-99. [PMID: 27314616 PMCID: PMC5464116 DOI: 10.1080/21541248.2016.1202635] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022] Open
Abstract
GEFs play a critical role in regulating Rac1 signaling. They serve as signaling nodes converting upstream signals into downstream Rac1-driven cellular responses. Through associating with membrane-bound Rac1, GEFs facilitate the exchange of GDP for GTP, thereby activating Rac1. As a result, Rac1 undergoes conformational changes that mediate its interaction with downstream effectors, linking Rac1 to a multitude of physiological and pathological processes. Interestingly, there are at least 20 GEFs involved in Rac1 activation, suggesting a more complex role of GEFs in regulating Rac1 signaling apart from promoting the exchange of GDP for GTP. Indeed, accumulating evidence implicates GEFs in directing the specificity of Rac1-driven signaling cascades, although the underlying mechanisms were poorly defined. Recently, through conducting a comparative study, we highlighted the role of 2 Rac-specific GEFs, Tiam1 and P-Rex1, in dictating the biological outcome downstream of Rac1. Importantly, further proteomic analysis uncovered a GEF activity-independent function for both GEFs in modulating the Rac1 interactome, which results in the stimulation of GEF-specific signaling cascades. Here, we provide an overview of our recent findings and discuss the role of GEFs as master regulators of Rac1 signaling with a particular focus on GEF-mediated modulation of cell migration following Rac1 activation.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Nayak A, Reck A, Morsczeck C, Müller S. Flightless-I governs cell fate by recruiting the SUMO isopeptidase SENP3 to distinct HOX genes. Epigenetics Chromatin 2017; 10:15. [PMID: 28344658 PMCID: PMC5364561 DOI: 10.1186/s13072-017-0122-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite recent studies on the role of ubiquitin-related SUMO modifier in cell fate decisions, our understanding on precise molecular mechanisms of these processes is limited. Previously, we established that the SUMO isopeptidase SENP3 regulates chromatin assembly of the MLL1/2 histone methyltransferase complex at distinct HOX genes, including the osteogenic master regulator DLX3. A comprehensive mechanism that regulates SENP3 transcriptional function was not understood. RESULTS Here, we identified flightless-I homolog (FLII), a member of the gelsolin family of actin-remodeling proteins, as a novel regulator of SENP3. We demonstrate that FLII is associated with SENP3 and the MLL1/2 complex. We further show that FLII determines SENP3 recruitment and MLL1/2 complex assembly on the DLX3 gene. Consequently, FLII is indispensible for H3K4 methylation and proper loading of active RNA polymerase II at this gene locus. Most importantly, FLII-mediated SENP3 regulation governs osteogenic differentiation of human mesenchymal stem cells. CONCLUSION Altogether, these data reveal a crucial functional interconnection of FLII with the sumoylation machinery that converges on epigenetic regulation and cell fate determination.
Collapse
Affiliation(s)
- Arnab Nayak
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Kopecki Z, Yang GN, Jackson JE, Melville EL, Calley MP, Murrell DF, Darby IA, O'Toole EA, Samuel MS, Cowin AJ. Cytoskeletal protein Flightless I inhibits apoptosis, enhances tumor cell invasion and promotes cutaneous squamous cell carcinoma progression. Oncotarget 2017; 6:36426-40. [PMID: 26497552 PMCID: PMC4742187 DOI: 10.18632/oncotarget.5536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023] Open
Abstract
Flightless I (Flii) is an actin remodeling protein that affects cellular processes including adhesion, proliferation and migration. In order to determine the role of Flii during carcinogenesis, squamous cell carcinomas (SCCs) were induced in Flii heterozygous (Flii+/-), wild-type and Flii overexpressing (FliiTg/Tg) mice by intradermal injection of 3-methylcholanthrene (MCA). Flii levels were further assessed in biopsies from human SCCs and the human SCC cell line (MET-1) was used to determine the effect of Flii on cellular invasion. Flii was highly expressed in human SCC biopsies particularly by the invading cells at the tumor edge. FliiTg/Tg mice developed large, aggressive SCCs in response to MCA. In contrast Flii+/- mice had significantly smaller tumors that were less invasive. Intradermal injection of Flii neutralizing antibodies during SCC initiation and progression significantly reduced the size of the tumors and, in vitro, decreased cellular sphere formation and invasion. Analysis of the tumors from the Flii overexpressing mice showed reduced caspase I and annexin V expression suggesting Flii may negatively regulate apoptosis within these tumors. These studies therefore suggest that Flii enhances SCC tumor progression by decreasing apoptosis and enhancing tumor cell invasion. Targeting Flii may be a potential strategy for reducing the severity of SCCs.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Gink N Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Jessica E Jackson
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth L Melville
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Matthew P Calley
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Dedee F Murrell
- Department of Dermatology, St. George Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - Ian A Darby
- School of Medical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Edel A O'Toole
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael S Samuel
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Marei H, Carpy A, Woroniuk A, Vennin C, White G, Timpson P, Macek B, Malliri A. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat Commun 2016; 7:10664. [PMID: 26887924 PMCID: PMC4759627 DOI: 10.1038/ncomms10664] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Anna Woroniuk
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Claire Vennin
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Gavin White
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Paul Timpson
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| |
Collapse
|
9
|
Arora PD, Wang Y, Bresnick A, Janmey PA, McCulloch CA. Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling. Mol Biol Cell 2015; 26:2279-97. [PMID: 25877872 PMCID: PMC4462945 DOI: 10.1091/mbc.e14-11-1536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
The role of the actin-capping protein flightless I in collagen remodeling by mouse fibroblasts is examined. Flightless and nonmuscle myosin IIA cooperate to enable collagen phagocytosis. We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1–6 capped actin filaments efficiently, whereas FliI GLD 2–6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1–6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2–6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2–6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1–6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts.
Collapse
Affiliation(s)
- Pamma D Arora
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Anne Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
10
|
Abstract
Fetal skin has the intrinsic capacity for wound healing, which is not correlated with the intrauterine environment. This intrinsic ability requires biochemical signals, which start at the cellular level and lead to secretion of transforming factors and expression of receptors, and specific markers that promote wound healing without scar formation. The mechanisms and molecular pathways of wound healing still need to be elucidated to achieve a complete understanding of this remodeling system. The aim of this paper is to discuss the main biomarkers involved in fetal skin wound healing as well as their respective mechanisms of action.
Collapse
|
11
|
Kopecki Z, Yang GN, Arkell RM, Jackson JE, Melville E, Iwata H, Ludwig RJ, Zillikens D, Murrell DF, Cowin AJ. Flightless I over-expression impairs skin barrier development, function and recovery following skin blistering. J Pathol 2014; 232:541-52. [PMID: 24375017 DOI: 10.1002/path.4323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/10/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023]
Abstract
Development of an intact epidermis is critical for maintaining the integrity of the skin. Patients with epidermolysis bullosa (EB) experience multiple erosions, which breach the epidermal barrier and lead to increased microbial colocalization of wounds, infections and sepsis. The cytoskeletal protein Flightless I (Flii) is a known regulator of both development and wound healing. Using Flii(+/-), WT and Flii(Tg/Tg) mice, we investigated the effect of altering Flii levels in embryos and adult mice on the development of the epidermal barrier and, consequently, how this affects the integrity of the skin in EB. Flii over-expression resulted in delayed formation of the epidermal barrier in embryos and decreased expression of tight junction (TJ) proteins Claudin-1 and ZO-2. Increased intercellular space and transepidermal water loss was observed in Flii(Tg)(/Tg) adult mouse skin, while Flii(Tg/Tg) keratinocytes showed altered TJ protein localization and reduced transepithelial resistance. Flii is increased in the blistered skin of patients with EB, and over-expression of Flii in experimental EBA showed impaired Claudin-1 and -4 TJ protein expression and delayed recovery of functional barrier post-blistering. Immunoprecipitation confirmed Flii associated with TJ proteins and in vivo actin assays showed that the effect of Flii on actin polymerization underpinned the impaired barrier function observed in Flii(Tg/Tg) mice. These results therefore demonstrate an important role for Flii in the development and regulation of the epidermal barrier, which may contribute to the impaired healing and skin fragility of EB patients.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Centre for Regenerative Medicine, Mawson Institute, University of South Australia, Adelaide, Australia; Women's and Children's Health Research Institute, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Strudwick XL, Cowin AJ. Cytoskeletal regulation of dermal regeneration. Cells 2012; 1:1313-27. [PMID: 24710556 PMCID: PMC3901152 DOI: 10.3390/cells1041313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/15/2012] [Accepted: 12/04/2012] [Indexed: 12/21/2022] Open
Abstract
Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Wound Healing Laboratory, Women's and Children's Health Research Institute, 72 King William Road, North Adelaide, South Australia 5006, Australia.
| | - Allison J Cowin
- Wound Healing Laboratory, Women's and Children's Health Research Institute, 72 King William Road, North Adelaide, South Australia 5006, Australia.
| |
Collapse
|
13
|
Kopecki Z, Ruzehaji N, Turner C, Iwata H, Ludwig RJ, Zillikens D, Murrell DF, Cowin AJ. Topically applied flightless I neutralizing antibodies improve healing of blistered skin in a murine model of epidermolysis bullosa acquisita. J Invest Dermatol 2012; 133:1008-16. [PMID: 23223144 DOI: 10.1038/jid.2012.457] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidermolysis bullosa (EB) is a chronic inheritable disease that leads to severe blistering and fibrosis. Previous studies have shown that the actin cytoskeletal protein flightless I (Flii) impairs wound healing associated with EB. Using a mouse model of EB acquisita (EBA), the effect of "mopping up" Flii using Flii-neutralizing antibodies (FnAbs) before, during, and after blister formation was determined. FnAbs, incorporated into a cream vehicle and applied topically to the skin, penetrated into the basal epidermis and upper papillary dermis but were not detected in serum or other organs and did not alter neutrophil or macrophage infiltration into the blistered skin. Histological assessment of blister severity showed that treatment of early-stage blisters with FnAb cream reduced their severity and improved their rate of healing. Treatment of established blisters with FnAb cream also improved healing and restored the skin's tensile strength toward that of normal skin. Repeated application of FnAbs to EBA skin before the onset of blistering reduced the severity of skin blistering. Independent of when the FnAbs were applied, skin barrier function and wound healing were improved and skin fragility was reduced, suggesting that FnAbs could potentially improve healing of patients with EB.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Women's and Children's Health Research Institute, North Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Cytoskeleton responses in wound repair. Cell Mol Life Sci 2012; 69:2469-83. [PMID: 22349211 DOI: 10.1007/s00018-012-0928-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/21/2011] [Accepted: 01/17/2012] [Indexed: 12/15/2022]
Abstract
Wound repair on the cellular and multicellular levels is essential to the survival of complex organisms. In order to avoid further damage, prevent infection, and restore normal function, cells and tissues must rapidly seal and remodel the wounded area. The cytoskeleton is an important component of wound repair in that it is needed for actomyosin contraction, recruitment of repair machineries, and cell migration. Recent use of model systems and high-resolution microscopy has provided new insight into molecular aspects of the cytoskeletal response during wound repair. Here we discuss the role of the cytoskeleton in single-cell, embryonic, and adult repair, as well as the striking resemblance of these processes to normal developmental events and many diseases.
Collapse
|