1
|
Shelton GD, Tucciarone F, Guo LT, Coghill LM, Lyons LA. Precision medicine using whole genome sequencing identifies a novel dystrophin (DMD) variant for X-linked muscular dystrophy in a cat. J Vet Intern Med 2024; 38:135-144. [PMID: 38180235 PMCID: PMC10800237 DOI: 10.1111/jvim.16971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Muscular dystrophies (MDs) are a large, heterogeneous group of degenerative muscle diseases. X-linked dystrophin-deficient MD in cats is the first genetically characterized cat model for a human disease and a few novel forms have been identified. HYPOTHESIS/OBJECTIVES Muscular dystrophy was suspected in a young male domestic shorthair cat. Clinical, molecular, and genetic techniques could provide a definitive diagnosis. ANIMALS A 1-year-old male domestic shorthair cat presented for progressive difficulty walking, macroglossia and dysphagia beginning at 6 months of age. The tongue was thickened, protruded with constant ptyalism, and thickening and rigidity of the neck and shoulders were observed. METHODS A complete neurological examination, baseline laboratory evaluation and biopsies of the trapezius muscle were performed with owner consent. Indirect immunofluorescence staining of muscle cryosections was performed using several monoclonal and polyclonal antibodies against dystrophy-associated proteins. DNA was isolated for genomic analyses by whole genome sequencing and comparison to DNA variants in the 99 Lives Cat Genome Sequencing dataset. RESULTS AND CLINICAL IMPORTANCE Aspartate aminotransferase (687 IU/L) and creatine kinase (24 830 IU/L) activities were increased and mild hypokalemia (3.7 mmol/L) was present. Biopsy samples from the trapezius muscle confirmed a degenerative and regenerative myopathy and protein alterations identified by immunohistochemistry resulted in a diagnosis of a in dystrophin-deficient form of X-linked MD. A stop gain variant (c.4849C>T; p.Gln1617Ter) dystrophin was identified by genome sequencing. Precision/genomic medicine efforts for the domestic cat and in veterinary medicine support disease variant and animal model discovery and provide opportunities for targeted treatments for companion animals.
Collapse
Affiliation(s)
- G. Diane Shelton
- Department of Pathology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Ling T. Guo
- Department of Pathology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Lyndon M. Coghill
- Department of Veterinary Pathobiology, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Leslie A. Lyons
- Department of Veterinary Pathobiology, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
2
|
Shelton GD, Minor KM, Friedenberg SG, Cullen JN, Guo LT, Mickelson JR. Current Classification of Canine Muscular Dystrophies and Identification of New Variants. Genes (Basel) 2023; 14:1557. [PMID: 37628610 PMCID: PMC10454810 DOI: 10.3390/genes14081557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The spectrum of canine muscular dystrophies has rapidly grown with the recent identification of several more affected breeds and associated mutations. Defects include those in genes and protein products associated with the sarcolemma (dystrophin deficient X-linked muscular dystrophy and sarcoglycan-deficient limb-girdle muscular dystrophy) and with the extracellular matrix (collagen 6, laminin α2, and α-dystroglycan-deficient congenital muscular dystrophies). With the increasing application of whole genome sequencing and whole exome sequencing, the clinical and pathological spectra associated with specific neuromuscular genetic defects are constantly evolving. In this report, we provide a brief overview of the current status of gene defects reported in canine muscular dystrophies. We also report the causative mutations for novel forms of X-linked muscular dystrophy in Brittany spaniels and in a French bulldog.
Collapse
Affiliation(s)
- G. Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Katie M. Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (K.M.M.); (J.R.M.)
| | - Steven G. Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (S.G.F.); (J.N.C.)
| | - Jonah N. Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (S.G.F.); (J.N.C.)
| | - Ling T. Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - James R. Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (K.M.M.); (J.R.M.)
| |
Collapse
|
3
|
Dystrophin ( DMD) Missense Variant in Cats with Becker-Type Muscular Dystrophy. Int J Mol Sci 2023; 24:ijms24043192. [PMID: 36834603 PMCID: PMC9964367 DOI: 10.3390/ijms24043192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Muscular dystrophy due to dystrophin deficiency in humans is phenotypically divided into a severe Duchenne and milder Becker type. Dystrophin deficiency has also been described in a few animal species, and few DMD gene variants have been identified in animals. Here, we characterize the clinical, histopathological, and molecular genetic aspects of a family of Maine Coon crossbred cats with clinically mild and slowly progressive muscular dystrophy. Two young adult male littermate cats exhibited abnormal gait and muscular hypertrophy with macroglossia. Serum creatine kinase activities were highly increased. Histopathologically, dystrophic skeletal muscle exhibited marked structural changes including atrophic, hypertrophic, and necrotic muscle fibers. Immunohistochemistry showed irregularly reduced expression of dystrophin but the staining of other muscle proteins such as β- and γ-sarcoglycans as well as desmin was also diminished. Whole genome sequencing of one affected cat and genotyping of the littermate found both to be hemizygous mutant at a single DMD missense variant (c.4186C>T). No other protein-changing variants in candidate genes for muscular dystrophy were detected. In addition, one clinically healthy male littermate was hemizygous wildtype, while the queen and one female littermate were clinically healthy, but heterozygous. The predicted amino acid exchange (p.His1396Tyr) resides in a conserved central rod spectrin domain of dystrophin. Various protein modeling programs did not predict major disruption of the dystrophin protein by this substitution, but the altered charge of the region may still affect protein function. This study represents the first genotype-to-phenotype correlation of Becker-type dystrophin deficiency in companion animals.
Collapse
|
4
|
Chey YCJ, Arudkumar J, Aartsma-Rus A, Adikusuma F, Thomas PQ. CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies. WIREs Mech Dis 2023; 15:e1580. [PMID: 35909075 PMCID: PMC10078488 DOI: 10.1002/wsbm.1580] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
CRISPR gene-editing technology creates precise and permanent modifications to DNA. It has significantly advanced our ability to generate animal disease models for use in biomedical research and also has potential to revolutionize the treatment of genetic disorders. Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disease that could potentially benefit from the development of CRISPR therapy. It is commonly associated with mutations that disrupt the reading frame of the DMD gene that encodes dystrophin, an essential scaffolding protein that stabilizes striated muscles and protects them from contractile-induced damage. CRISPR enables the rapid generation of various animal models harboring mutations that closely simulates the wide variety of mutations observed in DMD patients. These models provide a platform for the testing of sequence-specific interventions like CRISPR therapy that aim to reframe or skip DMD mutations to restore functional dystrophin expression. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Yu C J Chey
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jayshen Arudkumar
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Fatwa Adikusuma
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, Australia
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,South Australian Genome Editing (SAGE), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
5
|
A Nonsense Variant in the DMD Gene Causes X-Linked Muscular Dystrophy in the Maine Coon Cat. Animals (Basel) 2022; 12:ani12212928. [PMID: 36359052 PMCID: PMC9653713 DOI: 10.3390/ani12212928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Feline dystrophin-deficient muscular dystrophy (ddMD) is a fatal disease characterized by progressive weakness and degeneration of skeletal muscles and is caused by variants in the DMD gene. To date, only two feline causal variants have been identified. This study reports two cases of male Maine coon siblings that presented with muscular hypertrophy, growth retardation, weight loss, and vomiting. (2) Both cats were clinically examined and histopathology and immunofluorescent staining of the affected muscle was performed. DMD mRNA was sequenced to identify putative causal variants. (3) Both cats showed a significant increase in serum creatine kinase activity. Electromyography and histopathological examination of the muscle samples revealed abnormalities consistent with a dystrophic phenotype. Immunohistochemical testing revealed the absence of dystrophin, confirming the diagnosis of dystrophin-deficient muscular dystrophy. mRNA sequencing revealed a nonsense variant in exon 11 of the feline DMD gene, NC_058386.1 (XM_045050794.1): c.1180C > T (p.(Arg394*)), which results in the loss of the majority of the dystrophin protein. Perfect X-linked segregation of the variant was established in the pedigree. (4) ddMD was described for the first time in the Maine coon and the c.1180C>T variant was confirmed as the causal variant.
Collapse
|
6
|
Sakai K, Motegi T, Chambers JK, Uchida K, Nishida H, Shimamura S, Tani H, Shimada T, Furuya M. Dystrophin-deficient muscular dystrophy in a Toy Poodle with a single base pair insertion in exon 45 of the Duchenne muscular dystrophy gene. J Vet Med Sci 2022; 84:502-506. [PMID: 35135937 PMCID: PMC9096033 DOI: 10.1292/jvms.21-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A 10-month-old, intact male Toy Poodle was referred for a postural abnormality. Blood biochemical tests revealed a marked increase in plasma creatine phosphokinase (CPK) concentration. The isoenzyme test showed that 99% of serum CPK consisted of CPK-MM. Histopathological evaluation of muscle biopsy samples confirmed scattered degeneration and necrosis of myofibers. Immunohistochemistry for dystrophin showed an absence of staining in muscle cells. Based on these findings, the dog was diagnosed with dystrophin-deficient muscular dystrophy. Whole genome sequencing using genomic DNA extracted from blood revealed a single base pair insertion in exon 45 of the Duchenne muscular dystrophy (DMD) gene. This is the first report on muscular dystrophy in Toy Poodles and identified a novel mutation in the DMD gene.
Collapse
Affiliation(s)
- Kosei Sakai
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Tomoki Motegi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - James Ken Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hidetaka Nishida
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Shunsuke Shimamura
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Hiroyuki Tani
- Laboratory of Veterinary Internal Medicine, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Terumasa Shimada
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Masaru Furuya
- Laboratory of Veterinary Internal Medicine, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
7
|
Kuraoka M, Aoki Y, Takeda S. Development of outcome measures according to dystrophic phenotypes in canine X-linked muscular dystrophy in Japan. Exp Anim 2021; 70:419-430. [PMID: 34135266 PMCID: PMC8614006 DOI: 10.1538/expanim.21-0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Shin'ichi Takeda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|
8
|
Mickelson JR, Minor KM, Guo LT, Friedenberg SG, Cullen JN, Ciavarella A, Hambrook LE, Brenner KM, Helmond SE, Marks SL, Shelton GD. Sarcoglycan A mutation in miniature dachshund dogs causes limb-girdle muscular dystrophy 2D. Skelet Muscle 2021; 11:2. [PMID: 33407862 PMCID: PMC7789357 DOI: 10.1186/s13395-020-00257-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A cohort of related miniature dachshund dogs with exercise intolerance, stiff gait, dysphagia, myoglobinuria, and markedly elevated serum creatine kinase activities were identified. METHODS Muscle biopsy histopathology, immunofluorescence microscopy, and western blotting were combined to identify the specific pathologic phenotype of the myopathy, and whole genome SNP array genotype data and whole genome sequencing were combined to determine its genetic basis. RESULTS Muscle biopsies were dystrophic. Sarcoglycanopathy, a form of limb-girdle muscular dystrophy, was suspected based on immunostaining and western blotting, where α, β, and γ-sarcoglycan were all absent or reduced. Genetic mapping and whole genome sequencing identified a premature stop codon mutation in the sarcoglycan A subunit gene (SGCA). Affected dachshunds were confirmed on several continents. CONCLUSIONS This first SGCA mutation found in dogs adds to the literature of genetic bases of canine muscular dystrophies and their usefulness as comparative models of human disease.
Collapse
Affiliation(s)
- James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55113, USA.
| | - Katie M Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55113, USA
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0709, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55113, USA
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55113, USA
| | | | | | - Karen M Brenner
- Centre for Animal Referral and Emergency, Collingwood, Victoria, Australia
| | - Sarah E Helmond
- Animal Referral Hospital, Homebush, New South Wales, Australia
| | - Stanley L Marks
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0709, USA
| |
Collapse
|
9
|
Liu X, Zhang C, Zhang S, Cai Y, Hua K, Cui Y. One-step determination of deletion mutation based on loop-mediated isothermal amplification. Anal Biochem 2020; 616:114087. [PMID: 33352189 DOI: 10.1016/j.ab.2020.114087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022]
Abstract
Deletion mutation has been proved as the important factor for occurrence and development of disease, especially those with cancer. With the popularity of precision medicine, the individual cancer therapeutic strategy has highlighted the requirement to develop a straightforward and competent strategy for deletion mutation determination. Hence, the present study is dedicated to develop a one-step assay to identify deletion mutation with sequence specificity for clinical practice. Taking advantage of loop-mediated isothermal amplification, an ultrasensitive and rapid deletion mutation determination method is established, which allow as low as 30 copies or 0.1% target variants under strong interferential background can be accurately distinguished in 30 min dispensing with professional operation and complex data interpretation. As a demonstration, the epidermal growth factor receptor p.E746-A750del, a crucial factor for the susceptibility of tyrosine kinase inhibitor in non-small-cell lung cancer treatment, has been accurately identified by this method with both cell lines and real clinical samples. By tailor-made primer set, this method can be extended for other deletion mutants, making it a molecular diagnostic tool and could be readily adapted for cancer diagnosis, therapy and prognosis in point of care diagnostic test scenario.
Collapse
Affiliation(s)
- Xiaonan Liu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Chao Zhang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Sinong Zhang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yu Cai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Kai Hua
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China; Shaanxi Provincial Engineering Research Center for Nano-Biomedical Detection, Xi'an, Shaanxi, 710077, China
| | - Yali Cui
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China; Shaanxi Provincial Engineering Research Center for Nano-Biomedical Detection, Xi'an, Shaanxi, 710077, China.
| |
Collapse
|
10
|
Protein Expression of Canine and Feline Muscular Dystrophies. Top Companion Anim Med 2020; 42:100500. [PMID: 33249241 DOI: 10.1016/j.tcam.2020.100500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
Muscular dystrophies in dogs and cats represent a heterogeneous group of inherited, sometimes congenital, but infrequently diagnosed, progressive neuromuscular disorders. A correct identification and characterization of canine and feline muscular dystrophies could increase diagnostic and treatment strategies for veterinary neurologists and could identify useful animal models for the study of human dystrophies. However, in dogs and cats, diagnosis of muscular dystrophies is challenging due to a nonspecific clinical phenotype and pathological lesions, thus is most likely underestimated. We performed immunofluorescence and Western blot techniques using a wide panel of antibodies against proteins involved in human dystrophies (dystrophin mid-rod and carboxyterminal domain, α, β, γ, and δ-sarcoglycan, α-dystroglycan, caveolin-3, emerin, merosin, dysferlin, calpain-3, spectrin epitopes), on 9 canine and 3 feline muscle biopsies characterized by myopathic changes. Dystrophin deficiency was detected in 3 dogs and 2 novel canine muscular dystrophies have been identified, characterized by deficiency of caveolin-3 and calpain-3, respectively. In 2 cats, deficiency of β-SG and carboxyterminal domain of dystrophin in all muscle fibers has been detected. Performing immunofluorescence and Western blot analyses with a wider panel of antibodies allowed a correct identification of muscular dystrophies in dogs and cats and provides a direction for subsequent targeted genetic testing.
Collapse
|
11
|
Brunetti B, Muscatello LV, Letko A, Papa V, Cenacchi G, Grillini M, Murgiano L, Jagannathan V, Drögemüller C. X-Linked Duchenne-Type Muscular Dystrophy in Jack Russell Terrier Associated with a Partial Deletion of the Canine DMD Gene. Genes (Basel) 2020; 11:genes11101175. [PMID: 33049940 PMCID: PMC7600251 DOI: 10.3390/genes11101175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022] Open
Abstract
A 9-month old male Jack Russell Terrier started showing paraparesis of the hindlimbs after a walk. Hospitalized, the dog went into cardiac arrest, and later died. Necroscopic examination revealed a severe thickness of the diaphragm, esophagus, and base of the tongue, leading to the diagnosis of muscular dystrophy. The histology confirmed the marked size variation, regeneration, and fibrosis replacement of the skeletal muscle fibers. Immunohistochemistry demonstrated the absence of dystrophin confirming the diagnosis. Transmission electron microscopy showed disarrangement of skeletal muscle fibers. Finally, whole-genome sequencing identified a ~368kb deletion spanning 19 exons of the canine dystrophin (DMD) gene. This pathogenic loss-of-function variant most likely explains the observed disease phenotype. The X-chromosomal variant was absent in seven controls of the same breed. Most likely, this partial deletion of the DMD gene was either transmitted on the maternal path within the family of the affected dog or arose de novo. This study revealed a spontaneous partial deletion in DMD gene in a Jack Russell Terrier showing a Duchenne-type muscular dystrophy due to non-functional dystrophin.
Collapse
Affiliation(s)
- Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-2097960
| | - Luisa V. Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.L.); (L.M.); (V.J.); (C.D.)
| | - Valentina Papa
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (V.P.); (G.C.)
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (V.P.); (G.C.)
| | - Marco Grillini
- Pathology Unit, S Orsola Malpighi Hospital, University of Bologna, 40138 Bologna, Italy;
| | - Leonardo Murgiano
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.L.); (L.M.); (V.J.); (C.D.)
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.L.); (L.M.); (V.J.); (C.D.)
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.L.); (L.M.); (V.J.); (C.D.)
| |
Collapse
|
12
|
Barthélémy I, Calmels N, Weiss RB, Tiret L, Vulin A, Wein N, Peccate C, Drougard C, Beroud C, Deburgrave N, Thibaud JL, Escriou C, Punzón I, Garcia L, Kaplan JC, Flanigan KM, Leturcq F, Blot S. X-linked muscular dystrophy in a Labrador Retriever strain: phenotypic and molecular characterisation. Skelet Muscle 2020; 10:23. [PMID: 32767978 PMCID: PMC7412789 DOI: 10.1186/s13395-020-00239-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background Canine models of Duchenne muscular dystrophy (DMD) are a valuable tool to evaluate potential therapies because they faithfully reproduce the human disease. Several cases of dystrophinopathies have been described in canines, but the Golden Retriever muscular dystrophy (GRMD) model remains the most used in preclinical studies. Here, we report a new spontaneous dystrophinopathy in a Labrador Retriever strain, named Labrador Retriever muscular dystrophy (LRMD). Methods A colony of LRMD dogs was established from spontaneous cases. Fourteen LRMD dogs were followed-up and compared to the GRMD standard using several functional tests. The disease causing mutation was studied by several molecular techniques and identified using RNA-sequencing. Results The main clinical features of the GRMD disease were found in LRMD dogs; the functional tests provided data roughly overlapping with those measured in GRMD dogs, with similar inter-individual heterogeneity. The LRMD causal mutation was shown to be a 2.2-Mb inversion disrupting the DMD gene within intron 20 and involving the TMEM47 gene. In skeletal muscle, the Dp71 isoform was ectopically expressed, probably as a consequence of the mutation. We found no evidence of polymorphism in either of the two described modifier genes LTBP4 and Jagged1. No differences were found in Pitpna mRNA expression levels that would explain the inter-individual variability. Conclusions This study provides a full comparative description of a new spontaneous canine model of dystrophinopathy, found to be phenotypically equivalent to the GRMD model. We report a novel large DNA mutation within the DMD gene and provide evidence that LRMD is a relevant model to pinpoint additional DMD modifier genes.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Nadège Calmels
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Laboratoire de Diagnostic Génétique-Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, 1 Place de L'Hôpital, 67091, Strasbourg, France
| | - Robert B Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Adeline Vulin
- SQY Therapeutics, Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Cécile Peccate
- SQY Therapeutics, Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, Paris, France
| | - Carole Drougard
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Laboratoire de Génétique Moléculaire, Marseille, France
| | - Nathalie Deburgrave
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Jean-Laurent Thibaud
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Catherine Escriou
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Isabel Punzón
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Luis Garcia
- Université de Versailles Saint-Quentin-en-Yvelines, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Jean-Claude Kaplan
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Kevin M Flanigan
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - France Leturcq
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, Paris, France
| | - Stéphane Blot
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
| |
Collapse
|
13
|
Barthélémy I, Hitte C, Tiret L. The Dog Model in the Spotlight: Legacy of a Trustful Cooperation. J Neuromuscul Dis 2020; 6:421-451. [PMID: 31450509 PMCID: PMC6918919 DOI: 10.3233/jnd-190394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dogs have long been used as a biomedical model system and in particular as a preclinical proof of concept for innovative therapies before translation to humans. A recent example of the utility of this animal model is the promising myotubularin gene delivery in boys affected by X-linked centronuclear myopathy after successful systemic, long-term efficient gene therapy in Labrador retrievers. Mostly, this is due to unique features that make dogs an optimal system. The continuous emergence of spontaneous inherited disorders enables the identification of reliable complementary molecular models for human neuromuscular disorders (NMDs). Dogs’ characteristics including size, lifespan and unprecedented medical care level allow a comprehensive longitudinal description of diseases. Moreover, the highly similar pathogenic mechanisms with human patients yield to translational robustness. Finally, interindividual phenotypic heterogeneity between dogs helps identifying modifiers and anticipates precision medicine issues. This review article summarizes the present list of molecularly characterized dog models for NMDs and provides an exhaustive list of the clinical and paraclinical assays that have been developed. This toolbox offers scientists a sensitive and reliable system to thoroughly evaluate neuromuscular function, as well as efficiency and safety of innovative therapies targeting these NMDs. This review also contextualizes the model by highlighting its unique genetic value, shaped by the long-term coevolution of humans and domesticated dogs. Because the dog is one of the most protected research animal models, there is considerable opposition to include it in preclinical projects, posing a threat to the use of this model. We thus discuss ethical issues, emphasizing that unlike many other models, the dog also benefits from its contribution to comparative biomedical research with a drastic reduction in the prevalence of morbid alleles in the breeding stock and an improvement in medical care.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Christophe Hitte
- CNRS, University of Rennes 1, UMR 6290, IGDR, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
14
|
Wells DJ. What is the level of dystrophin expression required for effective therapy of Duchenne muscular dystrophy? J Muscle Res Cell Motil 2019; 40:141-150. [PMID: 31289969 DOI: 10.1007/s10974-019-09535-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle wasting disease. The disease is due to mutations in the DMD gene that encodes for a large intracellular protein called dystrophin. Dystrophin plays a critical role in linking the internal cytoskeleton of the striated muscle cell with the extracellular matrix as well as having cell signalling functions. In its absence muscle contraction is associated with cycles of damage, repair, inflammation and fibrosis with eventual loss of muscle and replacement with fat. Experiments in animal models of DMD have generated a number of different approaches to the induction of dystrophin including viral vector mediated delivery of a recombinant dystrophin gene, antisense oligonucleotide mediated exon-skipping to restore the open reading frame in the dystrophin mRNA, read-through of premature stop mutations, genome modification using CRISPR-Cas9 or cell based transfer of a functional dystrophin gene. In all cases, it will be important to understand how much dystrophin expression is required for a clinically effective therapy and this review examines the data from humans and animal models to estimate the percentage of endogenous dystrophin that is likely to have significant clinical benefit. While there are a number of important caveats to consider, including the appropriate outcome measures, this review suggests that approximately 20% of endogenous levels uniformly distributed within the skeletal muscles and the heart may be sufficient to largely prevent disease progression.
Collapse
Affiliation(s)
- Dominic J Wells
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
15
|
Mata López S, Hammond JJ, Rigsby MB, Balog-Alvarez CJ, Kornegay JN, Nghiem PP. A novel canine model for Duchenne muscular dystrophy (DMD): single nucleotide deletion in DMD gene exon 20. Skelet Muscle 2018; 8:16. [PMID: 29843823 PMCID: PMC5975675 DOI: 10.1186/s13395-018-0162-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Background Boys with Duchenne muscular dystrophy (DMD) have DMD gene mutations, with associated loss of the dystrophin protein and progressive muscle degeneration and weakness. Corticosteroids and palliative support are currently the best treatment options. The long-term benefits of recently approved compounds such as eteplirsen and ataluren remain to be seen. Dogs with naturally occurring dystrophinopathies show progressive disease akin to that of DMD. Accordingly, canine DMD models are useful for studies of pathogenesis and preclinical therapy development. A dystrophin-deficient, male border collie dog was evaluated at the age of 5 months for progressive muscle weakness and dysphagia. Case presentation Dramatically increased serum creatine kinase levels (41,520 U/L; normal range 59–895 U/L) were seen on a biochemistry panel. Histopathologic changes characteristic of dystrophinopathy were seen. Dystrophin was absent in the skeletal muscle on immunofluorescence microscopy and western blot. Whole genome sequencing, polymerase chain reaction, and Sanger sequencing revealed a frameshift, single nucleotide deletion in canine DMD exon 20, position 27,626,466 (c.2841delT mRNA), resulting in a stop codon six nucleotides downstream. Semen was archived for future line perpetuation. Conclusions This spontaneous canine dystrophinopathy occurred due to a novel mutation in the minor DMD mutation hotspot (between exons 2 through 20). Perpetuating this line could allow for preclinical testing of genetic therapies targeted to this area of the DMD gene. Electronic supplementary material The online version of this article (10.1186/s13395-018-0162-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Mata López
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - James J Hammond
- Department of Neurology and Neurosurgery, Pieper Memorial Veterinary Center, Middletown, CT, 06457, USA
| | - Madison B Rigsby
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Cynthia J Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Peter P Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA.
| |
Collapse
|
16
|
Expression profiling of disease progression in canine model of Duchenne muscular dystrophy. PLoS One 2018; 13:e0194485. [PMID: 29554127 PMCID: PMC5858769 DOI: 10.1371/journal.pone.0194485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) causes progressive disability in 1 of every 5,000 boys due to the lack of functional dystrophin protein. Despite much advancement in knowledge about DMD disease presentation and progression—attributable in part to studies using mouse and canine models of the disease–current DMD treatments are not equally effective in all patients. There remains, therefore, a need for translational animal models in which novel treatment targets can be identified and evaluated. Golden Retriever muscular dystrophy (GRMD) is a phenotypically and genetically homologous animal model of DMD. As with DMD, speed of disease progression in GRMD varies substantially. However, unlike DMD, all GRMD dogs possess the same causal mutation; therefore genetic modifiers of phenotypic variation are relatively easier to identify. Furthermore, the GRMD dogs used in this study reside within the same colony, reducing the confounding effects of environment on phenotypic variation. To detect modifiers of disease progression, we developed gene expression profiles using RNA sequencing for 9 dogs: 6 GRMD dogs (3 with faster-progressing and 3 with slower-progressing disease, based on quantitative, objective biomarkers) and 3 control dogs from the same colony. All dogs were evaluated at 2 time points: early disease onset (3 months of age) and the point at which GRMD stabilizes (6 months of age) using quantitative, objective biomarkers identified as robust against the effects of relatedness/inbreeding. Across all comparisons, the most differentially expressed genes fell into 3 categories: myogenesis/muscle regeneration, metabolism, and inflammation. Our findings are largely in concordance with DMD and mouse model studies, reinforcing the utility of GRMD as a translational model. Novel findings include the strong up-regulation of chitinase 3-like 1 (CHI3L1) in faster-progressing GRMD dogs, suggesting previously unexplored mechanisms underlie progression speed in GRMD and DMD. In summary, our findings support the utility of RNA sequencing for evaluating potential biomarkers of GRMD progression speed, and are valuable for identifying new avenues of exploration in DMD research.
Collapse
|
17
|
Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs. PLoS One 2018; 13:e0193372. [PMID: 29474464 PMCID: PMC5825102 DOI: 10.1371/journal.pone.0193372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022] Open
Abstract
Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog.
Collapse
|
18
|
Li T, Zhang ZJ, Ma X, Lv X, Xiao H, Guo QN, Liu HY, Wang HD, Wu D, Lou GY, Wang X, Zhang CY, Liao SX. Prenatal diagnosis for a Chinese family with a de novo DMD gene mutation: A case report. Medicine (Baltimore) 2017; 96:e8814. [PMID: 29390271 PMCID: PMC5815683 DOI: 10.1097/md.0000000000008814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients with Duchenne muscular dystrophy (DMD) usually have severe and fatal symptoms. At present, there is no effective treatment for DMD, thus it is very important to avoid the birth of children with DMD by effective prenatal diagnosis. We identified a de novo DMD gene mutation in a Chinese family, and make a prenatal diagnosis. METHODS First, multiplex ligation-dependent probe amplification (MLPA) was applied to analyze DMD gene exon deletion/duplication in all family members. The coding sequences of 79 exons in DMD gene were analyzed by Sanger sequencing in the patient; and then according to DMD gene exon mutation in the patient, DMD gene sequencing was performed in the family members. On the basis of results above, the pathogenic mutation in DMD gene was identified. RESULTS MLPA showed no DMD gene exon deletion/duplication in all family members. Sanger sequencing revealed c.2767_2767delT [p.Ser923LeufsX26] mutation in DMD gene of the patient. Heterozygous deletion mutation (T/-) at this locus was observed in the pregnant woman and her mother and younger sister. The analyses of amniotic fluid samples indicated negative Y chromosome sex-determining gene, no DMD gene exon deletion/duplication, no mutations at c.2767 locus, and the inherited maternal X chromosome different from that of the patient. CONCLUSION The pathogenic mutation in DMD gene, c.2767_2767delT [p.Ser923LeufsX26], identified in this family is a de novo mutation. On the basis of specific conditions, it is necessary to select suitable methods to make prenatal diagnosis more effective, accurate, and economic.
Collapse
Affiliation(s)
- Tao Li
- Institute of Medical Genetics (Prenatal Diagnosis Center), People's Hospital of Zhengzhou University, Henan Provincial People's Hospital
| | - Zhao-jing Zhang
- Department of Medical Genetics and Cell Biology, College of Basic Medical Science, Zhengzhou University
| | - Xin Ma
- Department of Stomatology
| | - Xue Lv
- Department of Health Management, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hai Xiao
- Institute of Medical Genetics (Prenatal Diagnosis Center), People's Hospital of Zhengzhou University, Henan Provincial People's Hospital
| | - Qian-nan Guo
- Institute of Medical Genetics (Prenatal Diagnosis Center), People's Hospital of Zhengzhou University, Henan Provincial People's Hospital
| | - Hong-yan Liu
- Institute of Medical Genetics (Prenatal Diagnosis Center), People's Hospital of Zhengzhou University, Henan Provincial People's Hospital
| | - Hong-dan Wang
- Institute of Medical Genetics (Prenatal Diagnosis Center), People's Hospital of Zhengzhou University, Henan Provincial People's Hospital
| | - Dong Wu
- Institute of Medical Genetics (Prenatal Diagnosis Center), People's Hospital of Zhengzhou University, Henan Provincial People's Hospital
| | - Gui-yu Lou
- Institute of Medical Genetics (Prenatal Diagnosis Center), People's Hospital of Zhengzhou University, Henan Provincial People's Hospital
| | - Xin Wang
- Institute of Medical Genetics (Prenatal Diagnosis Center), People's Hospital of Zhengzhou University, Henan Provincial People's Hospital
| | - Chao-yang Zhang
- Institute of Medical Genetics (Prenatal Diagnosis Center), People's Hospital of Zhengzhou University, Henan Provincial People's Hospital
| | - Shi-xiu Liao
- Institute of Medical Genetics (Prenatal Diagnosis Center), People's Hospital of Zhengzhou University, Henan Provincial People's Hospital
| |
Collapse
|
19
|
Nghiem PP, Bello L, Stoughton WB, López SM, Vidal AH, Hernandez BV, Hulbert KN, Gourley TR, Bettis AK, Balog-Alvarez CJ, Heath-Barnett H, Kornegay JN. Changes in Muscle Metabolism are Associated with Phenotypic Variability in Golden Retriever Muscular Dystrophy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:351-360. [PMID: 28955176 PMCID: PMC5612180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-chromosome-linked disorder and the most common monogenic disease in people. Affected boys are diagnosed at a young age, become non-ambulatory by their early teens, and succumb to cardiorespiratory failure by their thirties. Despite being a monogenic condition resulting from mutations in the DMD gene, affected boys have noteworthy phenotypic variability. Efforts have identified genetic modifiers that could modify disease progression and be pharmacologic targets. Dogs affected with golden retriever muscular dystrophy (GRMD) have absent dystrophin and demonstrate phenotypic variability at the functional, histopathological, and molecular level. Our laboratory is particularly interested in muscle metabolism changes in dystrophin-deficient muscle. We identified several metabolic alterations, including myofiber type switching from fast (type II) to slow (type I), reduced glycolytic enzyme expression, reduced and morphologically abnormal mitochondria, and differential AMP-kinase phosphorylation (activation) between hypertrophied and wasted muscle. We hypothesize that muscle metabolism changes are, in part, responsible for phenotypic variability in GRMD. Pharmacological therapies aimed at modulating muscle metabolism can be tested in GRMD dogs for efficacy.
Collapse
Affiliation(s)
- Peter P. Nghiem
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX,To whom all correspondence should be addressed: Peter P. Nghiem, DVM, Ph.D., Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, Tel: (979) 862-9118,
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| | - William B. Stoughton
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sara Mata López
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Alexander H. Vidal
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Briana V. Hernandez
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Katherine N. Hulbert
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Taylor R. Gourley
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Amanda K. Bettis
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Cynthia J. Balog-Alvarez
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Heather Heath-Barnett
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Joe N. Kornegay
- The Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
20
|
Cox ML, Evans JM, Davis AG, Guo LT, Levy JR, Starr-Moss AN, Salmela E, Hytönen MK, Lohi H, Campbell KP, Clark LA, Shelton GD. Exome sequencing reveals independent SGCD deletions causing limb girdle muscular dystrophy in Boston terriers. Skelet Muscle 2017; 7:15. [PMID: 28697784 PMCID: PMC5506588 DOI: 10.1186/s13395-017-0131-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of inherited autosomal myopathies that preferentially affect voluntary muscles of the shoulders and hips. LGMD has been clinically described in several breeds of dogs, but the responsible mutations are unknown. The clinical presentation in dogs is characterized by marked muscle weakness and atrophy in the shoulder and hips during puppyhood. METHODS Following clinical evaluation, the identification of the dystrophic histological phenotype on muscle histology, and demonstration of the absence of sarcoglycan-sarcospan complex by immunostaining, whole exome sequencing was performed on five Boston terriers: one affected dog and its three family members and one unrelated affected dog. RESULTS Within sarcoglycan-δ (SGCD), a two base pair deletion segregating with LGMD in the family was discovered, and a deletion encompassing exons 7 and 8 was found in the unrelated dog. Both mutations are predicted to cause an absence of SGCD protein, confirmed by immunohistochemistry. The mutations are private to each family. CONCLUSIONS Here, we describe the first cases of canine LGMD characterized at the molecular level with the classification of LGMD2F.
Collapse
Affiliation(s)
- Melissa L. Cox
- CAG GmbH - Center for Animal Genetics, Paul-Ehrlich-Str. 23, 72076 Tubingen, Germany
| | - Jacquelyn M. Evans
- Department of Genetics and Biochemistry, Clemson University, 130 McGinty Ct., Clemson, SC 29634 USA
| | - Alexander G. Davis
- Department of Genetics and Biochemistry, Clemson University, 130 McGinty Ct., Clemson, SC 29634 USA
| | - Ling T. Guo
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Jennifer R. Levy
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, Iowa 52242-1101 USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, Iowa 52242 USA
| | - Alison N. Starr-Moss
- Department of Genetics and Biochemistry, Clemson University, 130 McGinty Ct., Clemson, SC 29634 USA
| | - Elina Salmela
- Department of Veterinary Biosciences and Research Programs Unit, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences and Research Programs Unit, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences and Research Programs Unit, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, Iowa 52242-1101 USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, Iowa 52242 USA
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, 130 McGinty Ct., Clemson, SC 29634 USA
| | - G. Diane Shelton
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
21
|
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in the DMD gene and loss of the protein dystrophin. The absence of dystrophin leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Despite extensive attempts to develop definitive therapies for DMD, the standard of care remains prednisone, which has only palliative benefits. Animal models, mainly the mdx mouse and golden retriever muscular dystrophy (GRMD) dog, have played a key role in studies of DMD pathogenesis and treatment development. Because the GRMD clinical syndrome is more severe than in mice, better aligning with the progressive course of DMD, canine studies may translate better to humans. The original founder dog for all GRMD colonies worldwide was identified in the early 1980s before the discovery of the DMD gene and dystrophin. Accordingly, analogies to DMD were initially drawn based on similar clinical features, ranging from the X-linked pattern of inheritance to overlapping histopathologic lesions. Confirmation of genetic homology between DMD and GRMD came with identification of the underlying GRMD mutation, a single nucleotide change that leads to exon skipping and an out-of-frame DMD transcript. GRMD colonies have subsequently been established to conduct pathogenetic and preclinical treatment studies. Simultaneous with the onset of GRMD treatment trials, phenotypic biomarkers were developed, allowing definitive characterization of treatment effect. Importantly, GRMD studies have not always substantiated findings from mdx mice and have sometimes identified serious treatment side effects. While the GRMD model may be more clinically relevant than the mdx mouse, usage has been limited by practical considerations related to expense and the number of dogs available. This further complicates ongoing broader concerns about the poor rate of translation of animal model preclinical studies to humans with analogous diseases. Accordingly, in performing GRMD trials, special attention must be paid to experimental design to align with the approach used in DMD clinical trials. This review provides context for the GRMD model, beginning with its original description and extending to its use in preclinical trials.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Mail Stop 4458, College Station, TX, 77843-4458, USA.
| |
Collapse
|