1
|
Wang X, Hu M, Li M, Huan F, Gao R, Wang J. Effects of exposure to 3,6-DBCZ on neurotoxicity and AhR pathway during early life stages of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115892. [PMID: 38157798 DOI: 10.1016/j.ecoenv.2023.115892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging environmental pollutants, yet limited information is available on their embryotoxicity and neurotoxicity. Therefore, the current work was performed to investigate the adverse effects of 3,6-dibromocarbazole (3,6-DBCZ), a typical PHCZs homolog, on the early life stages of zebrafish larvae. It revealed that the 96-hour post-fertilization (hpf) median lethal concentration (LC50) value of 3,6-DBCZ in zebrafish larvae was determined to be 0.7988 mg/L. Besides, 3,6-DBCZ reduced survival rates at concentrations ≥ 1 mg/L and decreased hatching rates at ≥ 0.25 mg/L at 48 hpf. In behavior tests, it inhibited locomotor activities and reduced the frequency of recorded acceleration states in response to optesthesia (a sudden bright light stimulus) at concentrations ≥ 160 μg/L. Meanwhile, 3,6-DBCZ exposure decreased the frequency of recorded acceleration states in the startle response (tapping mode) at concentrations ≥ 6.4 μg/L. Pathologically, with the transgenic zebrafish model (hb9-eGFP), we observed a strikingly decreased axon length and number in motor neurons after 3,6-DBCZ treatment, which may be ascribed to the activation of the AhR signaling pathway, as evidenced by the molecular docking analysis and Microscale thermophoresis (MST) assay suggested that 3,6-DBCZ binding to AhR-ARNT2 compound proteins. Through interaction with AhR-ARNT, a striking reduction of the anti-oxidative stress (sod1/2, nqo1, nrf2) and neurodevelopment-related genes (elavl3, gfap, mbp, syn2a) were observed after 3,6-DBCZ challenge, accompanied by a marked increased inflammatory genes (TNFβ, IL1β, IL6). Collectively, our findings reveal a previously unrecognized adverse effect of 3,6-DBCZ on zebrafish neurodevelopment and locomotor behaviors, potentially mediated through the activation of the AhR pathway. Furthermore, it provides direct evidence for the toxic concentrations of 3,6-DBCZ and the potential target signaling in zebrafish larvae, which may be beneficial for the risk assessment of the aquatic ecosystems.
Collapse
Affiliation(s)
- Xi Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Miaoyang Hu
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Muhan Li
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Fei Huan
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jun Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Feltner M, Hare PM, Good A, Foster EG, Clough K, Perry J, Honaker A, Kyntchev A, Kowalski M, Curran CP. Differential Susceptibility to Benzo[a]pyrene Exposure during Gestation and Lactation in Mice with Genetic Variations in the Aryl Hydrocarbon Receptor and Cyp1 Genes. TOXICS 2023; 11:778. [PMID: 37755789 PMCID: PMC10537487 DOI: 10.3390/toxics11090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Polycyclic aromatic hydrocarbons are ubiquitous air pollutants, with additional widespread exposure in the diet. PAH exposure has been linked to adverse birth outcomes and long-term neurological consequences. To understand genetic differences that could affect susceptibility following developmental exposure to polycyclic aromatic hydrocarbons, we exposed mice with variations in the aryl hydrocarbon receptor and the three CYP1 enzymes from gestational day 10 (G10) to weaning at postnatal day 25 (P25). We found unexpectedly high neonatal lethality in high-affinity AhrbCyp1b1(-/-) knockout mice compared with all other genotypes. Over 60% of BaP-exposed pups died within their first 5 days of life. There was a significant effect of BaP on growth rates in surviving pups, with lower weights observed from P7 to P21. Again, AhrbCyp1b1(-/-) knockout mice were the most susceptible to growth retardation. Independent of treatment, this line of mice also had impaired development of the surface righting reflex. We used high-resolution mass spectrometry to measure BaP and metabolites in tissues from both dams and pups. We found the highest BaP levels in adipose from poor-affinity AhrdCyp1a2(-/-) dams and identified three major BaP metabolites (BaP-7-OH, BaP-9-OH, and BaP-4,5-diol), but our measurements were limited to a single time point. Future work is needed to understand BaP pharmacokinetics in the contexts of gestation and lactation and how differential metabolism leads to adverse developmental outcomes.
Collapse
Affiliation(s)
- Mackenzie Feltner
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA; (M.F.); (E.G.F.); (K.C.); (A.H.); (A.K.); (M.K.)
| | - Patrick M. Hare
- Department of Chemistry & Biochemistry, Northern Kentucky University, Highland Heights, KY 41099, USA;
| | - Asia Good
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA; (M.F.); (E.G.F.); (K.C.); (A.H.); (A.K.); (M.K.)
| | - Emma G. Foster
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA; (M.F.); (E.G.F.); (K.C.); (A.H.); (A.K.); (M.K.)
| | - Katelyn Clough
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA; (M.F.); (E.G.F.); (K.C.); (A.H.); (A.K.); (M.K.)
| | - Jade Perry
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA; (M.F.); (E.G.F.); (K.C.); (A.H.); (A.K.); (M.K.)
| | - Amanda Honaker
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA; (M.F.); (E.G.F.); (K.C.); (A.H.); (A.K.); (M.K.)
| | - Angela Kyntchev
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA; (M.F.); (E.G.F.); (K.C.); (A.H.); (A.K.); (M.K.)
| | - Mickayla Kowalski
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA; (M.F.); (E.G.F.); (K.C.); (A.H.); (A.K.); (M.K.)
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA; (M.F.); (E.G.F.); (K.C.); (A.H.); (A.K.); (M.K.)
| |
Collapse
|
3
|
Li X, Bullert AJ, Han W, Yang W, Zhang QY, Ding X, Lehmler HJ. Enantiomeric Fractions Reveal Differences in the Atropselective Disposition of 2,2',3,5',6-Pentachlorobiphenyl (PCB 95) in Wildtype, Cyp2abfgs-Null, and CYP2A6-Humanized Mice. Chem Res Toxicol 2023; 36:1386-1397. [PMID: 37467352 PMCID: PMC10445290 DOI: 10.1021/acs.chemrestox.3c00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 07/21/2023]
Abstract
Polychlorinated biphenyls (PCBs) are environmental contaminants that can cause neurotoxicity. PCBs, such as PCB 95 (2,2',3,5',6-pentachlorobiphenyl), can be metabolized by cytochrome P450 enzymes into neurotoxic metabolites. To better understand how the metabolism of PCB 95 affects neurotoxic outcomes, we conducted a study on the disposition of PCB 95 in transgenic mouse models. The mice were given a single oral dose of PCB 95 (1.0 mg/kg) and were euthanized 24 h later for analysis. PCB 95 levels were highest in adipose tissue, followed by the liver, brain, and blood. Adipose tissue levels were significantly higher in wild-type (WT) mice than in Cyp2abfgs-null (KO) or CYP2A6-transgenic (KI) mice. We also observed genotype-dependent differences in the enrichment of aS-PCB 95 in female mice, with a less pronounced enrichment in KO than WT and KI mice. Ten hydroxylated PCB 95 metabolites were detected in blood and tissue across all exposure groups. The metabolite profiles differed across tissues, while sex and genotype-dependent differences were less pronounced. Total OH-PCB levels were highest in the blood, followed by the liver, adipose tissue, and brain. Total OH-PCB blood levels were lower in KO than in WT mice, while the opposite trend was observed in the liver. In male mice, total OH-PCB metabolite levels were significantly lower in KI than in WT mice in blood and the liver, while the opposite trend was observed in female mice. In conclusion, the study highlights the differences in the atropselective disposition of PCB 95 and its metabolites in different types of mice, demonstrating the usefulness of these transgenic mouse models for characterizing the role of PCB metabolism in PCB neurotoxicity.
Collapse
Affiliation(s)
- Xueshu Li
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amanda J. Bullert
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Weiguo Han
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Weizhu Yang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Qing-Yu Zhang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Xinxin Ding
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
4
|
Lehmler HJ, Uwimana E, Dean LE, Kovalchuk N, Zhang QY, Ding X. Probing the Role of CYP2 Enzymes in the Atropselective Metabolism of Polychlorinated Biphenyls Using Liver Microsomes from Transgenic Mouse Models. Chem Res Toxicol 2022; 35:2310-2323. [PMID: 36473170 PMCID: PMC9957597 DOI: 10.1021/acs.chemrestox.2c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chiral polychlorinated biphenyls (PCB) are environmentally relevant developmental neurotoxicants. Because their hydroxylated metabolites (OH-PCBs) are also neurotoxic, it is necessary to determine how PCB metabolism affects the developing brain, for example, in mouse models. Because the cytochrome P450 isoforms involved in the metabolism of chiral PCBs remain unexplored, we investigated the metabolism of PCB 91 (2,2',3,4',6-pentachlorobiphenyl), PCB 95 (2,2',3,5',6-pentachlorobiphenyl), PCB 132 (2,2',3,3',4,6'-hexachlorobiphenyl), and PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) using liver microsomes from male and female Cyp2a(4/5)bgs-null, Cyp2f2-null, and wild-type mice. Microsomes, pooled by sex, were incubated with 50 μM PCB for 30 min, and the levels and enantiomeric fractions of the OH-PCBs were determined gas chromatographically. All four PCB congeners appear to be atropselectively metabolized by CYP2A(4/5)BGS and CYP2F2 enzymes in a congener- and sex-dependent manner. The OH-PCB metabolite profiles of PCB 91 and PCB 132, PCB congeners with one para-chlorine substituent, differed between null and wild-type mice. No differences in the metabolite profiles were observed for PCB 95 and PCB 136, PCB congeners without a para-chlorine group. These findings suggest that Cyp2a(4/5)bgs-null and Cyp2f2-null mice can be used to study how a loss of a specific metabolic function (e.g., deletion of Cyp2a(4/5)bgs or Cyp2f2) affects the toxicity of chiral PCB congeners.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States
| | - Eric Uwimana
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States
| | - Laura E. Dean
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States
| | - Nataliia Kovalchuk
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Qing-Yu Zhang
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Xinxin Ding
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
5
|
Denuzière A, Ghersi-Egea JF. Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. Neurotoxicology 2022; 91:100-118. [DOI: 10.1016/j.neuro.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
|
6
|
Laufer BI, Neier K, Valenzuela AE, Yasui DH, Schmidt RJ, Lein PJ, LaSalle JM. Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of prenatal PCB exposure. Cell Rep 2022; 38:110442. [PMID: 35235788 PMCID: PMC8941983 DOI: 10.1016/j.celrep.2022.110442] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that overlap fetal brain DMRs relevant to an NDD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Honaker A, Kyntchev A, Foster E, Clough K, Hawk G, Asiedu E, Berling K, DeBurger E, Feltner M, Ferguson V, Forrest PT, Jenkins K, Massie L, Mullaguru J, Niang MD, Perry C, Sene Y, Towell A, Curran CP. The behavioral effects of gestational and lactational benzo[a]pyrene exposure vary by sex and genotype in mice with differences at the Ahr and Cyp1a2 loci. Neurotoxicol Teratol 2022; 89:107056. [PMID: 34890772 PMCID: PMC8763354 DOI: 10.1016/j.ntt.2021.107056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) and known carcinogen in the Top 10 on the United States' list of priority pollutants. Humans are exposed through a variety of sources including tobacco smoke, grilled foods and fossil fuel combustion. Recent studies of children exposed to higher levels of PAHs during pregnancy and early life have identified numerous adverse effects on the brain and behavior that persist into school age and adolescence. Our studies were designed to look for genotype and sex differences in susceptibility to gestational and lactational exposure to BaP using a mouse model with allelic differences in the aryl hydrocarbon receptor and the xenobiotic metabolizing enzyme CYP1A2. Pregnant dams were exposed to 10 mg/kg/day of BaP in corn oil-soaked cereal or the corn oil vehicle alone from gestational day 10 until weaning at postnatal day 25. Neurobehavioral testing began at P60 using one male and one female per litter. We found main effects of sex, genotype and treatment as well as significant gene x treatment and sex x treatment interactions. BaP-treated female mice had shorter latencies to fall in the Rotarod test. BaP-treated high-affinity AhrbCyp1a2(-/-) mice had greater impairments in Morris water maze. Interestingly, poor-affinity AhrdCyp1a2(-/-) mice also had deficits in spatial learning and memory regardless of treatment. We believe our findings provide future directions in identifying human populations at highest risk of early life BaP exposure, because our model mimics known human variation in our genes of interest. Our studies also highlight the value of testing both males and females in all neurobehavioral studies.
Collapse
Affiliation(s)
- Amanda Honaker
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Angela Kyntchev
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Emma Foster
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Katelyn Clough
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Greg Hawk
- University of Kentucky Applied Statistics Laboratory, Department of Statistics, University of Kentucky, 725 Rose Street, Lexington, KY 40536, USA
| | - Emmanuella Asiedu
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Kevin Berling
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Emma DeBurger
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Mackenzie Feltner
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Victoria Ferguson
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Philip Tyler Forrest
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Kayla Jenkins
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Lisa Massie
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Jayasree Mullaguru
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Mame Diarra Niang
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Connor Perry
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Yvonne Sene
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Aria Towell
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
8
|
Influence of the Aryl Hydrocarbon Receptor Activating Environmental Pollutants on Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22179258. [PMID: 34502168 PMCID: PMC8431328 DOI: 10.3390/ijms22179258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.
Collapse
|
9
|
Wang Y, Hu C, Fang T, Jin Y, Wu R. Perspective on prenatal polychlorinated biphenyl exposure and the development of the progeny nervous system (Review). Int J Mol Med 2021; 48:150. [PMID: 34132363 PMCID: PMC8219518 DOI: 10.3892/ijmm.2021.4983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
The developmental origins of health and disease concept illustrates that exposure in early life to various factors may affect the offspring's long-term susceptibility to disease. During development, the nervous system is sensitive and vulnerable to the environmental insults. Polychlorinated biphenyls (PCBs), which are divided into dioxin-like (DL-PCBs) and non-dioxin-like PCBs (NDL-PCBs), are synthetic persistent environmental endocrine-disrupting chemicals. The toxicological mechanisms of DL-PCBs have been associated with the activation of the aryl hydrocarbon receptor and NDL-PCBs have been associated with ryanodine receptor-mediated calcium ion channels, which affect neuronal migration, promote dendritic growth and alter neuronal connectivity. In addition, PCB accumulation in the placenta destroys the fetal placental unit and affects endocrine function, particularly thyroid hormones and the dopaminergic system, leading to neuroendocrine disorders. However, epidemiological investigations have not achieved a consistent result in different study cohorts. The present review summarizes the epidemiological differences and possible mechanisms of the effects of intrauterine PCB exposure on neurological development.
Collapse
Affiliation(s)
- Yinfeng Wang
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Changchang Hu
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Tao Fang
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yang Jin
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ruijin Wu
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
10
|
Berlin M, Barchel D, Brik A, Kohn E, Livne A, Keidar R, Tovbin J, Betser M, Moskovich M, Mandel D, Lubetzky R, Ovental A, Factor-Litvak P, Britzi M, Ziv-Baran T, Koren R, Klieger C, Berkovitch M, Matok I, Marom R. Maternal and Newborn Thyroid Hormone, and the Association With Polychlorinated Biphenyls (PCBs) Burden: The EHF (Environmental Health Fund) Birth Cohort. Front Pediatr 2021; 9:705395. [PMID: 34589452 PMCID: PMC8473683 DOI: 10.3389/fped.2021.705395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants found in human tissues. PCBs can be transferred through the placenta and may disrupt the maternal thyroid homeostasis, and affect fetal thyroid hormone production. Several studies have shown that intrauterine exposure to PCBs might be associated with abnormal levels of thyroid hormones in mothers and their offspring. Objectives: To examine the associations between environmental exposure to PCBs and thyroid hormone levels in mothers and newborns. Methods: The EHF-Assaf-Harofeh-Ichilov cohort includes 263 mothers-newborns dyads. A total of 157 mother-newborn dyads had both PCBs and thyroid function measures. Regression models were used to estimate associations between maternal PCB exposure and maternal and newborn thyroid function, controlling for possible confounders. Results: Four PCBs congeners were analyzed: PCBs 118, 138, 153, and 180. ∑PCBs median (IQR) level was 14.65 (2.83-68.14) ng/g lipids. The median maternal thyroid-stimulating hormone (TSH) level was 2.66 (0.70-8.23) μIU/ml, the median maternal free thyroxine (FT4) level was 12.44 (11.27-13.53) μg/dL, the median maternal thyroid peroxidase antibodies (TPO Ab) level was 9.6 (7.36-12.51) IU/mL. Newborns' median total thyroxine (T4) level was 14.8 (7.6-24.9) μg/dL. No association was found between exposure to different congeners or to ∑PCBs and maternal TSH, FT4, thyroglobulin autoantibodies (Tg Ab), TPO Ab and newborn total T4 levels. In multivariable analysis a 1% change in ∑PCBs level was significantly associated with a 0.57% change in maternal TSH levels in women with body mass index (BMI) < 19. The same association was observed for each of the studied PCB congeners. Maternal TPO Ab levels statistically significantly increased by 0.53 and 0.46% for 1% increase in PCB 118 and 153 congeners, respectively. In women with BMI > 25, the association between the PCBs levels and maternal TSH levels was in the opposite direction. No association was found in women with normal BMI (19-24.9). Conclusions: Background exposure to environmentally relevant concentrations of some PCBs can alter thyroid hormone homeostasis in pregnant women and might be associated with abnormal TSH levels and TPO-Ab in women with low BMI. However, these findings require further investigation.
Collapse
Affiliation(s)
- Maya Berlin
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Barchel
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Brik
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ayelet Livne
- Department of Neonatology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Rimona Keidar
- Department of Neonatology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Josef Tovbin
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Moshe Betser
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Miki Moskovich
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dror Mandel
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ronit Lubetzky
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Amit Ovental
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Malka Britzi
- Residues Lab, Kimron Veterinary Institute, Beit-Dagan, Israel
| | - Tomer Ziv-Baran
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ronit Koren
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Internal Medicine A, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Chagit Klieger
- Feto-Maternal Unit, Lis Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ilan Matok
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronella Marom
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Klocke C, Sethi S, Lein PJ. The developmental neurotoxicity of legacy vs. contemporary polychlorinated biphenyls (PCBs): similarities and differences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8885-8896. [PMID: 31713823 PMCID: PMC7220795 DOI: 10.1007/s11356-019-06723-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/07/2019] [Indexed: 05/11/2023]
Abstract
Although banned from production for decades, PCBs remain a significant risk to human health. A primary target of concern is the developing brain. Epidemiological studies link PCB exposures in utero or during infancy to increased risk of neuropsychiatric deficits in children. Nonclinical studies of legacy congeners found in PCB mixtures synthesized prior to the ban on PCB production suggest that non-dioxin-like (NDL) congeners are predominantly responsible for the developmental neurotoxicity associated with PCB exposures. Mechanistic studies suggest that NDL PCBs alter neurodevelopment via ryanodine receptor-dependent effects on dendritic arborization. Lightly chlorinated congeners, which were not present in the industrial mixtures synthesized prior to the ban on PCB production, have emerged as contemporary environmental contaminants, but there is a paucity of data regarding their potential developmental neurotoxicity. PCB 11, a prevalent contemporary congener, is found in the serum of children and their mothers, as well as in the serum of pregnant women at increased risk for having a child diagnosed with a neurodevelopmental disorder (NDD). Recent data demonstrates that PCB 11 modulates neuronal morphogenesis via mechanisms that are convergent with and divergent from those implicated in the developmental neurotoxicity of legacy NDL PCBs. This review summarizes these data and discusses their relevance to adverse neurodevelopmental outcomes in humans.
Collapse
Affiliation(s)
- Carolyn Klocke
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
13
|
Rusyn I, Kleeberger SR, McAllister KA, French JE, Svenson KL. Introduction to mammalian genome special issue: the combined role of genetics and environment relevant to human disease outcomes. Mamm Genome 2018; 29:1-4. [PMID: 29460122 DOI: 10.1007/s00335-018-9740-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| | | | | | - John E French
- UNC Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|