1
|
Xi X, Li J, Jia J, Meng Q, Li C, Wang X, Wei L, Zhang X. A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions. Nat Commun 2025; 16:1284. [PMID: 39900922 PMCID: PMC11790924 DOI: 10.1038/s41467-025-56475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Cells are regulated at multiple levels, from regulations of individual genes to interactions across multiple genes. Some recent neural network models can connect molecular changes to cellular phenotypes, but their design lacks modeling of regulatory mechanisms, limiting the decoding of regulations behind key cellular events, such as cell state transitions. Here, we present regX, a deep neural network incorporating both gene-level regulation and gene-gene interaction mechanisms, which enables prioritizing potential driver regulators of cell state transitions and providing mechanistic interpretations. Applied to single-cell multi-omics data on type 2 diabetes and hair follicle development, regX reliably prioritizes key transcription factors and candidate cis-regulatory elements that drive cell state transitions. Some regulators reveal potential new therapeutic targets, drug repurposing possibilities, and putative causal single nucleotide polymorphisms. This method to analyze single-cell multi-omics data demonstrates how the interpretable design of neural networks can better decode biological systems.
Collapse
Affiliation(s)
- Xi Xi
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Jiaqi Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Jinmeng Jia
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Qiuchen Meng
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Chen Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Xiaowo Wang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Lei Wei
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Erkens R, Duse DA, Brum A, Chadt A, Becher S, Siragusa M, Quast C, Müssig J, Roden M, Cortese-Krott M, Ibáñez B, Lammert E, Fleming I, Jung C, Al-Hasani H, Heusch G, Kelm M. Inhibition of proline-rich tyrosine kinase 2 restores cardioprotection by remote ischaemic preconditioning in type 2 diabetes. Br J Pharmacol 2024; 181:4174-4194. [PMID: 38956895 DOI: 10.1111/bph.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Remote ischaemic preconditioning (rIPC) for cardioprotection is severely impaired in diabetes, and therapeutic options to restore it are lacking. The vascular endothelium plays a key role in rIPC. Given that the activity of endothelial nitric oxide synthase (eNOS) is inhibited by proline-rich tyrosine kinase 2 (Pyk2), we hypothesized that pharmacological Pyk2 inhibition could restore eNOS activity and thus restore remote cardioprotection in diabetes. EXPERIMENTAL APPROACH New Zealand obese (NZO) mice that demonstrated key features of diabetes were studied. The consequence of Pyk2 inhibition on endothelial function, rIPC and infarct size after myocardial infarction were evaluated. The impact of plasma from mice and humans with or without diabetes was assessed in isolated buffer perfused murine hearts and aortic rings. KEY RESULTS Plasma from nondiabetic mice and humans, both subjected to rIPC, caused remote tissue protection. Similar to diabetic humans, NZO mice demonstrated endothelial dysfunction. NZO mice had reduced circulating nitrite levels, elevated arterial blood pressure and a larger infarct size after ischaemia and reperfusion than BL6 mice. Pyk2 increased the phosphorylation of eNOS at its inhibitory site (Tyr656), limiting its activity in diabetes. The cardioprotective effects of rIPC were abolished in diabetic NZO mice. Pharmacological Pyk2 inhibition restored endothelial function and rescued cardioprotective effects of rIPC. CONCLUSION AND IMPLICATIONS Endothelial function and remote tissue protection are impaired in diabetes. Pyk2 is a novel target for treating endothelial dysfunction and restoring cardioprotection through rIPC in diabetes.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Dragos Andrei Duse
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
| | - Stefanie Becher
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Mauro Siragusa
- Center for Molecular Medicine, Institute for Vascular Signalling, Goethe University Frankfurt, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site RhineMain, Frankfurt, Germany
| | - Christine Quast
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Johanna Müssig
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University and University Hospital Duesseldorf, Duesseldorf, Germany
- Institute for Clinical Diabetology, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | - Miriam Cortese-Krott
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- CARID Cardiovascular Research Institute Duesseldorf, Duesseldorf, Germany
| | - Borja Ibáñez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eckhard Lammert
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
- Institute of Metabolic Physiology, Heinrich-Heine University, Duesseldorf, Germany
| | - Ingrid Fleming
- Center for Molecular Medicine, Institute for Vascular Signalling, Goethe University Frankfurt, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site RhineMain, Frankfurt, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University School of Medicine Essen, Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- CARID Cardiovascular Research Institute Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
3
|
Wang J, Wen S, Chen M, Xie J, Lou X, Zhao H, Chen Y, Zhao M, Shi G. Regulation of endocrine cell alternative splicing revealed by single-cell RNA sequencing in type 2 diabetes pathogenesis. Commun Biol 2024; 7:778. [PMID: 38937540 PMCID: PMC11211498 DOI: 10.1038/s42003-024-06475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
The prevalent RNA alternative splicing (AS) contributes to molecular diversity, which has been demonstrated in cellular function regulation and disease pathogenesis. However, the contribution of AS in pancreatic islets during diabetes progression remains unclear. Here, we reanalyze the full-length single-cell RNA sequencing data from the deposited database to investigate AS regulation across human pancreatic endocrine cell types in non-diabetic (ND) and type 2 diabetic (T2D) individuals. Our analysis demonstrates the significant association between transcriptomic AS profiles and cell-type-specificity, which could be applied to distinguish the clustering of major endocrine cell types. Moreover, AS profiles are enabled to clearly define the mature subset of β-cells in healthy controls, which is completely lost in T2D. Further analysis reveals that RNA-binding proteins (RBPs), heterogeneous nuclear ribonucleoproteins (hnRNPs) and FXR1 family proteins are predicted to induce the functional impairment of β-cells through regulating AS profiles. Finally, trajectory analysis of endocrine cells suggests the β-cell identity shift through dedifferentiation and transdifferentiation of β-cells during the progression of T2D. Together, our study provides a mechanism for regulating β-cell functions and suggests the significant contribution of AS program during diabetes pathogenesis.
Collapse
Affiliation(s)
- Jin Wang
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shiyi Wen
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minqi Chen
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Jiayi Xie
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xinhua Lou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haihan Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanming Chen
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Guojun Shi
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Wang H, Umer MJ, Liu F, Cai X, Zheng J, Xu Y, Hou Y, Zhou Z. Genome-Wide Identification and Characterization of CPR5 Genes in Gossypium Reveals Their Potential Role in Trichome Development. Front Genet 2022; 13:921096. [PMID: 35754813 PMCID: PMC9213653 DOI: 10.3389/fgene.2022.921096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
Trichomes protect plants against insects, microbes, herbivores, and abiotic damages and assist seed dispersal. The function of CPR5 genes have been found to be involved in the trichome development but the research on the underlying genetic and molecular mechanisms are extremely limited. Herein, genome wide identification and characterization of CPR5 genes was performed. In total, 26 CPR5 family members were identified in Gossypium species. Phylogenetic analysis, structural characteristics, and synteny analysis of CPR5s showed the conserved evolution relationships of CPR5. The promoter analysis of CPR5 genes revealed hormone, stress, and development-related cis-elements. Gene ontology (GO) enrichment analysis showed that the CPR5 genes were largely related to biological regulation, developmental process, multicellular organismal process. Protein-protein interaction analysis predicted several trichome development related proteins (SIM, LGO, and GRL) directly interacting with CPR5 genes. Further, nine putative Gossypium-miRNAs were also identified, targeting Gossypium CPR5 genes. RNA-Seq data of G. arboreum (with trichomes) and G. herbaceum (with no trichomes) was used to perform the co-expression network analysis. GheCPR5.1 was identified as a hub gene in a co-expression network analysis. RT-qPCR of GheCPR5.1 gene in different tissues suggests that this gene has higher expressions in the petiole and might be a key candidate involved in the trichome development. Virus induced gene silencing of GheCPR5.1 (Ghe02G17590) confirms its role in trichome development and elongation. Current results provide proofs of the possible role of CPR5 genes and provide preliminary information for further studies of GheCPR5.1 functions in trichome development.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Jie Zheng
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| |
Collapse
|