1
|
Menzel G, Dechyeva D, Keller H, Lange C, Himmelbauer H, Schmidt T. Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L. Chromosome Res 2007; 14:831-44. [PMID: 17171577 DOI: 10.1007/s10577-006-1090-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/18/2006] [Accepted: 09/18/2006] [Indexed: 10/23/2022]
Abstract
We have identified three families of miniature inverted-repeat transposable elements (VulMITEs) in the genome of sugar beet (Beta vulgaris L.), evidently derived from a member of the Vulmar family of mariner transposons. While VulMITEs I are typical stowaway-like MITEs, VulMITEs II and VulMITEs III are rearranged stowaway elements of increased size. The integration of divergent moderately and highly repetitive sequences into VulMITEs II and, in particular in VulMITEs III, respectively, shows that amplification of repetitive DNA by MITEs contribute to the increase of genome size with possible implications for plant genome evolution. Fluorescent in-situ hybridization (FISH), for the first time visualizing stowaway MITE distribution on plant chromosomes, revealed a dispersed localization of VulMITEs along all B. vulgaris chromosomes. Analysis of the flanking sequences identified a dispersed repeat as target site for the integration of the stowaway element VulMITE I. Recent transposition of VulMITE I, which most likely occurred during the domestication of cultivated beets, was concluded from insertional polymorphisms between different B. vulgaris cultivars and species.
Collapse
Affiliation(s)
- Gerhard Menzel
- Institute of Botany, Dresden University of Technology, D-01062, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Khorasani MZ, Hennig S, Imre G, Asakawa S, Palczewski S, Berger A, Hori H, Naruse K, Mitani H, Shima A, Lehrach H, Wittbrodt J, Kondoh H, Shimizu N, Himmelbauer H. A first generation physical map of the medaka genome in BACs essential for positional cloning and clone-by-clone based genomic sequencing. Mech Dev 2005; 121:903-13. [PMID: 15210195 DOI: 10.1016/j.mod.2004.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 03/29/2004] [Accepted: 03/30/2004] [Indexed: 01/11/2023]
Abstract
In order to realize the full potential of the medaka as a model system for developmental biology and genetics, characterized genomic resources need to be established, culminating in the sequence of the medaka genome. To facilitate the map-based cloning of genes underlying induced mutations and to provide templates for clone-based genomic sequencing, we have created a first-generation physical map of the medaka genome in bacterial artificial chromosome (BAC) clones. In particular, we exploited the synteny to the closely related genome of the pufferfish, Takifugu rubripes, by marker content mapping. As a first step, we clustered 103,144 public medaka EST sequences to obtain a set of 21,121 non-redundant sequence entities. Avoiding oversampling of gene-dense regions, 11,254 of EST clusters were successfully matched against the draft sequence of the fugu genome, and 2363 genes were selected for the BAC map project. We designed 35mer oligonucleotide probes from the selected genes and hybridized them against 64,500 BAC clones of strains Cab and Hd-rR, representing 14-fold coverage of the medaka genome. Our data set is further supplemented with 437 results generated from PCR-amplified inserts of medaka cDNA clones and BAC end-fragment markers. Our current, edited, first generation medaka BAC map consists of 902 map segments that cover about 74% of the medaka genome. The map contains 2721 markers. Of these, 2534 are from expressed sequences, equivalent to a non-redundant set of 2328 loci. The 934 markers (724 different) are anchored to the medaka genetic map. Thus, genetic map assignments provide immediate access to underlying clones and contigs, simplifying molecular access to candidate gene regions and their characterization.
Collapse
Affiliation(s)
- Maryam Zadeh Khorasani
- Department of Vertebrate Genomics, Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Dahlem, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Schalkwyk LC, Cusack B, Dunkel I, Hopp M, Kramer M, Palczewski S, Piefke J, Scheel S, Weiher M, Wenske G, Lehrach H, Himmelbauer H. Advanced integrated mouse YAC map including BAC framework. Genome Res 2001; 11:2142-50. [PMID: 11731506 PMCID: PMC311217 DOI: 10.1101/gr.176201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Functional characterization of the mouse genome requires the availability of a comprehensive physical map to obtain molecular access to chromosomal regions of interest. Positional cloning remains a crucial way of linking phenotype with particular genes. A key step and frequent stumbling block in positional cloning is making a contig of a genetically defined candidate region. The most efficient first step is isolating YAC (Yeast Artificial Chromosome) clones. A robust, detailed YAC contig map is thus an important tool. Employing Interspersed Repetitive Sequence (IRS)-PCR genomics, we have generated an advanced second-generation YAC contig map of the mouse genome that doubles both the depth of clones and the density of markers available. In addition to the primarily YAC-based map, we located 1942 BAC (Bacterial Artificial Chromosome) clones. This allows us to present for the first time a dense framework of BACs spanning the genome of the mouse, which, for instance, can serve as a nucleus for genomic sequencing. Four large-insert mouse YAC libraries from three different strains are included in our data, and our analysis incorporates the data of Hunter et al. and Nusbaum et al. There is a total of 20,205 markers on the final map, 12,033 from our own data, and a total of 56,093 YACs, of which 44,401 are positive for more than one marker.
Collapse
Affiliation(s)
- L C Schalkwyk
- Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hemberger M, Cross JC, Ropers HH, Lehrach H, Fundele R, Himmelbauer H. UniGene cDNA array-based monitoring of transcriptome changes during mouse placental development. Proc Natl Acad Sci U S A 2001; 98:13126-31. [PMID: 11698681 PMCID: PMC60835 DOI: 10.1073/pnas.231396598] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The placenta is a highly specialized organ essential for embryonic growth and development. Here, we have applied cDNA subtraction between extraembryonic tissues of early- (day 7.5 of gestation) and late-stage embryos (day 17.5) to generate stage-specific cDNA pools that were used for screening of high-density mouse UniGene cDNA arrays containing 25,000 clones. A total of 638 clones were identified, 488 with the e7.5-specific probe and 150 with the e17.5-specific probe. Importantly, 363/638 (56.9%) of the hybridizing clones were not known to be expressed during placental development before. Differential regulation was confirmed by Northern blot and in situ hybridization for a total of 44/44 of positive clones. Thus, this combination of cDNA subtraction and array hybridization was highly successful for identification of genes expressed and regulated during placental development. These included growth factors and receptors, components of the transcriptional and translational machinery, cell cycle regulators, molecular chaperones, and cytoskeletal elements. The extensive in situ hybridization analysis revealed extraembryonic structures with a high density of differentially expressed genes, most strikingly the ectoplacental cone and the spongiotrophoblast. This large-scale identification of genes regulated during placentogenesis is extremely useful to further elucidate the molecular basis of extraembryonic development.
Collapse
Affiliation(s)
- M Hemberger
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada T2N 4N1.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Huntington's disease (HD) is a progressive, late-onset neurodegenerative illness with autosomal dominant inheritance that affects one in 10 000 individuals in Western Europe. The disease is caused by a polyglutamine repeat expansion located in the N-terminal region of the huntingtin protein. The mutation is likely to act by a gain of function, but the molecular mechanisms by which it leads to neuronal dysfunction and cell death are not yet known. The normal function of huntingtin in cell metabolism is also unclear. There is no therapy for HD. Research on HD should help elucidate the pathogenetic mechanism of this illness in order to develop successful treatments to prevent or slow down symptoms. This article presents new results in HD research focusing on in vivo and in vitro model systems, potential molecular mechanisms of HD, and the development of therapeutic strategies.
Collapse
|
6
|
Gösele C, Hong L, Kreitler T, Rossmann M, Hieke B, Gross U, Kramer M, Himmelbauer H, Bihoreau MT, Kwitek-Black AE, Twigger S, Tonellato PJ, Jacob HJ, Schalkwyk LC, Lindpaintner K, Ganten D, Lehrach H, Knoblauch M. High-throughput scanning of the rat genome using interspersed repetitive sequence-PCR markers. Genomics 2000; 69:287-94. [PMID: 11056046 DOI: 10.1006/geno.2000.6352] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the establishment of a hybridization-based marker system for the rat genome based on the PCR amplification of interspersed repetitive sequences (IRS). Overall, 351 IRS markers were mapped within the rat genome. The IRS marker panel consists of 210 nonpolymorphic and 141 polymorphic markers that were screened for presence/absence polymorphism patterns in 38 different rat strains and substrains that are commonly used in biomedical research. The IRS marker panel was demonstrated to be useful for rapid genome screening in experimental rat crosses and high-throughput characterization of large-insert genomic library clones. Information on corresponding YAC clones is made available for this IRS marker set distributed over the whole rat genome. The two existing rat radiation hybrid maps were integrated by placing the IRS markers in both maps. The genetic and physical mapping data presented provide substantial information for ongoing positional cloning projects in the rat.
Collapse
Affiliation(s)
- C Gösele
- Max-Planck Institute of Molecular Genetics, Ihnestrasse 73, Berlin-Dahlem, D-14195, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Himmelbauer H, Schalkwyk LC, Lehrach H. Interspersed repetitive sequence (IRS)-PCR for typing of whole genome radiation hybrid panels. Nucleic Acids Res 2000; 28:e7. [PMID: 10606675 PMCID: PMC102539 DOI: 10.1093/nar/28.2.e7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The typing of a radiation hybrid (RH) panel is generally achieved using a unique primer pair for each marker. We here describe a complementing approach utilizing IRS-PCR. Advantages of this technology include the use of a single universal primer to specify any locus, the rapid typing of RH lines by hybridization, and the conservative use of hybrid DNA. The technology allows the mapping of a clone without the requirement for STS generation. To test the technique, we have mapped 48 BAC clones derived from mouse chromosome 12 which we mostly identified using complex probes. As mammalian genomes are repeat-rich, the technology can easily be adapted to species other than mouse.
Collapse
Affiliation(s)
- H Himmelbauer
- Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, D-14195 Berlin-Dahlem, Germany.
| | | | | |
Collapse
|
8
|
Hardt T, Himmelbauer H, Mann W, Ropers H, Haaf T. Towards identification of individual homologous chromosomes: comparative genomic hybridization and spectral karyotyping discriminate between paternal and maternal euchromatin in Mus musculus x M. spretus interspecific hybrids. CYTOGENETICS AND CELL GENETICS 1999; 86:187-93. [PMID: 10575204 DOI: 10.1159/000015337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have developed an in situ technique to label individual euchromatic chromosome arms in interspecific crosses between Mus musculus (MMU) and M. spretus (MSP). The MMU and MSP genomes diverged 2-3 million years ago and show an overall sequence divergence of approximately 1%. Comparative hybridization of MMU versus MSP DNA and subsequent spectral analysis of the euchromatic hybridization profiles discriminated between maternal (MMU) and paternal (MSP) chromosomes in F(1) hybrids. Dispersed repetitive DNA elements were the preferred hybridization target of MMU DNA on maternal chromosomes and of MSP DNA on paternal chromosomes. Differences in centromeric satellite DNAs were detected by conventional fluorescence in situ hybridization and served as internal controls. Our experiments suggest that it is possible, in principle, to discriminate between paternal and maternal chromosomes on the basis of sequence differences.
Collapse
Affiliation(s)
- T Hardt
- Max-Planck-Institute of Molecular Genetics, Berlin, Germany
| | | | | | | | | |
Collapse
|
9
|
Pérez Jurado LA, Wang YK, Francke U, Cruces J. TBL2, a novel transducin family member in the WBS deletion: characterization of the complete sequence, genomic structure, transcriptional variants and the mouse ortholog. CYTOGENETICS AND CELL GENETICS 1999; 86:277-84. [PMID: 10575226 DOI: 10.1159/000015319] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Williams-Beuren syndrome (WBS) is a developmental disorder with multi-system manifestations caused by haploinsufficiency for contiguous genes deleted in chromosome region 7q11.23. The size of the deletion is similar in most patients due to a genomic duplication that predisposes to unequal meiotic crossover events. While hemizygosity at the elastin locus is responsible for the cardiovascular features, the contribution of other genes to the WBS phenotype remains to be demonstrated. We have identified a novel gene, TBL2, in the common WBS deletion. TBL2 is expressed as a 2. 4-kb transcript predominantly in testis, skeletal muscle, heart and some endocrine tissues, with a larger approximately 5-kb transcript detected ubiquitously at lower levels. TBL2 encodes a protein with four putative WD40-repeats. An alternatively spliced transcript in TBL2 introduces a novel second exon with an in frame stop codon. This mRNA encodes a 75 amino acid protein with 43 amino acids identical to TBL2 at the N-terminus and no known functional domain. The mouse homolog, Tbl2, shows 84% sequence identity at the nucleotide level and 92% similarity at the amino acid level. Comparison of the mouse and human sequences identifies a conserved region that extends upstream of the previously published sequence with an initiation codon common to both species that adds 21 amino acids at the N-terminus. The Tbl2 gene has been mapped to mouse chromosome 5 in a region of conserved synteny with human 7q11.23. Since haploinsufficiency has been shown for other WD-repeat containing proteins, hemizygosity of TBL2 may contribute to some of the aspects of the complex WBS phenotype.
Collapse
Affiliation(s)
- L A Pérez Jurado
- Servicio de Genética, Hospital Universitario La Paz, Madrid, Spain.
| | | | | | | |
Collapse
|
10
|
Nock C, Gauss C, Schalkwyk LC, Klose J, Lehrach H, Himmelbauer H. Technology development at the interface of proteome research and genomics: mapping nonpolymorphic proteins on the physical map of mouse chromosomes. Electrophoresis 1999; 20:1027-32. [PMID: 10344281 DOI: 10.1002/(sici)1522-2683(19990101)20:4/5<1027::aid-elps1027>3.0.co;2-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Data obtained from protein spots by peptide mass fingerprinting are used to identify the corresponding genes in sequence databases. The relevant cDNAs are obtained as clones from the Integrated Molecular Analysis of Genome Expression (I.M.A.G.E.) consortium. Mapping of I.M.A.G.E. clones is performed in two steps: first, cDNA clones are hybridized against a 10-hit genomic mouse bacterial artificial chromosome (BAC) library. Second, interspersed repetitive sequence polymerase chain reaction (IRS-PCR) using a single primer directed against the mouse B1 repeat element is performed on BACs. As each cDNA detects several BACs, and each individual BAC has a 50% chance to recover an IRS-PCR fragment, the majority of cDNAs produce at least a single IRS-PCR fragment. Individual IRS fragments are hybridized against high-density spotted filter grids containing the three-dimensional permutated pools of yeast artificial chromosome (YAC) library resources that are currently being used to construct a physical map of the mouse genome. IRS fragments that hybridize to YAC clones already placed into contigs immediately provide highly precise map positions. This technology therefore is able to draw links between proteins detected by 2-D gel electrophoresis and the corresponding gene loci in the mouse genome.
Collapse
Affiliation(s)
- C Nock
- Max-Planck-Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Zechner U, Scheel S, Hemberger M, Hopp M, Haaf T, Fundele R, Wanker EE, Lehrach H, Wedemeyer N, Himmelbauer H. Characterization of the mouse Src homology 3 domain gene Sh3d2c on Chr 7 demonstrates coexpression with huntingtin in the brain and identifies the processed pseudogene Sh3d2c-ps1 on Chr 2. Genomics 1998; 54:505-10. [PMID: 9878254 DOI: 10.1006/geno.1998.5584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of intracellular protein complexes is often mediated by Src homology 3 domain-containing proteins interacting with proline-rich target sequences on other proteins. The Sh3d2c gene or its rat/human orthologs have been implicated in synaptic vesicle recycling due to interaction with dynamin I and synaptojanin in nerve terminals. In a yeast two-hybrid system, association with a huntingtin fragment containing an elongated stretch of polyglutamines was observed recently. By genetic mapping and fluorescence in situ hybridization we demonstrate the localization of Sh3d2c on mouse chromosome 7. A processed pseudogene of Sh3d2c, Sh3d2c-ps1, was identified and mapped to mouse chromosome 2. Using RNA in situ hybridization, we show that Sh3d2c is transcribed in various regions of the brain. The striatum, hippocampus, cortex, basal hypothalamus, brain stem, and cerebellum are the most prominent sites of expression. Because huntingtin and Sh3d2c are coexpressed in most regions of the brain, it can be speculated that there is a link between the association of huntingtin/Sh3d2c and the pathogenesis of Huntington disease.
Collapse
Affiliation(s)
- U Zechner
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, Berlin-Dahlem, D14195, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|