1
|
Rodríguez-Martínez RE, Torres-Conde EG, Rosellón-Druker J, Cabanillas-Terán N, Jáuregui-Haza U. The Great Atlantic Sargassum Belt: Impacts on the Central and Western Caribbean-A review. HARMFUL ALGAE 2025; 144:102838. [PMID: 40187796 DOI: 10.1016/j.hal.2025.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/10/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Pelagic Sargassum spp. blooms pose a complex challenge to the Caribbean coast, affecting ecological, economic, and social dimensions. Since the formation of the Great Atlantic Sargassum Belt in 2011, these blooms have become an annual occurrence, lasting up to nine months each year. The Sargassum that washes ashore in the Western and Central Caribbean can reach tens of thousands of cubic meters per kilometer annually. These algae can carry pollutants, pathogens, and exotic species to coastal zones. As the algae decay, toxic gases and leachates are released, posing significant health risks to humans and other species. Ecologically, Sargassum landings contribute to beach erosion, nearshore waters eutrophication and transition from sandy to muddy sediments, and oxygen depletion, leading to losses in seagrass meadows flora and fauna. Mangrove ecosystems, inlets, and bays face disruptions in their biochemistry, hydrodynamics, and ecology, potentially shifting from carbon sinks to sources of greenhouse gases. Economically, the impact is severe, threatening the tourism and fishing industries crucial to the affected countries' economies. Socially, the blooms affect various aspects of well-being, including health, job quality, and connections to nature. Although progress has been made in understanding the impacts of Sargassum, much of the research has been concentrated in Mexico, primarily focusing on the ecological effects on coastal and beach environments. However, considerable knowledge gaps remain regarding the impacts of Sargassum on the ecosystems, economies, and social well-being of many other countries and territories in the region.
Collapse
Affiliation(s)
- R E Rodríguez-Martínez
- Unidad Académica de Sistemas Arrecifales-Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 77580, Puerto Morelos, Quintana Roo, México.
| | - E G Torres-Conde
- Unidad Académica de Sistemas Arrecifales-Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 77580, Puerto Morelos, Quintana Roo, México; Unidad de Posgrado, Edificio D, 1er Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P.04510, Distrito Federal, México
| | - J Rosellón-Druker
- Dirección Adjunta de Desarrollo Tecnológico, Vinculación e Innovación, Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Mexico City, Mexico
| | - N Cabanillas-Terán
- Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur (ECOSUR), Chetumal, Quintana Roo, México
| | - U Jáuregui-Haza
- Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo (INTEC), Avenida de Los Próceres 49, Los Jardines del Norte, Santo Domingo 10602, Dominican Republic
| |
Collapse
|
2
|
Iijima M, Yasumoto K, Yasumoto J, Iguchi A, Yasumoto-Hirose M, Mori-Yasumoto K, Mizusawa N, Jimbo M, Sakai K, Suzuki A, Watabe S. Adverse effects of total phosphate load from the environment on the skeletal formation of coral juveniles. MARINE POLLUTION BULLETIN 2025; 211:117395. [PMID: 39693834 DOI: 10.1016/j.marpolbul.2024.117395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Nitrogen's impact on corals has been widely studied, but the role of phosphate is often overlooked due to its low concentrations in seawater. Previous studies have suggested that phosphate can penetrate intercellular spaces to reach the extracellular calcifying medium (ECM), where it adsorbs onto skeletal surfaces and disrupts calcium carbonate crystallization, thereby inhibiting skeletal growth. Based on this mechanism, we hypothesized that skeletal growth inhibition depends not only on phosphate concentration but also on total phosphate load (flow volume × concentration). To test this hypothesis, we conducted experiments in which coral juveniles were cultured under conditions where phosphate concentrations as low as 0.5 μM and daily seawater exchanges of 0.9 L significantly inhibited skeletal formation. Furthermore, increasing the flow volume of phosphate-enriched seawater exacerbated calcification impairment. These findings underscore the importance of evaluating both phosphate concentration and total phosphate load when assessing phosphate pollution in natural environments.
Collapse
Affiliation(s)
- Mariko Iijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Research Laboratory on Environmentally Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan.
| | - Ko Yasumoto
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Jun Yasumoto
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Nakagusuku, Okinawa 903-0213, Japan; Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto 603-8047, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Research Laboratory on Environmentally Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | | | - Kanami Mori-Yasumoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Nanami Mizusawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Mitsuru Jimbo
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuhiko Sakai
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Research Laboratory on Environmentally Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
3
|
Lange ID, Benkwitt CE. Seabird nutrients increase coral calcification rates and boost reef carbonate production. Sci Rep 2024; 14:24937. [PMID: 39438679 PMCID: PMC11496823 DOI: 10.1038/s41598-024-76759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
While excessive anthropogenic nutrient loads are harmful to coral reefs, natural nutrient flows can boost coral growth and reef functions. Here we investigate if seabird-derived nutrient subsidies benefit the growth of two dominant corals on lagoonal reefs, submassive Isopora palifera and corymbose Acropora vermiculata, and if enhanced colony-level calcification rates can increase reef-scale carbonate production. I. palifera and A. vermiculata colonies close to an island with high seabird densities displayed 1.4 and 3.2-times higher linear extension rates, 1.8 and 3.9-times faster planar area increase, and 1.6 and 2.7-times higher calcification rates compared to colonies close to a nearby island with low seabird densities, respectively. While benthic ReefBudget surveys in combination with average coral growth rates did not indicate differences in reef-scale carbonate production across sites, coral carbonate production was 2.2-times higher at the seabird-rich island when using site-specific linear growth rates and skeletal densities. This study shows that seabird-derived nutrients benefit fast-growing branching as well as previously unstudied submassive coral taxa. It also demonstrates that nutrient subsidies benefit colony-scale and reef-scale calcification rates, which underpin important geo-ecological reef functions. Restoring natural nutrient pathways should thus be a priority for island and reef management.
Collapse
|
4
|
Li J, Li W, Huang Y, Bu H, Zhang K, Lin S. Phosphorus limitation intensifies heat-stress effects on the potential mutualistic capacity in the coral-derived Symbiodinium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173912. [PMID: 38871329 DOI: 10.1016/j.scitotenv.2024.173912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/08/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Coral reef ecosystems have been severely ravaged by global warming and eutrophication. Eutrophication often originates from nitrogen (N) overloading that creates stoichiometric phosphorus (P) limitation, which can be aggravated by sea surface temperature rises that enhances stratification. However, how P-limitation interacts with thermal stress to impact coral-Symbiodiniaceae mutualism is poorly understood and underexplored. Here, we investigated the effect of P-limitation (P-depleted vs. P-replete) superimposed on heat stress (31 °C vs. 25 °C) on a Symbiodinium strain newly isolated from the coral host by a 14-day incubation experiment. The heat and P-limitation co-stress induced an increase in alkaline phosphatase activity and reppressed cell division, photosynthetic efficiency, and expression of N uptake and assimilation genes. Moreover, P limitation intensified downregulation of carbon fixation (light and dark reaction) and metabolism (glycolysis) pathways in heat stressed Symbiodinium. Notably, co-stress elicited a marked transcriptional downregulation of genes encoding photosynthates transporters and microbe-associated molecular patterns, potentially undermining the mutualism potential. This work sheds light on the interactive effects of P-limitation and heat stress on coral symbionts, indicating that nutrient imbalance in the coral reef ecosystem can intensify heat-stress effects on the mutualistic capacity of Symbiodiniaceae.
Collapse
Affiliation(s)
- Jiashun Li
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wenzhe Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Yulin Huang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hailu Bu
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China.
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| |
Collapse
|
5
|
Enochs I, Soderberg N, Palacio-Castro A, Eaton K. Sequential Treatment Application Robot (STAR) for high-replication marine experimentation. HARDWAREX 2024; 18:e00524. [PMID: 38633332 PMCID: PMC11022082 DOI: 10.1016/j.ohx.2024.e00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Marine organisms are often subject to numerous anthropogenic stressors, resulting in widespread ecosystem degradation. Physiological responses to these stressors, however, are complicated by high biological variability, species-specific sensitivities, nonlinear relationships, and countless permutations of stressor combinations. Nevertheless, quantification of these relationships is paramount for parameterizing predictive tools and ultimately for effective management of marine resources. Multi-level, multi-stressor experimentation is therefore key, yet the high replication required has remained a logistical challenge and a financial barrier. To overcome these issues, we created an automated system for experimentation on marine organisms, the Sequential Treatment Application Robot (STAR). The system consists of a track-mounted robotic arm that sequentially applies precision treatments to independent aquaria via syringe and peristaltic pumps. The accuracy and precision were validated with dye and spectrophotometry, and stability was demonstrated by maintaining corals under treatment conditions for more than a month. The system is open source and scalable in that additional treatments and replicates may be added without incurring multiplicative costs. While STAR was designed for investigating the combined impacts of nutrients, warming, and disease on reef-building corals, it is highly customizable and may be used for experimentation involving a diverse array of treatments and species.
Collapse
Affiliation(s)
- I.C. Enochs
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Cswy, Miami, FL 33149, USA
| | - N. Soderberg
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Cswy, Miami, FL 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
| | - A.M. Palacio-Castro
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Cswy, Miami, FL 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
| | - K. Eaton
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Cswy, Miami, FL 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
| |
Collapse
|
6
|
Zhou Y, Li Q, Zhang Q, Yuan M, Zhu X, Li Y, Li Q, Downs CA, Huang D, Chou LM, Zhao H. Environmental Concentrations of Herbicide Prometryn Render Stress-Tolerant Corals Susceptible to Ocean Warming. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4545-4557. [PMID: 38386019 DOI: 10.1021/acs.est.3c10417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Global warming has caused the degradation of coral reefs around the world. While stress-tolerant corals have demonstrated the ability to acclimatize to ocean warming, it remains unclear whether they can sustain their thermal resilience when superimposed with other coastal environmental stressors. We report the combined impacts of a photosystem II (PSII) herbicide, prometryn, and ocean warming on the stress-tolerant coral Galaxea fascicularis through physiological and omics analyses. The results demonstrate that the heat-stress-induced inhibition of photosynthetic efficiency in G. fascicularis is exacerbated in the presence of prometryn. Transcriptomics and metabolomics analyses indicate that the prometryn exposure may overwhelm the photosystem repair mechanism in stress-tolerant corals, thereby compromising their capacity for thermal acclimation. Moreover, prometryn might amplify the adverse effects of heat stress on key energy and nutrient metabolism pathways and induce a stronger response to oxidative stress in stress-tolerant corals. The findings indicate that the presence of prometryn at environmentally relevant concentrations would render corals more susceptible to heat stress and exacerbate the breakdown of coral Symbiodiniaceae symbiosis. The present study provides valuable insights into the necessity of prioritizing PSII herbicide pollution reduction in coral reef protection efforts while mitigating the effects of climate change.
Collapse
Affiliation(s)
- Yanyu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Qiuli Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Meile Yuan
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Xiaoshan Zhu
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Qipei Li
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Craig A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, Virginia 24533, United States
| | - Danwei Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Loke-Ming Chou
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environment and Ecology, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Benkwitt CE, D'Angelo C, Dunn RE, Gunn RL, Healing S, Mardones ML, Wiedenmann J, Wilson SK, Graham NAJ. Seabirds boost coral reef resilience. SCIENCE ADVANCES 2023; 9:eadj0390. [PMID: 38055814 DOI: 10.1126/sciadv.adj0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Global climate change threatens tropical coral reefs, yet local management can influence resilience. While increasing anthropogenic nutrients reduce coral resistance and recovery, it is unknown how the loss, or restoration, of natural nutrient flows affects reef recovery. Here, we test how natural seabird-derived nutrient subsidies, which are threatened by invasive rats, influence the mechanisms and patterns of reef recovery following an extreme marine heatwave using multiyear field experiments, repeated surveys, and Bayesian modeling. Corals transplanted from rat to seabird islands quickly assimilated seabird-derived nutrients, fully acclimating to new nutrient conditions within 3 years. Increased seabird-derived nutrients, in turn, caused a doubling of coral growth rates both within individuals and across entire reefs. Seabirds were also associated with faster recovery time of Acropora coral cover (<4 years) and more dynamic recovery trajectories of entire benthic communities. We conclude that restoring seabird populations and associated nutrient pathways may foster greater coral reef resilience through enhanced growth and recovery rates of corals.
Collapse
Affiliation(s)
| | - Cecilia D'Angelo
- Coral Reef Laboratory, School of Ocean and Earth Science, University of Southampton, Southampton SO143ZH, UK
| | - Ruth E Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Rachel L Gunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf Der Morgenstelle 28, 72076 Tübingen, Germany
| | - Samuel Healing
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - M Loreto Mardones
- Coral Reef Laboratory, School of Ocean and Earth Science, University of Southampton, Southampton SO143ZH, UK
| | - Joerg Wiedenmann
- Coral Reef Laboratory, School of Ocean and Earth Science, University of Southampton, Southampton SO143ZH, UK
| | - Shaun K Wilson
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA 6009, Australia
- University of Western Australia, UWA Oceans Institute, Crawley, WA 6009, Australia
| | | |
Collapse
|
8
|
Verma K, Thattaramppilly RM, Manisha M, Jayakumar S, Marigoudar SR, Pranesh AT, Rao L. Determination of degradation/reaction rate for surface water quality of recycled water using Lake2K model for large-scale water recycling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120207-120224. [PMID: 37936042 DOI: 10.1007/s11356-023-30623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
The depletion of groundwater resources in the water-stressed regions has led to the overuse of surface water reservoirs. Recharging groundwater by rejuvenating dried surface reservoirs using recycled water is a new sustainable solution. To ensure the prevention of groundwater contamination and associated health risks (as recycled water is used), it is crucial to assess the surface reservoir water quality. The study for the first time suggests the Lake2K model, a one-dimensional mechanistic mass-balance model, to simulate the changes in water quality in a series of man-made surface water reservoirs where recycled water flows under an indirect groundwater recharge scheme (soil aquifer treatment system). The model was developed, calibrated, and validated using field observations to estimate degradation/reaction rate constants for various water quality parameters. The observed average degradation/reaction rate constants for parameters including ammonia-N, nitrate-N, total nitrogen, total organic carbon, and organic phosphorous were 0.043 day-1, 0.04 day-1, 0.043 day-1, 0.055 day-1, and 0.056 day-1, respectively, which were found to be relatively high compared to existing literature, indicating a greater degradation of these parameters in warmer climates. The results showed that the water quality improved significantly as the water progressed through the reservoirs, aligning with field observations. Additionally, the simulated seasonal variations revealed that the maximum growth rate of phytoplankton occurred during July, August, and September for each reservoir, while the nutrient pool (nitrate-N and orthophosphates) experienced the greatest depletion during this growth period. These findings shed light on the dynamics of surface water quality in regions facing water scarcity and contribute to the development of sustainable groundwater management strategies.
Collapse
Affiliation(s)
- Kavita Verma
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India.
| | | | - Manjari Manisha
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - Shwetha Jayakumar
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | | | | | - Lakshminarayana Rao
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
9
|
Wiedenmann J, D'Angelo C, Mardones ML, Moore S, Benkwitt CE, Graham NAJ, Hambach B, Wilson PA, Vanstone J, Eyal G, Ben-Zvi O, Loya Y, Genin A. Reef-building corals farm and feed on their photosynthetic symbionts. Nature 2023; 620:1018-1024. [PMID: 37612503 PMCID: PMC10468396 DOI: 10.1038/s41586-023-06442-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Coral reefs are highly diverse ecosystems that thrive in nutrient-poor waters, a phenomenon frequently referred to as the Darwin paradox1. The energy demand of coral animal hosts can often be fully met by the excess production of carbon-rich photosynthates by their algal symbionts2,3. However, the understanding of mechanisms that enable corals to acquire the vital nutrients nitrogen and phosphorus from their symbionts is incomplete4-9. Here we show, through a series of long-term experiments, that the uptake of dissolved inorganic nitrogen and phosphorus by the symbionts alone is sufficient to sustain rapid coral growth. Next, considering the nitrogen and phosphorus budgets of host and symbionts, we identify that these nutrients are gathered through symbiont 'farming' and are translocated to the host by digestion of excess symbiont cells. Finally, we use a large-scale natural experiment in which seabirds fertilize some reefs but not others, to show that the efficient utilization of dissolved inorganic nutrients by symbiotic corals established in our laboratory experiments has the potential to enhance coral growth in the wild at the ecosystem level. Feeding on symbionts enables coral animals to tap into an important nutrient pool and helps to explain the evolutionary and ecological success of symbiotic corals in nutrient-limited waters.
Collapse
Affiliation(s)
- Jörg Wiedenmann
- The Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton, UK.
| | - Cecilia D'Angelo
- The Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton, UK
| | - M Loreto Mardones
- The Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Shona Moore
- The Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton, UK
| | | | | | - Bastian Hambach
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Paul A Wilson
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | - James Vanstone
- The Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gal Eyal
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
- Marine Palaeoecology Laboratory, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Or Ben-Zvi
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amatzia Genin
- Department of Ecology, Evolution & Behavior, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| |
Collapse
|
10
|
Enochs IC, Studivan MS, Kolodziej G, Foord C, Basden I, Boyd A, Formel N, Kirkland A, Rubin E, Jankulak M, Smith I, Kelble CR, Manzello DP. Coral persistence despite marginal conditions in the Port of Miami. Sci Rep 2023; 13:6759. [PMID: 37185619 PMCID: PMC10130011 DOI: 10.1038/s41598-023-33467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Coral cover has declined worldwide due to anthropogenic stressors that manifest on both global and local scales. Coral communities that exist in extreme conditions can provide information on how these stressors influence ecosystem structure, with implications for their persistence under future conditions. The Port of Miami is located within an urbanized environment, with active coastal development, as well as commercial shipping and recreational boating activity. Monitoring of sites throughout the Port since 2018 has revealed periodic extremes in temperature, seawater pH, and salinity, far in excess of what have been measured in most coral reef environments. Despite conditions that would kill many reef species, we have documented diverse coral communities growing on artificial substrates at these sites-reflecting remarkable tolerance to environmental stressors. Furthermore, many of the more prevalent species within these communities are now conspicuously absent or in low abundance on nearby reefs, owing to their susceptibility and exposure to stony coral tissue loss disease. Natural reef frameworks, however, are largely absent at the urban sites and while diverse fish communities are documented, it is unlikely that these communities provide the same goods and services as natural reef habitats. Regardless, the existence of these communities indicates unlikely persistence and highlights the potential for coexistence of threatened species in anthropogenic environments, provided that suitable stewardship strategies are in place.
Collapse
Affiliation(s)
- Ian C Enochs
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA.
| | - Michael S Studivan
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Graham Kolodziej
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | | | - Isabelle Basden
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Albert Boyd
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Nathan Formel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Amanda Kirkland
- Biological Sciences Department, University of New Orleans, New Orleans, LA, 70148, USA
| | - Ewelina Rubin
- Soil and Water Sciences Department, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Mike Jankulak
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Ian Smith
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149, USA
| | - Christopher R Kelble
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, U.S. National Oceanic and Atmospheric Administration, Miami, FL, 33149, USA
| | - Derek P Manzello
- Satellite Oceanography and Climatology Division, Center for Satellite Applications and Research, U.S. National Oceanic and Atmospheric Administration, College Park, MD, USA
| |
Collapse
|