1
|
Zhang XZ, Li YX, Jiang YL, Fan MH, Zhao LM, Bai YJ, Zou CY, Zhang JY, Song YT, Zhang YQ, Wang R, Zhang WQ, Li QJ, Wang JW, Li-Ling J, Xie HQ. A functional universal sandwich biomimetic scaffold with both repair effect and drug delivery system effectively facilitates bladder regeneration. COMPOSITES PART B: ENGINEERING 2025; 295:112168. [DOI: 10.1016/j.compositesb.2025.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
2
|
Jin Y, Yang M, Zhao W, Liu M, Fang W, Wang Y, Gao G, Wang Y, Fu Q. Scaffold-based tissue engineering strategies for urethral repair and reconstruction. Biofabrication 2024; 17:012003. [PMID: 39433068 DOI: 10.1088/1758-5090/ad8965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Urethral strictures are common in urology; however, the reconstruction of long urethral strictures remains challenging. There are still unavoidable limitations in the clinical application of grafts for urethral injuries, which has facilitated the advancement of urethral tissue engineering. Tissue-engineered urethral scaffolds that combine cells or bioactive factors with a biomaterial to mimic the native microenvironment of the urethra, offer a promising approach to urethral reconstruction. Despite the recent rapid development of tissue engineering materials and techniques, a consensus on the optimal strategy for urethral repair and reconstruction is still lacking. This review aims to collect the achievements of urethral tissue engineering in recent years and to categorize and summarize them to shed new light on their design. Finally, we visualize several important future directions for urethral repair and reconstruction.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States of America
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Yuhui Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
3
|
Arabzadeh Bahri R, Peisepar M, Maleki S, Esmaeilpur Abianeh F, A Basti F, Kolahdooz A. Current evidence regarding alternative techniques for enterocystoplasty using regenerative medicine methods: a systematic review. Eur J Med Res 2024; 29:163. [PMID: 38475865 PMCID: PMC10929228 DOI: 10.1186/s40001-024-01757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Enterocystoplasty is the most commonly used treatment for bladder reconstruction. However, it has some major complications. In this study, we systematically reviewed the alternative techniques for enterocystoplasty using different scaffolds. A comprehensive search was conducted in PubMed, Embase, and Cochrane Library, and a total of 10 studies were included in this study. Five different scaffolds were evaluated, including small intestinal submucosa (SIS), biodegradable scaffolds seeded with autologous bladder muscle and urothelial cells, dura mater, human cadaveric bladder acellular matrix graft, and bovine pericardium. The overall results revealed that bladder reconstruction using regenerative medicine is an excellent alternative method to enterocystoplasty regarding the improvement of bladder capacity, bladder compliance, and maximum detrusor pressure; however, more large-scale studies are required.
Collapse
Affiliation(s)
- Razman Arabzadeh Bahri
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maral Peisepar
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Maleki
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Esmaeilpur Abianeh
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Basti
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Ali Kolahdooz
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
4
|
Tissue Engineering and Regenerative Medicine in Pediatric Urology: Urethral and Urinary Bladder Reconstruction. Int J Mol Sci 2022; 23:ijms23126360. [PMID: 35742803 PMCID: PMC9224288 DOI: 10.3390/ijms23126360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
In the case of pediatric urology there are several congenital conditions, such as hypospadias and neurogenic bladder, which affect, respectively, the urethra and the urinary bladder. In fact, the gold standard consists of a urethroplasty procedure in the case of urethral malformations and enterocystoplasty in the case of urinary bladder disorders. However, both surgical procedures are associated with severe complications, such as fistulas, urethral strictures, and dehiscence of the repair or recurrence of chordee in the case of urethroplasty, and metabolic disturbances, stone formation, urine leakage, and chronic infections in the case of enterocystoplasty. With the aim of overcoming the issue related to the lack of sufficient and appropriate autologous tissue, increasing attention has been focused on tissue engineering. In this review, both the urethral and the urinary bladder reconstruction strategies were summarized, focusing on pediatric applications and evaluating all the biomaterials tested in both animal models and patients. Particular attention was paid to the capability for tissue regeneration in dependence on the eventual presence of seeded cell and growth factor combinations in several types of scaffolds. Moreover, the main critical features needed for urinary tissue engineering have been highlighted and specifically focused on for pediatric application.
Collapse
|
5
|
Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2021; 281:121331. [PMID: 35016066 DOI: 10.1016/j.biomaterials.2021.121331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Urinary bladder is a dynamic organ performing complex physiological activities. Together with ureters and urethra, it forms the lower urinary tract that facilitates urine collection, low-pressure storage, and volitional voiding. However, pathological disorders are often liable to cause irreversible damage and compromise the normal functionality of the bladder, necessitating surgical intervention for a reconstructive procedure. Non-urinary autologous grafts, primarily derived from gastrointestinal tract, have long been the gold standard in clinics to augment or to replace the diseased bladder tissue. Unfortunately, such treatment strategy is commonly associated with several clinical complications. In absence of an optimal autologous therapy, a biomaterial based bioengineered platform is an attractive prospect revolutionizing the modern urology. Predictably, extensive investigative research has been carried out in pursuit of better urological biomaterials, that overcome the limitations of conventional gastrointestinal graft. Against the above backdrop, this review aims to provide a comprehensive and one-stop update on different biomaterial-based strategies that have been proposed and explored over the past 60 years to restore the dynamic function of the otherwise dysfunctional bladder tissue. Broadly, two unique perspectives of bladder tissue engineering and total alloplastic bladder replacement are critically discussed in terms of their status and progress. While the former is pivoted on scaffold mediated regenerative medicine; in contrast, the latter is directed towards the development of a biostable bladder prosthesis. Together, these routes share a common aspiration of designing and creating a functional equivalent of the bladder wall, albeit, using fundamentally different aspects of biocompatibility and clinical needs. Therefore, an attempt has been made to systematically analyze and summarize the evolution of various classes as well as generations of polymeric biomaterials in urology. Considerable emphasis has been laid on explaining the bioengineering methodologies, pre-clinical and clinical outcomes. Some of the unaddressed challenges, including vascularization, innervation, hollow 3D prototype fabrication and urinary encrustation, have been highlighted that currently delay the successful commercial translation. More importantly, the rapidly evolving and expanding concepts of bioelectronic medicine are discussed to inspire future research efforts towards the further advancement of the field. At the closure, crucial insights are provided to forge the biomaterial assisted reconstruction as a long-term therapeutic strategy in urological practice for patients' care.
Collapse
Affiliation(s)
- Swati Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
6
|
Abstract
Tissue engineering could play a major role in the setting of urinary diversion. Several conditions cause the functional or anatomic loss of urinary bladder, requiring reconstructive procedures on the urinary tract. Three main approaches are possible: (i) incontinent cutaneous diversion, such as ureterocutaneostomy, colonic or ileal conduit, (ii) continent pouch created using different segments of the gastrointestinal system and a cutaneous stoma, and (iii) orthotopic urinary diversion with an intestinal segment with spherical configuration and anastomosis to the urethra (neobladder, orthotopic bladder substitution). However, urinary diversions are associated with numerous complications, such as mucus production, electrolyte imbalances and increased malignant transformation potential. In this context, tissue engineering would have the fundamental role of creating a suitable material for urinary diversion, avoiding the use of bowel segments, and reducing complications. Materials used for the purpose of urinary substitution are biological in case of acellular tissue matrices and naturally derived materials, or artificial in case of synthetic polymers. However, only limited success has been achieved so far. The aim of this review is to present the ideal properties of a urinary tissue engineered scaffold and to examine the results achieved so far. The most promising studies have been highlighted in order to guide the choice of scaffolds and cells type for further evolutions.
Collapse
|
7
|
Zamani M, Shakhssalim N, Ramakrishna S, Naji M. Electrospinning: Application and Prospects for Urologic Tissue Engineering. Front Bioeng Biotechnol 2020; 8:579925. [PMID: 33117785 PMCID: PMC7576678 DOI: 10.3389/fbioe.2020.579925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area.
Collapse
Affiliation(s)
- Masoud Zamani
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY, United States
| | - Nasser Shakhssalim
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wang C, Chen C, Guo M, Li B, Han F, Chen W. Stretchable collagen-coated polyurethane-urea hydrogel seeded with bladder smooth muscle cells for urethral defect repair in a rabbit model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:135. [PMID: 31802280 DOI: 10.1007/s10856-019-6342-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The major challenge to treat the clinical adverse effects of long-segment urethra is in achieving viable tissue substitution. The substituted construct's properties-such as its resilience, contraction, and ability to minimize scar-stenosis formation should be considered. In the present work, a unique polyurethane-urea (PUU) fibrous membrane is fabricated by electrospinning. Then PUU was coated by collagen and formed the elasticity hydrogel after immersed in collagen solution. Meanwhile, the cPUU hydrogel exhibited a fibrous microstructure. This cPUU hydrogel had outstanding stretching property with 404 ± 40% elongation at break compared with traditional hydrogels, which satisfied the requirement of urethra. The cPUU hydrogel also supported the adhesion and growth of bladder smooth-muscle cells (BSMCs) in natural state cell morphology. Urethral defects in New Zealand male rabbits were repaired with cPUU seeded with BSMCs in vivo. After three months, more smooth-surface area of reconstructed urethral tissues was observed in the cPUU hydrogel-BMSCs groups compared with that of the control group. The luminal patency and the incidence of complications-including calculus formation, urinary fistula, and urethral-stricture occurrence were significantly lower in the cPUU group compared with that of the control group. Hence, cPUU fibrous hydrogels are promising scaffolds for application in urological tissue engineering.
Collapse
Affiliation(s)
- Chengyuan Wang
- Department of Urology, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Chunyang Chen
- Department of Urology, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mingyu Guo
- Orthopaedic Institute, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Orthopaedic Institute, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Fengxuan Han
- Orthopaedic Institute, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Weiguo Chen
- Department of Urology, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
9
|
Chua ME, Farhat WA, Ming JM, McCammon KA. Review of clinical experience on biomaterials and tissue engineering of urinary bladder. World J Urol 2019; 38:2081-2093. [PMID: 31222507 DOI: 10.1007/s00345-019-02833-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE In recent pre-clinical studies, biomaterials and bladder tissue engineering have shown promising outcomes when addressing the need for bladder tissue replacement. To date, multiple clinical experiences have been reported. Herein, we aim to review and summarize the reported clinical experience of biomaterial usage and tissue engineering of the urinary bladder. METHODS A systematic literature search was performed on Feb 2019 to identify clinical reports on biomaterials for urinary bladder replacement or augmentation and clinical experiences with bladder tissue engineering. We identified and reviewed human studies using biomaterials and tissue-engineered bladder as bladder substitutes or augmentation implants. The studies were then summarized for each respective procedure indication, technique, follow-up period, outcome, and important findings of the studies. RESULTS An extensive literature search identified 25 studies of case reports and case series with a cumulative clinical experience of 222 patients. Various biomaterials and tissue-engineered bladder were used, including plastic/polyethylene mold, preserved dog bladder, gelatine sponge, Japanese paper with Nobecutane, lypholized human dura, bovine pericardium, amniotic membrane, small intestinal mucosa, and bladder tissue engineering with autologous cell-seeded biodegradable scaffolds. However, overall clinical experiences including the outcomes and safety reports were not satisfactory enough to replace enterocystoplasty. CONCLUSION To date, several clinical experiences of biomaterials and tissue-engineered bladder have been reported; however, various studies have reported non-satisfactory outcomes. Further technological advancements and a better understanding is needed to advance bladder tissue engineering as a future promising management option for patients requiring bladder drainage.
Collapse
Affiliation(s)
- Michael E Chua
- Eastern Virginia Medical School, Norfolk, VA, USA.,St. Luke's Medical Center, Quezon City, NCR, Philippines
| | | | | | | |
Collapse
|
10
|
Bioengineering Approaches for Bladder Regeneration. Int J Mol Sci 2018; 19:ijms19061796. [PMID: 29914213 PMCID: PMC6032229 DOI: 10.3390/ijms19061796] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022] Open
Abstract
Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting.
Collapse
|
11
|
Ajalloueian F, Lemon G, Hilborn J, Chronakis IS, Fossum M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol 2018; 15:155-174. [DOI: 10.1038/nrurol.2018.5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev 2017; 6:35-44. [PMID: 29066225 DOI: 10.1016/j.sxmr.2017.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In this review, we discuss major advancements and common challenges in constructing and regenerating a neo-urinary conduit (NUC). First, we focus on the need for regenerating the urothelium, the hallmark the urine barrier, unique to urinary tissues. Second, we focus on clinically feasible scaffolds based on decellularized matrices and molded collagen that are currently of great research interest. AIM To discuss the major advancements in constructing a tissue-engineered NUC (TE-NUC) and the challenges involved in their successful clinical translation. METHODS A comprehensive search of peer-reviewed literature from PubMed and Google Scholar on subjects related to urothelium regeneration, decellularized tissue matrices, and collagen scaffolds was conducted. MAIN OUTCOME MEASURE We evaluated the main biological and mechanical functions of urinary tissues, the need for TE implants to create a urinary diversion, the reasons for their failures in clinical settings, and the applications of decellularized tissue matrices and collagen-based molded scaffolds in their regeneration. RESULTS It is necessary to create a urine barrier that prevents urine leakage into the stroma that can cause failure of the graft. Despite the regeneration potential of the urothelium, the limited supply of healthy urothelial cells in patients with bladder cancer remains a major challenge. In this context, alternative strategies, such as transdifferentiation of cells into urothelium or engineered scaffolds based on decellularized tissues and molded collagen with robust urine barrier properties, are active areas of research. CONCLUSION There is an immediate need for developing a functional TE-NUC that can improve the quality of life of patients with bladder cancer. It is possible to achieve a TE-NUC by bioengineering an implant that has appropriate biological and mechanical properties to store and transport urine. We anticipate that future advancements in urothelium regeneration and material design will lead us closer to successful neo-urinary tissue constructs. Singh A, Bivalacqua TJ, Sopko N. Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev 2018;6:35-44.
Collapse
|
13
|
The effect of a cyclic uniaxial strain on urinary bladder cells. World J Urol 2017; 35:1531-1539. [PMID: 28229212 PMCID: PMC5613063 DOI: 10.1007/s00345-017-2013-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 01/27/2017] [Indexed: 12/27/2022] Open
Abstract
Purpose Pre-conditioning of a cell seeded construct may improve the functional outcome of a tissue engineered construct for augmentation cystoplasty. The precise effects of mechanical stimulation on urinary bladder cells in vitro are not clear. In this study we investigate the effect of a cyclic uniaxial strain culture on urinary bladder cells which were seeded on a type I collagen scaffold. Methods Isolated porcine smooth muscle cells or urothelial cells were seeded on a type I collagen scaffolds and cultured under static and dynamic conditions. A uniform cyclic uniaxial strain was applied to the seeded scaffold using a Bose Electroforce Bio-Dynamic bioreactor. Cell proliferation rate and phenotype were investigated, including SEM analysis, RT-PCR and immunohistochemistry for α-Smooth muscle actin, calponin-1, desmin and RCK103 expression to determine the effects of mechanical stimulation on both cell types. Results Dynamic stimulation of smooth muscle cell seeded constructs resulted in cell alignment and enhanced proliferation rate. Additionally, expression of α-Smooth muscle actin and calponin-1 was increased suggesting differentiation of smooth muscle cells to a more mature phenotype. Conclusions Mechanical stimuli did not enhance the proliferation and differentiation of urothelial cells. Mechanical stimulation, i.e., preconditioning may improve the functional in vivo outcome of smooth muscle cell seeded constructs for flexible organs such as the bladder. Electronic supplementary material The online version of this article (doi:10.1007/s00345-017-2013-9) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Thimm TN, Squirrell JM, Liu Y, Eliceiri KW, Ogle BM. Endogenous Optical Signals Reveal Changes of Elastin and Collagen Organization During Differentiation of Mouse Embryonic Stem Cells. Tissue Eng Part C Methods 2015; 21:995-1004. [PMID: 25923353 DOI: 10.1089/ten.tec.2014.0699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Components of the extracellular matrix (ECM) have recently been shown to influence stem cell specification. However, it has been challenging to assess the spatial and temporal dynamics of stem cell-ECM interactions because most methodologies utilized to date require sample destruction or fixation. We examined the efficacy of utilizing the endogenous optical signals of two important ECM proteins, elastin (Eln), through autofluorescence, and type I collagen (ColI), through second harmonic generation (SHG), during mouse embryonic stem cell differentiation. After finding favorable overlap between antibody labeling and the endogenous fluorescent signal of Eln, we used this endogenous signal to map temporal changes in Eln and ColI during murine embryoid body differentiation and found that Eln increases until day 9 and then decreases slightly by day 12, while Col1 steadily increases over the 12-day period. Furthermore, we combined endogenous fluorescence imaging and SHG with antibody labeling of cardiomyocytes to examine the spatial relationship between Eln and ColI accumulation and cardiomyocyte differentiation. Eln was ubiquitously present, with enrichment in regions with cardiomyocyte differentiation, while there was an inverse correlation between ColI and cardiomyocyte differentiation. This work provides an important first step for utilizing endogenous optical signals, which can be visualized in living cells, to understand the relationship between the ECM and cardiomyocyte development and sets the stage for future studies of stem cell-ECM interactions and dynamics relevant to stem cells as well as other cell and tissue types.
Collapse
Affiliation(s)
- Terra N Thimm
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jayne M Squirrell
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Yuming Liu
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Kevin W Eliceiri
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin.,2 Morgridge Institute for Research, University of Wisconsin-Madison , Madison, Wisconsin
| | - Brenda M Ogle
- 3 Department of Biomedical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota
| |
Collapse
|
15
|
Bouhout S, Chabaud S, Bolduc S. Organ-specific matrix self-assembled by mesenchymal cells improves the normal urothelial differentiation in vitro. World J Urol 2015; 34:121-30. [PMID: 26008115 DOI: 10.1007/s00345-015-1596-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/16/2015] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Enterocystoplasty is the gold standard to perform bladder reconstruction. Since this technique has a high morbidity rate, several matrix scaffolds have been proposed to support the urothelial maturation. Unfortunately, epithelial cells failed to fully integrate the cell-matrix interactions and therefore appropriate signalling pathways of normal differentiation. Based on these observations, we proposed to culture bladder urothelial cells (BUC) onto a matrix self-assembled by bladder mesenchymal cells (BMC), to form a vesical model (VM). METHODS Different serum proportions were assessed to obtain a manipulable matrix deposited by BMC. The BUC were then seeded onto the BMC's matrix to evolve in a three-dimensional culture. Haematoxylin-eosin staining, immunolabeling, scanning electron microscopy, western blot and matrix metalloproteinases analysis were performed for the VM characterization. RESULTS We were able to obtain an original matrix made of collagen-I and presenting specific organization. Matrix remodelling was observed and led to a cellular compartmentalization. The reconstructed urothelium developed in a pseudostratified arrangement, displaying an adequate cellular polarity and apical membrane remodelling of superficial cells. Like native bladder, cytokeratin 14 immunolabeling was not observed in our VM, which indicate the conformity of the development sequence taken by BUC under the influence of the BMC's matrix. CONCLUSION Thus, it was possible to elaborate a VM without the use of exogenous matrices. The particular characteristics of the BMC's matrix permitted the development of an urothelium that shared the phenotype of native tissue. The autologous character of our VM, and its appropriate urothelial maturation, could potentially promote a better integration after grafting.
Collapse
Affiliation(s)
- S Bouhout
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Faculté de médecine, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada.
| | - S Chabaud
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Faculté de médecine, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - S Bolduc
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Faculté de médecine, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| |
Collapse
|
16
|
|
17
|
Bu S, Zhu Y, Peng C, Cai X, Cao C, Tan H, Cheng J, Zhang J, Liu J, Li H, Wang K. Simulated physiological stretch-induced proliferation of human bladder smooth muscle cells is regulated by MMPs. Arch Biochem Biophys 2014; 564:197-202. [DOI: 10.1016/j.abb.2014.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/01/2014] [Accepted: 09/18/2014] [Indexed: 01/18/2023]
|
18
|
Pok S, Dhane DV, Madihally SV. Computational simulation modelling of bioreactor configurations for regenerating human bladder. Comput Methods Biomech Biomed Engin 2013; 16:840-51. [DOI: 10.1080/10255842.2011.641177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
TIAN YE, YUE XUAN, LUO DEYI, WAZIR ROMEL, WANG JIANZHONG, WU TAO, CHEN LIN, LIAO ANGHUA, WANG KUNJIE. Increased proliferation of human bladder smooth muscle cells is mediated by physiological cyclic stretch via the PI3K-SGK1-Kv1.3 pathway. Mol Med Rep 2013; 8:294-8. [DOI: 10.3892/mmr.2013.1473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/07/2013] [Indexed: 11/06/2022] Open
|
20
|
Zhang Y, Atala A. Urothelial cell culture: stratified urothelial sheet and three-dimensional growth of urothelial structure. Methods Mol Biol 2013; 945:383-99. [PMID: 23097119 DOI: 10.1007/978-1-62703-125-7_23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Urothelial cells line the urinary tract, including the renal pelvis, ureters, bladder, superior urethra, and the central ducts of the prostate. They are highly specialized epithelial cell types possessing unique features, imparting important functional roles in the urinary system. They act as a permeability barrier and protect underlying muscle tissues from the caustic effects of urine while also expanding with bladder filling to adjust urine pressures. The multilayered urothelium is typically structured with differentiated, mature surface cells and less mature basal cells. The basal cell layer contains tissue-specific stem cells able to self-renew for the lifetime of the mammal and also produces a pool of maturing cells for tissue homeostasis. Maintaining regenerative basal cells in a culture facilitates urothelial cell growth in vitro. Additionally, epithelial-mesenchymal communication, epithelial-matrix interactions, and cytokines/growth factors are required to maintain the normal structure and function of mature urothelial cells in vitro and to induce stem cell differentiation into urothelial cells. These cultures are useful to study the biology and physiology of the urinary tract, particularly for the development of cell-based tissue engineering strategies in urology. This chapter describes methods for the isolation of urothelial cells and their maintenance in monolayer culture, and methods for the production of multilayer urothelial cell sheets and three-dimensional cocultures of urothelial and mesenchymal cells.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Urology, Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
21
|
Abstract
This chapter reviews the use of urothelial cells as a means to enhance tissue regeneration and wound healing in urinary tract system. It addresses the properties of urothelial cells, including their role as a permeability barrier to protect underlying muscle tissue from the caustic effects of urine and as one of the main cell types, along with smooth muscle cells, that are used in urethral or bladder tissue engineering today. This description includes a general overview of various isolation techniques and culture methods that have been developed to improve urinary tract reconstruction in vivo and aid the characterization of growth factor expression in vitro. The chapter then describes various applications using urothelial cells, including production of multilayer urothelial sheets, tissue engineered bladder mucosa, tissue engineered urethra, and tissue engineered bladder. It also outlines the advantages of sandwich and layered coculture of these cells and the effects of epithelial-stromal cell interactions during tissue regeneration or wound healing processes in the urinary tract.
Collapse
|
22
|
Chen L, Wei TQ, Wang Y, Zhang J, Li H, Wang KJ. Simulated Bladder Pressure Stimulates Human Bladder Smooth Muscle Cell Proliferation via the PI3K/SGK1 Signaling Pathway. J Urol 2012; 188:661-7. [PMID: 22704443 DOI: 10.1016/j.juro.2012.03.112] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Indexed: 02/05/2023]
Affiliation(s)
- Lin Chen
- Department of Urology and Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tang-Qiang Wei
- Department of Urology and Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yan Wang
- Department of Urology and Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jie Zhang
- Department of Urology and Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hong Li
- Department of Urology and Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kun-Jie Wang
- Department of Urology and Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
23
|
Orlando G, Wood KJ, De Coppi P, Baptista PM, Binder KW, Bitar KN, Breuer C, Burnett L, Christ G, Farney A, Figliuzzi M, Holmes JH, Koch K, Macchiarini P, Mirmalek Sani SH, Opara E, Remuzzi A, Rogers J, Saul JM, Seliktar D, Shapira-Schweitzer K, Smith T, Solomon D, Van Dyke M, Yoo JJ, Zhang Y, Atala A, Stratta RJ, Soker S. Regenerative medicine as applied to general surgery. Ann Surg 2012; 255:867-80. [PMID: 22330032 PMCID: PMC3327776 DOI: 10.1097/sla.0b013e318243a4db] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present review illustrates the state of the art of regenerative medicine (RM) as applied to surgical diseases and demonstrates that this field has the potential to address some of the unmet needs in surgery. RM is a multidisciplinary field whose purpose is to regenerate in vivo or ex vivo human cells, tissues, or organs to restore or establish normal function through exploitation of the potential to regenerate, which is intrinsic to human cells, tissues, and organs. RM uses cells and/or specially designed biomaterials to reach its goals and RM-based therapies are already in use in several clinical trials in most fields of surgery. The main challenges for investigators are threefold: Creation of an appropriate microenvironment ex vivo that is able to sustain cell physiology and function in order to generate the desired cells or body parts; identification and appropriate manipulation of cells that have the potential to generate parenchymal, stromal and vascular components on demand, both in vivo and ex vivo; and production of smart materials that are able to drive cell fate.
Collapse
Affiliation(s)
- Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Horst M, Madduri S, Gobet R, Sulser T, Milleret V, Hall H, Atala A, Eberli D. Engineering functional bladder tissues. J Tissue Eng Regen Med 2012; 7:515-22. [DOI: 10.1002/term.547] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/12/2011] [Accepted: 11/14/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Maya Horst
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital; Zurich; Switzerland
| | - Srinivas Madduri
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital; Zurich; Switzerland
| | - Rita Gobet
- Division of Pediatric Urology, Department of Pediatric Surgery; University Children's Hospital; Zurich; Switzerland
| | - Tullio Sulser
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital; Zurich; Switzerland
| | - Vinzent Milleret
- Cells and Biomaterials, Department of Materials, ETH Zurich; Switzerland
| | - Heike Hall
- Cells and Biomaterials, Department of Materials, ETH Zurich; Switzerland
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine; Winston-Salem; North Carolina; USA
| | - Daniel Eberli
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital; Zurich; Switzerland
| |
Collapse
|
25
|
Davis NF, Mooney R, Piterina AV, Callanan A, McGuire BB, Flood HD, McGloughlin TM. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes. Urology 2011; 78:954-60. [PMID: 21982016 DOI: 10.1016/j.urology.2011.06.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To design and construct a urinary bladder bioreactor for urologic tissue-engineering purposes and to compare the viability and proliferative activity of cell-seeded extracellular matrix scaffolds cultured in the bioreactor with conventional static growth conditions. MATERIALS AND METHODS A urinary bladder bioreactor was designed and constructed to replicate physiologic bladder dynamics. The bioreactor mimicked the filling pressures of the human bladder by way of a cyclical low-delivery pressure regulator. In addition, cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds in the bioreactor and in static growth conditions for 5 consecutive days. The attachment, viability, and proliferative potential were assessed and compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4',6-diamidino-2-phenylindole staining. RESULTS No significant difference in cell viability was identified between both experimental groups after 3 days of culture (P = .06). By day 4, the number of viable UCs was significantly greater in the bioreactor compared with the number cultured under static conditions (P = .009). A significant difference in UC viability was also present after 5 days of culture between the bioreactor and static group (P = .006). Viability/cytotoxicity assays performed on day 5 also confirmed the viability of UCs in both experimental groups. CONCLUSION Significantly greater UC growth occurred on the extracellular matrix scaffolds cultured in the bioreactor compared with conventional static laboratory conditions after 3 days of culture. Our initial bioreactor prototype might be helpful for permitting additional advances in urinary bladder bioreactor technology.
Collapse
Affiliation(s)
- Niall F Davis
- Department of Urology, Mid-Western Regional Hospital, Limerick, Ireland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Regenerative medicine strategies for treating neurogenic bladder. Int Neurourol J 2011; 15:109-19. [PMID: 22087419 PMCID: PMC3212584 DOI: 10.5213/inj.2011.15.3.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/22/2011] [Indexed: 02/02/2023] Open
Abstract
Neurogenic bladder is a general term encompassing various neurologic dysfunctions of the bladder and the external urethral sphincter. These can be caused by damage or disease. Therapeutic management options can be conservative, minimally invasive, or surgical. The current standard for surgical management is bladder augmentation using intestinal segments. However, because intestinal tissue possesses different functional characteristics than bladder tissue, numerous complications can ensue, including excess mucus production, urinary stone formation, and malignancy. As a result, investigators have sought after alternative solutions. Tissue engineering is a scientific field that uses combinations of cells and biomaterials to encourage regeneration of new, healthy tissue and offers an alternative approach for the replacement of lost or deficient organs, including the bladder. Promising results using tissue-engineered bladder have already been obtained in children with neurogenic bladder caused by myelomeningocele. Human clinical trials, governed by the Food and Drug Administration, are ongoing in the United States in both children and adults to further evaluate the safety and efficacy of this technology. This review will introduce the principles of tissue engineering and discuss how it can be used to treat refractory cases of neurogenic bladder.
Collapse
|
27
|
|
28
|
Abstract
There are a number of conditions of the bladder that can lead to loss of function. Many of these require reconstructive procedures. However, current techniques may lead to a number of complications. Replacement of bladder tissues with functionally equivalent ones created in the laboratory could improve the outcome of reconstructive surgery. A review of the literature was conducted using PubMed to identify studies that provide evidence that tissue engineering techniques may be useful in the development of alternatives to current methods of bladder reconstruction. A number of animal studies and several clinical experiences show that it is possible to reconstruct the bladder using tissues and neo-organs produced in the laboratory. Materials that could be used to create functionally equivalent urologic tissues in the laboratory, especially non-autologous cells that have the potential to reject have many technical limitations. Current research suggests that the use of biomaterial-based, bladder-shaped scaffolds seeded with autologous urothelial and smooth muscle cells is currently the best option for bladder tissue engineering. Further research to develop novel biomaterials and cell sources, as well as information gained from developmental biology, signal transduction studies and studies of the wound healing response would be beneficial.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
29
|
Montzka K, Läufer T, Becker C, Grosse J, Heidenreich A. Microstructure and cytocompatibility of collagen matrices for urological tissue engineering. BJU Int 2010; 107:1974-81. [PMID: 20840325 DOI: 10.1111/j.1464-410x.2010.09680.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES • To analyse the in vitro cytocompatibility of several engineered collagen-based biomaterials for tissue engineering of the urinary tract. • Tissue-engineered implants for the reconstruction of the urinary tract are of major interest for urological researchers as well as clinicians. Although several materials have been investigated, the ideal replacement has still to be identified. MATERIALS AND METHODS • Several collagen matrices were tested. • Electron microscopy was used to visualize the microstructure of the tested matrices. • Examination of cell attachment and growth of primary porcine urothelial and smooth muscle cells were performed and cell phenotypes were analysed using immunohistochemical stains. • Urea permeability was investigated using Ussing chamber experiments. RESULTS • The best cytocompatibility for both urinary tract-specific cell types was obtained with OptiMaix(®) (Matricel GmbH, Herzogenrath, Germany) materials. • Cell-specific phenotypes were maintained during culture as shown by immunohistochemical staining. • Furthermore, simultaneous cultivation of both cell types for 7 and 14 days significantly reduced urea permeability. CONCLUSION • These results show the potential of OptiMaix materials in tissue engineering approaches of urinary tract tissues.
Collapse
|
30
|
Células madre y medicina regenerativa en urología, 2.a parte: urotelio, vejiga, uretra y próstata. Actas Urol Esp 2010. [DOI: 10.1016/j.acuro.2010.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Morsi GAM. Tissue engineering in vesical reconstruction. AFRICAN JOURNAL OF UROLOGY 2010. [DOI: 10.1007/s12301-010-0001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
32
|
Heise RL, Ivanova J, Parekh A, Sacks MS. Generating elastin-rich small intestinal submucosa-based smooth muscle constructs utilizing exogenous growth factors and cyclic mechanical stimulation. Tissue Eng Part A 2010; 15:3951-60. [PMID: 19569874 DOI: 10.1089/ten.tea.2009.0044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Successful approaches to tissue engineering smooth muscle tissues utilize biodegradable scaffolds seeded with autologous cells. One common problem in using biological scaffolds specifically is the difficulty of inducing cellular penetration and controlling de novo extracellular matrix deposition/remodeling in vitro. Our hypothesis was that small intestinal submucosa (SIS) exposed to specific mechanical stimulation regimes would modulate the synthesis of de novo collagen and elastin by bladder smooth muscle cells (BSMC) within the SIS matrix. We further hypothesized that the cytokines vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2), two key growth factors involved in epithelial mesenchymal signaling, will promote the cellular penetration into SIS necessary for mechanical stimulation. BSMC were seeded at 0.5 x 10(6) cells/cm(2) onto the luminal side of SIS specimens. VEGF (10 ng/mL) and FGF-2 (5 ng/mL) were added to each insert in the media every other day for up to 7 days in static culture. Following static culture, specimens were stretched strip-biaxially under 15% peak strain at either 0.5 or 0.1 Hz for an additional 7 days. Following the culture period, specimens were assayed histologically and biochemically for cellular penetration, proliferation, elastin, collagen, and protease activity. Histological analyses demonstrated that in standard culture media, BSMC remained on the surface of the SIS while both FGF-2 and VEGF profoundly promoted ingrowth of the BSMC into the SIS. The penetration of the cells in response to these cytokines was confirmed using a Transwell assay. Following cellular penetration, BSMC produced significant amounts of elastic fibers under cyclic mechanical stretching at 0.1 Hz under 15% stretch, as evidenced by colorimetric assay and histology using a Verhoeff-Van Gieson stain. Protease activity was assessed in the media and found to be statistically increased in static culture following FGF-2 treatment. These findings demonstrate, for the first time, the capability of BSMC to produce histologically apparent elastin fibers in vitro. Moreover, our results suggest that a strategy involving growth factors and controlled mechanical stimulation may be used to engineer functional, elastin-rich tissue replacements using decellularized biologically derived scaffolds.
Collapse
Affiliation(s)
- Rebecca Long Heise
- Engineered Tissue Mechanics and Mechanobiology Laboratory, Department of Bioengineering and McGowan Institute, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Boruch AV, Nieponice A, Qureshi IR, Gilbert TW, Badylak SF. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model. J Surg Res 2009; 161:217-25. [PMID: 19577253 DOI: 10.1016/j.jss.2009.02.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/16/2009] [Accepted: 02/13/2009] [Indexed: 12/27/2022]
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) have been used to facilitate the constructive remodeling of several tissue types. Previous studies suggest that the ECM scaffold remodeling process is dependent on microenvironmental factors, including tissue-specific biomechanical loading. The objective of the present study was to evaluate the effects of long-term catheterization (LTC), with its associated inhibition of bladder filling and physiologic biomechanical loading, on ECM scaffold remodeling following partial cystectomy in a canine model. Reconstruction of the partial cystectomy site was performed using ECM scaffolds prepared from porcine small intestinal submucosa (SIS) or porcine urinary bladder matrix (UBM). Animals were randomly assigned to either a long-term catheterization (LTC) group (n=5, catheterized 28 d) or a short-term catheterization group (STC, n=5, catheterized 24 h), and scaffold remodeling was assessed by histologic methods at 4 and 12 wk postoperatively. By 4 wk, animals in the STC group showed a well-developed and highly differentiated urothelium, a robust vascularization network, abundant smooth muscle actin (SMA), and smooth muscle myosin heavy chain (smMHC) expressing spindle-shaped cells, and many neuronal processes associated with newly formed arterioles. In contrast, at 4 wk the scaffolds in LTC animals were not epithelialized, and did not express neuronal markers. The scaffolds in the LTC group developed a dense granulation tissue containing SMA+, smMHC-, spindle-shaped cells that were morphologically and phenotypically consistent with myofibroblasts, but not smooth muscle cells. By 12 wk postoperatively, the ECM scaffolds in the STC animals showed a constructive remodeling response, with a differentiated urothelium and islands of smooth muscle cells within the remodeled scaffold. In contrast, at 12 wk the scaffolds in LTC animals had a remodeling response more consistent with fibrosis even though catheters had been removed 8 wk earlier. These findings show that early exposure of site-appropriate mechanical loading (i.e., bladder filling) mediates a constructive remodeling response after ECM repair in a canine partial cystectomy model.
Collapse
Affiliation(s)
- Alan V Boruch
- Department of Surgery, University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
36
|
|