1
|
Li Q, Mu S. FTO mediates the diabetic kidney disease progression through regulating the m 6A modification of NLRP3. BMC Nephrol 2024; 25:345. [PMID: 39390397 PMCID: PMC11468296 DOI: 10.1186/s12882-024-03741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The objective of our research was to investigate the specific mechanism of FTO in diabetic kidney disease (DKD) progression. METHODS The DKD model was established with renal tubular epithelial HK-2 cells and mice in vitro and in vivo. The N6-methyladenosine (m6A) content in cells was detected using dot plot assay and the m6A levels of NLRP3 was detected with the MeRIP assay. The mRNA and protein levels were tested with real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot. The IL-1β and IL-18 levels were assessed with enzyme-linked immunosorbent assay (ELISA). The cell viability was measured by cell counting kit (CCK)-8 assay and cell pyroptosis was determined with Annexin V and propidium iodide (PI) double staining followed by flow cytometry analysis. RNA-binding protein immunoprecipitation (RIP) and dual luciferase reporter assays were conducted to detect the interaction between FTO and NLRP3. m6A levels were detected by Me-RIP assay. The renal injury was measured by observing the renal morphology and urine and blood levels of relevant indicators. RESULTS The results indicated that high glucose treatment induced HK-2 cell pyroptosis. m6A levels were prominently elevated in high glucose treated HK-2 cells while FTO expression were significantly down-regulated. FTO over-expression promoted cell viability but inhibited pyroptosis of HK-2 cells under high glucose (HG) treatment. Moreover, FTO could inhibit NLRP3 expression. RIP and Me-RIP assays indicated that FTO could bind with NLRP3 and regulate its m6A modification level. Further luciferase assay confirmed that FTO binds with the 233-237 bp region of NLRP3. NLRP3 neutralized the function of FTO in the HG stimulated HK-2 cells. In vivo, the H&E staining showed that FTO over-expression alleviated the kidney injury and suppressed the pyroptosis induced by DKD. CONCLUSION We found that FTO could inhibit the DKD progression in vivo and in vitro by regulated the m6A modification of NLRP3.
Collapse
Affiliation(s)
- Qiang Li
- Department of Nephrology, Guang'anmen Hospital South Campus, China Academy of Chinese Medical Sciences, No.138, Xingfeng Street, Huangcun Village, DaXing District, Beijing, 102600, China
| | - Shujuan Mu
- Department of Nephrology, Guang'anmen Hospital South Campus, China Academy of Chinese Medical Sciences, No.138, Xingfeng Street, Huangcun Village, DaXing District, Beijing, 102600, China.
| |
Collapse
|
2
|
Inoue H, Murayama T, Kobayashi T, Konishi M, Yokoyama U. The zinc-binding motif of TRPM7 acts as an oxidative stress sensor to regulate its channel activity. J Gen Physiol 2021; 153:212116. [PMID: 33999118 PMCID: PMC8129778 DOI: 10.1085/jgp.202012708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 01/03/2023] Open
Abstract
The activity of the TRPM7 channel is negatively regulated by intracellular Mg2+. We previously reported that oxidative stress enhances the inhibition of TRPM7 by intracellular Mg2+. Here, we aimed to clarify the mechanism underlying TRPM7 inhibition by hydrogen peroxide (H2O2). Site-directed mutagenesis of full-length TRPM7 revealed that none of the cysteines other than C1809 and C1813 within the zinc-binding motif of the TRPM7 kinase domain were involved in the H2O2-induced TRPM7 inhibition. Mutation of C1809 or C1813 prevented expression of full-length TRPM7 on the plasma membrane. We therefore developed an assay to functionally reconstitute full-length TRPM7 by coexpressing the TRPM7 channel domain (M7cd) and the TRPM7 kinase domain (M7kd) as separate proteins in HEK293 cells. When M7cd was expressed alone, the current was inhibited by intracellular Mg2+ more strongly than that of full-length TRPM7 and was insensitive to oxidative stress. Coexpression of M7cd and M7kd attenuated the inhibition by intracellular Mg2+ and restored sensitivity to oxidative stress, indicating successful reconstitution of a full-length TRPM7-like current. We observed a similar effect when M7cd was coexpressed with the kinase-inactive mutant M7kd-K1645R, suggesting that the kinase activity is not essential for the reconstitution. However, coexpression of M7cd and M7kd carrying a mutation at either C1809 or C1813 failed to restore the full-length TRPM7-like current. No reconstitution was observed when using M7kd carrying a mutation at H1750 and H1807, which are involved in the zinc-binding motif formation with C1809 and C1813. These data suggest that the zinc-binding motif is essential for the intracellular Mg2+-dependent regulation of the TRPM7 channel activity by its kinase domain and that the cysteines in the zinc-binding motif play a role in the oxidative stress response of TRPM7.
Collapse
Affiliation(s)
- Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masato Konishi
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Mapping TRPM7 Function by NS8593. Int J Mol Sci 2020; 21:ijms21197017. [PMID: 32977698 PMCID: PMC7582524 DOI: 10.3390/ijms21197017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a ubiquitously expressed membrane protein, which forms a channel linked to a cytosolic protein kinase. Genetic inactivation of TRPM7 in animal models uncovered the critical role of TRPM7 in early embryonic development, immune responses, and the organismal balance of Zn2+, Mg2+, and Ca2+. TRPM7 emerged as a new therapeutic target because malfunctions of TRPM7 have been associated with anoxic neuronal death, tissue fibrosis, tumour progression, and giant platelet disorder. Recently, several laboratories have identified pharmacological compounds allowing to modulate either channel or kinase activity of TRPM7. Among other small molecules, NS8593 has been defined as a potent negative gating regulator of the TRPM7 channel. Consequently, several groups applied NS8593 to investigate cellular pathways regulated by TRPM7. Here, we summarize the progress in this research area. In particular, two notable milestones have been reached in the assessment of TRPM7 druggability. Firstly, several laboratories demonstrated that NS8593 treatment reliably mirrors prominent phenotypes of cells manipulated by genetic inactivation of TRPM7. Secondly, it has been shown that NS8593 allows us to probe the therapeutic potential of TRPM7 in animal models of human diseases. Collectively, these studies employing NS8593 may serve as a blueprint for the preclinical assessment of TRPM7-targeting drugs.
Collapse
|
4
|
Suzuki S, Penner R, Fleig A. TRPM7 contributes to progressive nephropathy. Sci Rep 2020; 10:2333. [PMID: 32047249 PMCID: PMC7012919 DOI: 10.1038/s41598-020-59355-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/27/2020] [Indexed: 12/03/2022] Open
Abstract
TRPM7 belongs to the Transient Receptor Potential Melastatin family of ion channels and is a divalent cation-conducting ion channel fused with a functional kinase. TRPM7 plays a key role in a variety of diseases, including neuronal death in ischemia, cancer, cardiac atrial fibrillation, malaria invasion. TRPM7 is aberrantly over-expressed in lung, liver and heart fibrosis. It is also overexpressed after renal ischemia-reperfusion, an event that induces kidney injury and fibrosis. However, the role of TRPM7 in kidney fibrosis is unclear. Using the unilateral ureteral obstruction (UUO) mouse model, we examined whether TRPM7 contributes to progressive renal damage and fibrosis. We find that TRPM7 expression increases in UUO kidneys. Systemic application of NS8593, a known TRPM7 inhibitor, prevents kidney atrophy in UUO kidneys, retains tubular formation, and reduces TRPM7 expression to normal levels. Cell proliferation of both tubular epithelial cells and interstitial cells is reduced by NS8593 treatment in UUO kidneys, as are TGF-β1/Smad signaling events. We conclude that TRPM7 is upregulated during inflammatory renal damage and propose that pharmacological intervention targeting TRPM7 may prove protective in progressive kidney fibrosis.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA. .,John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA.
| | - Reinhold Penner
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA.,University of Hawaii Cancer Center, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA.,John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA.,University of Hawaii Cancer Center, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA.,John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA
| |
Collapse
|
5
|
TRPM7 mediates kidney injury, endothelial hyperpermeability and mortality during endotoxemia. J Transl Med 2020; 100:234-249. [PMID: 31444399 DOI: 10.1038/s41374-019-0304-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Sepsis is the main cause of mortality in patients admitted to intensive care units. During sepsis, endothelial permeability is severely augmented, contributing to renal dysfunction and patient mortality. Ca2+ influx and the subsequent increase in intracellular [Ca2+]i in endothelial cells (ECs) are key steps in the establishment of endothelial hyperpermeability. Transient receptor potential melastatin 7 (TRPM7) ion channels are permeable to Ca2+ and are expressed in a broad range of cell types and tissues, including ECs and kidneys. However, the role of TRPM7 on endothelial hyperpermeability during sepsis has remained elusive. Therefore, we investigated the participation of TRPM7 in renal vascular hyperpermeability, renal dysfunction, and enhanced mortality induced by endotoxemia. Our results showed that endotoxin increases endothelial hyperpermeability and Ca2+ overload through the TLR4/NOX-2/ROS/NF-κB pathway. Moreover, endotoxin exposure was shown to downregulate the expression of VE-cadherin, compromising monolayer integrity and enhancing vascular hyperpermeability. Notably, endotoxin-induced endothelial hyperpermeability was substantially inhibited by pharmacological inhibition and specific suppression of TRPM7 expression. The endotoxin was shown to upregulate the expression of TRPM7 via the TLR4/NOX-2/ROS/NF-κB pathway and induce a TRPM7-dependent EC Ca2+ overload. Remarkably, in vivo experiments performed in endotoxemic animals showed that pharmacological inhibition and specific suppression of TRPM7 expression inhibits renal vascular hyperpermeability, prevents kidney dysfunction, and improves survival in endotoxemic animals. Therefore, our results showed that TRPM7 mediates endotoxemia-induced endothelial hyperpermeability, renal dysfunction, and enhanced mortality, revealing a novel molecular target for treating renal vascular hyperpermeability and kidney dysfunction during endotoxemia, sepsis, and other inflammatory diseases.
Collapse
|
6
|
Liu A, Wu J, Yang C, Wu Y, Zhang Y, Zhao F, Wang H, Yuan L, Song L, Zhu T, Fan Y, Yang B. TRPM7 in CHBP-induced renoprotection upon ischemia reperfusion-related injury. Sci Rep 2018; 8:5510. [PMID: 29615639 PMCID: PMC5882857 DOI: 10.1038/s41598-018-22852-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a membrane ion channel and kinase. TRPM7 was abundantly expressed in the kidney, and up-regulated by ischemia reperfusion (IR) injury. Our previous studies showed that cyclic helix B peptide (CHBP) improved renal IR-related injury, but its underlying mechanism is not well defined. IR-related injury was established in renal tubular epithelial cells (TCMK-1 and HK-2) via 12 to 24-h hypoxia (H) followed by 2-24 h reoxygenation (R), and in mouse kidneys subjected to 30-min ischemia and 12-h to 7-day reperfusion. TRPM7-like current in TCMK-1 cells, TRPM7 mRNA and protein in the in vitro and in vivo models were increased, but reversed by CHBP. TRPM7 was also positively associated with LDH, HMGB1, caspase-3, Bax/Bcl-2, inflammation, apoptosis, tubulointerstitial damage and renal function respectively. Furthermore, silencing TRPM7 improved injury parameters, renal histology and function in the both models. Specific TRPM7 agonist, bradykinin, exaggerated HR induced injury in TCMK-1 cells, and partially blocked the renoprotection of CHBP as well. In conclusion, TRPM7 is involved not only in IR-related injury, but also CHBP-induced renoprotection, which are through its ion channel and subsequent affects inflammation and apoptosis. Therefore, TRPM7 could be a potential biomarker for IR-induced acute kidney injury.
Collapse
Affiliation(s)
- Aifen Liu
- Renal Group, Basic Medical Research Centre, Medical College of Nantong University, Nantong, Jiangsu, 226001, China
| | - Jing Wu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Yuanyuan Wu
- Department of Pathology, Medical College of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yufang Zhang
- Renal Group, Basic Medical Research Centre, Medical College of Nantong University, Nantong, Jiangsu, 226001, China
| | - Fengbo Zhao
- Renal Group, Basic Medical Research Centre, Medical College of Nantong University, Nantong, Jiangsu, 226001, China
| | - Hui Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Lirui Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Yaping Fan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Bin Yang
- Renal Group, Basic Medical Research Centre, Medical College of Nantong University, Nantong, Jiangsu, 226001, China. .,Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China. .,Department of Infection, Immunity and Inflammation, University of Leicester, Leicester General Hospital, University Hospital of Leicester, Leicester, LE1 9HN, United Kingdom.
| |
Collapse
|
7
|
Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget 2018; 7:72941-72960. [PMID: 27662662 PMCID: PMC5341955 DOI: 10.18632/oncotarget.12146] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) functions as a Mg2+/Ca2+-permeable channel fused with a kinase domain and regulates various physical processes and diseases. However, its effects on pathogenesis of human bladder cancer (BCa) has not been clarified yet. Our microarray analysis has suggested that calcium signaling pathway is connected with bladder cancer via MAPK pathway. Therefore, we aim to investigate the mechanism of TRPM7 in BCa tumorigenesis by using BCa tissues compared with normal bladder epithelium tissues, as well as using distinct BCa cell lines (EJ, 5637 and T24). We observed increased TRPM7 expression and dysregulation of proteins involved in Epithelial-Mesenchymal Transition (EMT) in BCa tissues. Moreover, knockdown of TRPM7 in BCa cells reversed the EMT status, accompanied by increase of reactive oxygen species (ROS). Furthermore, TRPM7 deficiency could inhibit BCa cell proliferation, migration and invasion, as well as induce p-ERK1/2 and suppress PI3K/AKT at the protein level. Downregulation of TRPM7 promoted cell cycle arrest at G0/G1 phase and apoptosis in vitro, which could be recovered by pre-treatment with U0126 to deactivate ERK1/2, suggesting a close correlation between TRPM7 and the MAPK signaling pathway. Furthermore, a NOD/SCID mouse model transplanted using the BCa cells was established, revealing delayed tumor growth by reduced protein activity and mRNA transcription of TRPM7 in vivo. Our results suggested TRPM7 might be essential for BCa tumorigenesis by interfering BCa cell proliferation, motility and apoptosis.
Collapse
|
8
|
LIN XIAOLING, YANG CHENG, HUANG LINJIE, CHEN MING, SHI JIANTING, OUYANG LIHUA, TANG TIANTIAN, ZHANG WEI, LI YIQUN, LIANG RUIYUN, JIANG SHANPING. Upregulation of TRPM7 augments cell proliferation and interleukin-8 release in airway smooth muscle cells of rats exposed to cigarette smoke. Mol Med Rep 2016; 13:4995-5004. [PMID: 27108806 PMCID: PMC4878570 DOI: 10.3892/mmr.2016.5161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 03/10/2016] [Indexed: 12/26/2022] Open
Abstract
Proliferation and synthetic function (i.e. the capacity to release numerous chemokines and cytokines) of airway smooth muscle cells (ASMCs) are important in airway remodeling induced by cigarette smoke exposure. However, the molecular mechanism has not been clarified. Transient receptor potential cation channel subfamily M member 7 (TRPM7) is expressed ubiquitously and is crucial for the cellular physiological function of many cell types. The present study aimed to detect the expression of TRPM7 in ASMCs from smoke‑exposed rats and determine the importance of TRPM7 in proliferation and interleukin‑8 (IL‑8) release. ASMCs were isolated and cultured from smoke‑exposed rats. Expression levels of TRPM7 were determined by reverse transcription‑polymerase chain reaction, western blot analysis and immunofluorescence. TRPM7 was silenced with TRPM7‑short hairpin RNA lentivirus vector. DNA synthesis, cell number and IL‑8 release of ASMCs induced by cigarette smoke extract (CSE) and tumor necrosis factor‑α (TNF‑α) were assessed using [3H]-thymidine incorporation assay, hemocytometer and enzyme‑linked immunosorbent assay, respectively. It was determined that mRNA and protein expression levels of TRPM7 were increased in ASMCs from smoke‑exposed rats. Stimulation with CSE or TNF‑α elevated DNA synthesis, cell number and IL‑8 release were more marked in ASMCs from smoke‑exposed rats. Silencing of TRPM7 reduced DNA synthesis, cell number and IL‑8 release induced by CSE or TNF‑α in ASMCs from smoke-exposed rats. In conclusion, expression of TRPM7 increased significantly in ASMCs from smoke‑exposed rats and the upregulation of TRPM7 led to augmented cell proliferation and IL-8 release in ASMCs from rats exposed to cigarette smoke.
Collapse
Affiliation(s)
- XIAOLING LIN
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Disease, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - CHENG YANG
- Department of Respiratory Medicine, Meizhou People's Hospital, Meizhou Affiliated Hospital of Sun Yat-Sen University, Meizhou, Guangdong 514031, P.R. China
| | - LINJIE HUANG
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Disease, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - MING CHEN
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Disease, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - JIANTING SHI
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Disease, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - LIHUA OUYANG
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Disease, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - TIANTIAN TANG
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Disease, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - WEI ZHANG
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Disease, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - YIQUN LI
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Disease, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - RUIYUN LIANG
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Disease, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - SHANPING JIANG
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Disease, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
9
|
Yee NS, Kazi AA, Yee RK. Cellular and Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in Cancer. Cells 2014; 3:751-777. [PMID: 25079291 PMCID: PMC4197629 DOI: 10.3390/cells3030751] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed cation-permeable ion channel with intrinsic kinase activity that plays important roles in various physiological functions. Biochemical and electrophysiological studies, in combination with molecular analyses of TRPM7, have generated insights into its functions as a cellular sensor and transducer of physicochemical stimuli. Accumulating evidence indicates that TRPM7 channel-kinase is essential for cellular processes, such as proliferation, survival, differentiation, growth, and migration. Experimental studies in model organisms, such as zebrafish, mouse, and frog, have begun to elucidate the pleiotropic roles of TRPM7 during embryonic development from gastrulation to organogenesis. Aberrant expression and/or activity of the TRPM7 channel-kinase have been implicated in human diseases including a variety of cancer. Studying the functional roles of TRPM7 and the underlying mechanisms in normal cells and developmental processes is expected to help understand how TRPM7 channel-kinase contributes to pathogenesis, such as malignant neoplasia. On the other hand, studies of TRPM7 in diseases, particularly cancer, will help shed new light in the normal functions of TRPM7 under physiological conditions. In this article, we will provide an updated review of the structural features and biological functions of TRPM7, present a summary of current knowledge of its roles in development and cancer, and discuss the potential of TRPM7 as a clinical biomarker and therapeutic target in malignant diseases.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Program of Experimental Therapeutics, Penn State Hershey Cancer Institute, Penn State Milton S, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Abid A Kazi
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Program of Experimental Therapeutics, Penn State Hershey Cancer Institute, Penn State Milton S, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Rosemary K Yee
- Schreyer Honors College, Pennsylvania State University, University Park, PA 16802, USA; Penn State Harrisburg School of Humanities, Pennsylvania State University, Middletown, PA 17057, USA.
| |
Collapse
|
10
|
Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 2014; 115:189-209. [PMID: 24467911 DOI: 10.1016/j.pneurobio.2013.12.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022]
Abstract
Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na(+)/H(+) exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H(+)-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca(2+), Na(+), and Zn(2+), and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention.
Collapse
|