1
|
Longoni M, Di Bello F, Rodriguez Peñaranda N, Falkenbach F, Marmiroli A, Le QC, Tian Z, Goyal JA, Longo N, Puliatti S, Graefen M, de Cobelli O, Chun FKH, Saad F, Shariat SF, Gandaglia G, Montorsi F, Briganti A, Karakiewicz PI. Clinically Meaningful Upstaging and Upgrading in Favorable Intermediate-Risk Radical Prostatectomy Patients. Clin Genitourin Cancer 2025; 23:102300. [PMID: 39863496 DOI: 10.1016/j.clgc.2025.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION In NCCN favorable intermediate-risk (FIR) prostate cancer (PCa) patients treated with radical prostatectomy (RP), we tested the effect of upstaging and upgrading on cancer-specific mortality (CSM). METHODS Within the SEER database (2010-2021), upstaging (≥pT3a or pN1) and upgrading (ISUP ≥3) rates in FIR RP patients were tabulated. Kaplan-Meier (KM) plots and multivariable Cox-regression models (CRMs) were fitted. RESULTS In 9,037 FIR RP PCa patients, 1,136 (12.6%) exhibited upstaging, 1,341 (14.8%) upgrading, and 377 (4.2%) both vs. 6,937 (76.8%) that did not. Of all upstaged patients, 812 (71.5%) harbored pT3a vs. 324 (28.5%) ≥pT3b/pN1 stage. Of all upgraded patients, 1,077 (80.3%) harbored ISUP 3 vs. 264 (19.7%) ISUP ≥4. Of all upstaged and upgraded patients, 46 (12.2%) exhibited both ≥pT3b/pN1 and ISUP ≥4. Ten-year CSM-free rates in upstaged (96.0%), upgraded (95.9%) and combined upstaged and upgraded (91.0%) patients were significantly lower (P < .001) than others (98.9%). Significantly lower 10-year CSM-free rates were recorded in ≥pT3b/pN1-only (91.9%), ISUP ≥4-only (94.6%), and combined ≥pT3b/pN1 and ISUP ≥4 (85.3%) patients (all P < .05). In multivariable CRMs, upstaging (HR: 3.8), upgrading (HR: 3.5) as well as both upstaging and upgrading (HR: 8.3), independently increased CSM. Specific upstaging to ≥pT3b/pN1-only, upgrading to ISUP ≥4-only, and both upgrading and upstaging independently increased CSM by 3.5-, 6.7-, and 26-fold, respectively. CONCLUSION Of all FIR RP patients, the vast majority is neither upstaged nor upgraded. Those with ≥pT3b/pN1 upstaging, ISUP ≥4 upgrading, or both are at high, higher, and extremely elevated risk of CSM, respectively, and thus require special considerations.
Collapse
Affiliation(s)
- Mattia Longoni
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada; Division of Experimental Oncology/Unit of Urology, URI; IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Francesco Di Bello
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada; Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Natali Rodriguez Peñaranda
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada; Department of Urology, Ospedale Policlinico e Nuovo Ospedale Civile S. Agostino Estense Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabian Falkenbach
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada; Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Marmiroli
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada; Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Quynh Chi Le
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada; Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main, Germany
| | - Zhe Tian
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada
| | - Jordan A Goyal
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada
| | - Nicola Longo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Stefano Puliatti
- Department of Urology, Ospedale Policlinico e Nuovo Ospedale Civile S. Agostino Estense Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Markus Graefen
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ottavio de Cobelli
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Felix K H Chun
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main, Germany
| | - Fred Saad
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada
| | - Shahrokh F Shariat
- Department of Urology, Weill Cornell Medical College, New York, NY; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX; Hourani Center of Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Giorgio Gandaglia
- Division of Experimental Oncology/Unit of Urology, URI; IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, URI; IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Briganti
- Division of Experimental Oncology/Unit of Urology, URI; IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Pierre I Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada
| |
Collapse
|
2
|
Erdmann K, Distler F, Gräfe S, Kwe J, Erb HHH, Fuessel S, Pahernik S, Thomas C, Borkowetz A. Transcript Markers from Urinary Extracellular Vesicles for Predicting Risk Reclassification of Prostate Cancer Patients on Active Surveillance. Cancers (Basel) 2024; 16:2453. [PMID: 39001515 PMCID: PMC11240337 DOI: 10.3390/cancers16132453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Serum prostate-specific antigen (PSA), its derivatives, and magnetic resonance tomography (MRI) lack sufficient specificity and sensitivity for the prediction of risk reclassification of prostate cancer (PCa) patients on active surveillance (AS). We investigated selected transcripts in urinary extracellular vesicles (uEV) from PCa patients on AS to predict PCa risk reclassification (defined by ISUP 1 with PSA > 10 ng/mL or ISUP 2-5 with any PSA level) in control biopsy. Before the control biopsy, urine samples were prospectively collected from 72 patients, of whom 43% were reclassified during AS. Following RNA isolation from uEV, multiplexed reverse transcription, and pre-amplification, 29 PCa-associated transcripts were quantified by quantitative PCR. The predictive ability of the transcripts to indicate PCa risk reclassification was assessed by receiver operating characteristic (ROC) curve analyses via calculation of the area under the curve (AUC) and was then compared to clinical parameters followed by multivariate regression analysis. ROC curve analyses revealed a predictive potential for AMACR, HPN, MALAT1, PCA3, and PCAT29 (AUC = 0.614-0.655, p < 0.1). PSA, PSA density, PSA velocity, and MRI maxPI-RADS showed AUC values of 0.681-0.747 (p < 0.05), with accuracies for indicating a PCa risk reclassification of 64-68%. A model including AMACR, MALAT1, PCAT29, PSA density, and MRI maxPI-RADS resulted in an AUC of 0.867 (p < 0.001) with a sensitivity, specificity, and accuracy of 87%, 83%, and 85%, respectively, thus surpassing the predictive power of the individual markers. These findings highlight the potential of uEV transcripts in combination with clinical parameters as monitoring markers during the AS of PCa.
Collapse
Affiliation(s)
- Kati Erdmann
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Florian Distler
- Department of Urology, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany; (F.D.); (S.P.)
| | - Sebastian Gräfe
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Jeremy Kwe
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
| | - Holger H. H. Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Fuessel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sascha Pahernik
- Department of Urology, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany; (F.D.); (S.P.)
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Angelika Borkowetz
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Tae JH, Chang IH. Animal models of bone metastatic prostate cancer. Investig Clin Urol 2023; 64:219-228. [PMID: 37341002 DOI: 10.4111/icu.20230026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 06/22/2023] Open
Abstract
Metastatic disease is a main cause of mortality in prostate cancer and remains to be incurable despite emerging new treatment agents. Development of novel treatment agents are confined within the boundaries of our knowledge of bone metastatic prostate cancer. Exploration into the underlying mechanism of metastatic tumorigenesis and treatment resistance will further expose novel targets for novel treatment agents. Up to date, many of these researches have been conducted with animal models which have served as classical tools that play a pivotal role in understanding the fundamental nature of cancer. The ability to reproduce the natural course of prostate cancer would be of profound value. However, currently available models do not reproduce the entire process of tumorigenesis to bone metastasis and are limited to reproducing small portions of the entire process. Therefore, knowledge of available models and understanding the strengths and weaknesses for each model is key to achieve research objectives. In this article, we take an overview of cell line injection animal models and patient derived xenograft models that have been applied to the research of human prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Jong Hyun Tae
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
- Biomedical Research Institute, Chung-Ang University Hospital, Seoul, Korea
| | - In Ho Chang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Kocic G, Hadzi-Djokic J, Colic M, Veljkovic A, Tomovic K, Roumeliotis S, Smelcerovic A, Liakopoulos V. The Role of Nucleases Cleaving TLR3, TLR7/8 and TLR9 Ligands, Dicer RNase and miRNA/piRNA Proteins in Functional Adaptation to the Immune Escape and Xenophagy of Prostate Cancer Tissue. Int J Mol Sci 2022; 24:ijms24010509. [PMID: 36613950 PMCID: PMC9820234 DOI: 10.3390/ijms24010509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The prototypic sensors for the induction of innate and adaptive immune responses are the Toll-like receptors (TLRs). Unusually high expression of TLRs in prostate carcinoma (PC), associated with less differentiated, more aggressive and more propagating forms of PC, changed the previous paradigm about the role of TLRs strictly in immune defense system. Our data reveal an entirely novel role of nucleic acids-sensing Toll-like receptors (NA-TLRs) in functional adaptation of malignant cells for supply and digestion of surrounding metabolic substrates from dead cells as specific mechanism of cancer cells survival, by corresponding ligands accelerated degradation and purine/pyrimidine salvage pathway. The spectrophotometric measurement protocols used for the determination of the activity of RNases and DNase II have been optimized in our laboratory as well as the enzyme-linked immunosorbent method for the determination of NF-κB p65 in prostate tissue samples. The protocols used to determine Dicer RNase, AGO2, TARBP2 and PIWIL4 were based on enzyme-linked immunosorbent assay. The amount of pre-existing acid-soluble oligonucleotides was measured and expressed as coefficient of absorbance. The activities of acid DNase II and RNase T2, and the activities of nucleases cleaving TLR3, TLR7/8 and TLR9 ligands (Poly I:C, poly U and unmethylated CpG), increased several times in PC, compared to the corresponding tumor adjacent and control tissue, exerting very high sensitivity and specificity of above 90%. Consequently higher levels of hypoxanthine and NF-κB p65 were reported in PC, whereas the opposite results were observed for miRNA biogenesis enzyme (Dicer RNase), miRNA processing protein (TARB2), miRNA-induced silencing complex protein (Argonaute-AGO) and PIWI-interacting RNAs silence transposon. Considering the crucial role of purine and pyrimidine nucleotides as energy carriers, subunits of nucleic acids and nucleotide cofactors, future explorations will be aimed to design novel anti-cancer immune strategies based on a specific acid endolysosomal nuclease inhibition.
Collapse
Affiliation(s)
- Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Correspondence: or ; Tel.: +381-63-8122522
| | | | - Miodrag Colic
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Andrej Veljkovic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|