1
|
Magri V, Perletti G, Stamatiou K. Pathogen Detection and Diagnostic Scenarios in Chronic Prostatitis. Diagnostics (Basel) 2025; 15:762. [PMID: 40150104 PMCID: PMC11941190 DOI: 10.3390/diagnostics15060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Chronic prostatitis (CP) is characterized by a variety of symptoms, including pelvic pain, urinary disturbances, and sexual dysfunction, often without clear signs of infection, which complicates its diagnosis. For decades, the NIH consensus definitions and the Meares-Stamey 4-glass test have been the cornerstone of diagnosing and classifying CP. However, emerging research suggests that some cases with negative microbiological findings may still respond to antibacterial therapy, potentially due to undiagnosed infections. This study aimed to compare four lower genito-urinary tract diagnostic methods to identify which is most effective at detecting causative pathogens in CP patients. Two simplified tests, each involving only two specimens, were also simulated. Methods: This retrospective study examined a database of patients diagnosed with chronic prostatitis according to NIH criteria. Patients aged 18-59 underwent clinical and microbiological diagnostic assessments using four testing modalities: the Meares-Stamey 4-glass "gold standard" test, the two-glass pre-post-massage test, and two tests incorporating post-massage semen samples, namely the five-glass test and the VB2-semen test. The diagnostic outcomes and pathogen detection rates for each test were compared using the ANOVA and the Pearson's chi-squared tests. Results: Compared to the four-glass and two-glass tests, the five-glass and VB2-semen tests detected similar proportions of E. coli and other Gram-negative traditional prostatic pathogens. However, they were more effective in detecting significantly higher percentages of Enterococci. Moreover, the five-glass and VB2-semen tests, which included semen samples, identified a broader spectrum of pathogens and significantly higher proportions of sexually transmitted pathogens. Conclusions: Tests that included semen samples were more effective at detecting Gram-positive pathogens such as Enterococci and sexually transmitted pathogens. We advocate for incorporating semen samples into the standard four-glass test to enhance diagnostic accuracy and improve the targeted antibacterial treatment of chronic prostatitis.
Collapse
Affiliation(s)
- Vittorio Magri
- Urology Clinic, ASST Fatebenefratelli Sacco Hospitals, 20026 Milan, Italy;
| | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences, Section of Medical and Surgical Sciences, University of Insubria, 21100 Varese, Italy
| | | |
Collapse
|
2
|
Deng AQ, Yue SY, Niu D, Zhang DD, Hou BB, Zhang L, Liang CZ, Du HX. The role of microbiota in the chronic prostatitis/chronic pelvis pain syndrome: a review. Front Microbiol 2025; 16:1488732. [PMID: 40143861 PMCID: PMC11937130 DOI: 10.3389/fmicb.2025.1488732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic prostatitis/Chronic pelvis pain syndrome (CP/CPPS), a kind of frequent urinary condition among adult males, has caused a lot of inconvenience to patients in life, whose pathogenesis is unclear. Current evidence suggests that it is most likely to be an autoimmune disease. Symbiotic microbes, a highly diverse biological community that harbors trillions of microbes in each region of the human body, have gradually made people realize their important role in immune regulation, material metabolism, and health maintenance. In recent years, increasing studies have shown a connection between microbiota and CP/CPPS. In view of this, we performed this review to summarize the literature pertaining to microbiota and its association with the pathophysiological mechanism of CP/CPPS. In addition, we gleaned the latest progress in the therapeutic strategy of CP/CPPS that related to microbiota regulation in order to offer new perspectives on the management of CP/CPPS.
Collapse
Affiliation(s)
- An-Qi Deng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
- The Second Clinical Medical School, Anhui Medical University, Hefei, Anhui, China
| | - Shao-Yu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Di Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Dan-Dan Zhang
- Clinical College of Anhui Medical University, Hefei, Anhui, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| |
Collapse
|
3
|
Ma X, Lao Y, Bai Y, Guan X, Jiang J, Cui M, Dong Z. Study progress of etiologic mechanisms of chronic prostatitis/chronic pelvic pain syndrome. Int Immunopharmacol 2025; 148:114128. [PMID: 39864227 DOI: 10.1016/j.intimp.2025.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) represents a prevalent condition within the male genitourinary system. CP/CPPS occurs in men of varying ages, with an increasing recurrence rate associated with advancing age. The pathogenesis of CP/CPPS remains unclear, and clinical treatment typically focuses on symptom management with limited efficacy, resulting in significant economic and psychological burdens for patients. Research has increasingly identified several factors potentially associated with the development of CP/CPPS, including lifestyle, psychosocial influences, neuroendocrine elements, and other variables. This paper reviews recent studies on the risk factors and etiological mechanisms of CP/CPPS to enhance understanding of its mechanisms, providing a reference framework for future basic research and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiyue Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yongfeng Lao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yanan Bai
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xin Guan
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jingyi Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Minglu Cui
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhilong Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Kong X, Dong Z, Hu W, Mi J, Xiao J, Wang Y, Chen W, Pei Z, Hao Z, Liang C, Wang Q, Wang Z. The role of gut microbiota involved in prostate microenvironment and symptoms improvement in chronic prostatitis/chronic pelvic pain syndrome patients treated with low-intensity extracorporeal shock wave. Prostate 2024; 84:1525-1536. [PMID: 39308020 DOI: 10.1002/pros.24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 11/14/2024]
Abstract
BACKGROUND Low-intensity extracorporeal shockwave therapy (Li-ESWT) is emerging as a promising and safe treatment for Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). In this study, we aimed to investigate the role of the gut microbiota involved in the prostate microenvironment and symptom improvement during the Li-ESWT for CP/CPPS patients. METHODS CP/CPPS patients not taking antibiotics or other treatments were included. NIH-Chronic Prostatitis Symptom Index (NIH-CPSI), International Prostate Symptom Score (IPSS), and International Index of Erectile Function (IIEF-5) were used to evaluate the effectiveness of Li-ESWT at the end of treatment. Visual analogue scale/score was used to evaluate the pain during procedure. Stool and semen samples were collected before and after Li-ESWT. Shotgun metagenomics analyzed gut microbiota, while ELISA and other diagnostic kits detected biochemical changes in seminal plasma. RESULT Of the 60 enrolled patients, 52 completed treatment. Li-ESWT response rate was 78.8% (41/52) at end of treatment. Among responders, the subitems of the NIH-CPSI; IPSS; and IIEF-5 scores improved significantly, and the seminal plasma analysis showed decreased TNF-a and MDA levels and increased SOD and Zn2+ levels posttreatment. Gut microbiome analysis indicated that posttreatment, both α and β diversity increased, and the abundance of certain specific species significantly increased. Fifty-eight pathways significantly enriched posttreatment, notably in branched-chain amino acid synthesis and butyrate synthesis. The abundance of several specific species was found to be significantly higher in non-responders than responders. Among responders, at the species level, some bacteria associated with NIH-CPSI and its subscales, IPSS, IIEF-5, and prostate microenvironment markers (TNF-a, MDA, Zn2+, and SOD) were identified. CONCLUSIONS Our study demonstrates for the first time that Li-ESWT improves the prostate microenvironment and gut microbiota in CP/CPPS patients. Treatment nonresponse may be associated with a high abundance of specific pathogens before treatment. The gut microbiota could have a significant impact on Li-ESWT response and the prostate microenvironment.
Collapse
Affiliation(s)
- Xiangbin Kong
- Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zhilong Dong
- Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Weiwei Hu
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Jun Mi
- Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Jie Xiao
- The Second Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Yiran Wang
- Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Wenfang Chen
- The Second Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zixu Pei
- The Second Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zhiping Wang
- Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| |
Collapse
|
5
|
Hashemi N, Tondro Anamag F, Javan Balegh Marand A, Rahnama'i MS, Herizchi Ghadim H, Salehi-Pourmehr H, Hajebrahimi S. A systematic and comprehensive review of the role of microbiota in urinary chronic pelvic pain syndrome. Neurourol Urodyn 2024; 43:1859-1882. [PMID: 38994675 DOI: 10.1002/nau.25550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Many genitourinary tract disorders could be attributed partly to the microbiota. This study sought to conduct a systematic review of the role of the microbiota in urinary chronic pelvic pain syndrome (UCPPS). METHODS We searched Embase, Scopus, Web of Science, and PubMed with no time, language, or study type restrictions until December 1, 2023. The JBI Appraisal Tool was used to assess the quality of the studies. Study selection followed the PRISMA statement. Studies addressing microbiome variations among patients suffering from interstitial cystitis/bladder pain syndrome (IC/BPS) or chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and a control group were considered eligible. RESULTS A total of 21 studies (1 UCPPS, 12 IC/BPS, and 8 CP/CPPS) comprising 1125 patients were enrolled in our final data synthesis. It has been shown that the reduced diversity and discrepant composition of the gut microbiota may partly be attributed to the UCPPS pathogenesis. In terms of urine microbiota, some operational taxonomic units were shown to be elevated, while others became less abundant. Furthermore, various bacteria and fungi are linked to specific clinical features. Few investigations denied UCPPS as a dysbiotic condition. CONCLUSIONS Urinary and intestinal microbiota appear to be linked with UCPPS, comprising IC/BPS and CP/CPPS. However, given the substantial disparity of published studies, a battery of prospective trials is required to corroborate these findings.
Collapse
Affiliation(s)
- Negin Hashemi
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Tondro Anamag
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Urology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Yue SY, Li WY, Xu S, Bai XX, Xu WL, Wang X, Ding HK, Chen J, Du HX, Xu LF, Niu D, Liang CZ. Causality investigation among gut microbiota, immune cells, and prostate diseases: a Mendelian randomization study. Front Microbiol 2024; 15:1445304. [PMID: 39323879 PMCID: PMC11422081 DOI: 10.3389/fmicb.2024.1445304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Background The gut microbiota has been demonstrated to have a significant role in the pathogenesis and progression of a variety of diseases, including prostate cancer, prostatitis, and benign prostatic hyperplasia. Potential links between prostate diseases, immune cells and the gut microbiota have not been adequately investigated. Methods MR studies were conducted to estimate the effects of instrumental variables obtained from genome-wide association studies (GWASs) of 196 gut microbial taxa and 731 immune cells on the risk of prostate diseases. The primary method for analysing causal relationships was inverse variance-weighted (IVW) analysis, and the MR results were validated through various sensitivity analyses. Results MR analysis revealed that 28 gut microbiome taxa and 75 immune cell types were significantly associated with prostate diseases. Furthermore, reverse MR analysis did not support a causal relationship between prostate diseases and the intestinal microbiota or immune cells. Finally, the results of the mediation analysis indicated that Secreting Treg % CD4 Treg, Activated & resting Treg % CD4 Treg, and Mo MDSC AC inhibited the role of the class Mollicutes in reducing the risk of PCa. In prostatitis, CD8+ T cells on EM CD8br hinder the increased risk associated with the genus Eubacterium nodatum group. Interestingly, in BPH, CD28- CD25++CD8br AC and CD16-CD56 on HLA DR+ NK promoted the role of the genus Dorea in reducing the risk of BPH. Conclusion This study highlights the complex relationships among the gut microbiota, immune cells and prostate diseases. The involvement of the gut microbiota in regulating immune cells to impact prostate diseases could provide novel methods and concepts for its therapy and management.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Wei-Yi Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shun Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiao-Xin Bai
- Department of Infectious Disease, The Second People’s Hospital of Fuyang City, Fuyang, China
| | - Wen-Long Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xu Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - He-Kang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ling-Fan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Di Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Liu D, Mei Y, Ji N, Zhang B, Feng X. Causal effect of gut microbiota on the risk of prostatitis: a two-sample Mendelian randomization study. Int Urol Nephrol 2024; 56:2839-2850. [PMID: 38573543 PMCID: PMC11322328 DOI: 10.1007/s11255-024-04020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Recent studies demonstrated that chronic prostatitis (CP) is closely related to the gut microbiota (GM). Nevertheless, the causal relationship between GM and CP has not been fully elucidated. Therefore, the two-sample Mendelian randomization (MR) analysis was employed to investigate this association. METHODS The summary data of gut microbiota derived from a genome-wide association study (GWAS) involving 18,340 individuals in the MiBioGen study served as the exposure, and the corresponding summary statistics for CP risk, representing the outcome, were obtained from the FinnGen databases (R9). The causal effects between GM and CP were estimated using the inverse-variance weighted (IVW) method supplemented with MR-Egger, weighted median, weighted mode, and simple mode methods. Additionally, the false discovery rate (FDR) correction was performed to adjust results. The detection and quantification of heterogeneity and pleiotropy were accomplished through the MR pleiotropy residual sum and outlier method, Cochran's Q statistics, and MR-Egger regression. RESULTS The IVW estimates indicated that a total of 11 GM taxa were related to the risk of CP. Seven of them was correlated with an increased risk of CP, while the remained linked with a decreased risk of CP. However, only Methanobacteria (OR 0.86; 95% CI 0.74-0.99), Methanobacteriales (OR 0.86; 95% CI 0.74-0.99), NB1n (OR 1.16; 95% CI 1.16-1.34), Methanobacteriaceae (OR 0.86; 95% CI 0.74-0.99), Odoribactergenus Odoribacter (OR 1.43; 95% CI 1.05-1.94), and Sutterellagenus Sutterella (OR 1.33; 95% CI 1.01-1.76) still maintain significant association with CP after FDR correction. Consistent directional effects for all analyses were observed in the supplementary methods. Subsequently, sensitivity analyses indicated the absence of heterogeneity, directional pleiotropy, or outliers concerning the causal effect of specific gut microbiota on CP (p > 0.05). CONCLUSION Our study demonstrated a gut microbiota-prostate axis, offering crucial data supporting the promising use of the GM as a candidate target for CP prevention, diagnosis, and treatment. There is a necessity for randomized controlled trials to validate the protective effect of the linked GM against the risk of CP, and to further investigate the underlying mechanisms involved.
Collapse
Affiliation(s)
- Dalu Liu
- Department of General Surgery, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, Anhui, China
| | - Yangyang Mei
- Department of Urology, Jiangyin People's Hospital of Jiangsu Province, Jiangyin, Jiangsu, China
| | - Nuo Ji
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Bo Zhang
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xingliang Feng
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
8
|
Meier TA, Refahi MS, Hearne G, Restifo DS, Munoz-Acuna R, Rosen GL, Woloszynek S. The Role and Applications of Artificial Intelligence in the Treatment of Chronic Pain. Curr Pain Headache Rep 2024; 28:769-784. [PMID: 38822995 DOI: 10.1007/s11916-024-01264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore the interface between artificial intelligence (AI) and chronic pain, seeking to identify areas of focus for enhancing current treatments and yielding novel therapies. RECENT FINDINGS In the United States, the prevalence of chronic pain is estimated to be upwards of 40%. Its impact extends to increased healthcare costs, reduced economic productivity, and strain on healthcare resources. Addressing this condition is particularly challenging due to its complexity and the significant variability in how patients respond to treatment. Current options often struggle to provide long-term relief, with their benefits rarely outweighing the risks, such as dependency or other side effects. Currently, AI has impacted four key areas of chronic pain treatment and research: (1) predicting outcomes based on clinical information; (2) extracting features from text, specifically clinical notes; (3) modeling 'omic data to identify meaningful patient subgroups with potential for personalized treatments and improved understanding of disease processes; and (4) disentangling complex neuronal signals responsible for pain, which current therapies attempt to modulate. As AI advances, leveraging state-of-the-art architectures will be essential for improving chronic pain treatment. Current efforts aim to extract meaningful representations from complex data, paving the way for personalized medicine. The identification of unique patient subgroups should reveal targets for tailored chronic pain treatments. Moreover, enhancing current treatment approaches is achievable by gaining a more profound understanding of patient physiology and responses. This can be realized by leveraging AI on the increasing volume of data linked to chronic pain.
Collapse
Affiliation(s)
| | - Mohammad S Refahi
- Ecological and Evolutionary Signal-Processing and Informatics (EESI) Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Gavin Hearne
- Ecological and Evolutionary Signal-Processing and Informatics (EESI) Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | | | - Ricardo Munoz-Acuna
- Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics (EESI) Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Stephen Woloszynek
- Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
9
|
Cao H, Zhang D, Wang P, Wang Y, Shi C, Wu H, Du H, Zhang W, Gou Z, Zhou H, Wang S. Gut microbiome: a novel preventive and therapeutic target for prostatic disease. Front Cell Infect Microbiol 2024; 14:1431088. [PMID: 39135640 PMCID: PMC11317475 DOI: 10.3389/fcimb.2024.1431088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The human gut microbiome (GM) impacts various physiological processes and can lead to pathological conditions and even carcinogenesis if homeostasis is disrupted. Recent studies have indicated a connection between the GM and prostatic disease. However, the underlying mechanisms are still unclear. This review aims to provide a summary of the existing information regarding the connection between the GM and various prostatic conditions such as chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), benign prostatic hyperplasia (BPH), and prostate cancer (PCa). Furthermore, the review aims to identify possible pathogenic mechanisms and suggest potential ways of targeting GM to prevent and treat prostatic disease. Due to the complexity of the mechanism between GM and prostatic diseases, additional research is required to comprehend the association between the two. This will lead to more effective treatment options for prostatic disease.
Collapse
Affiliation(s)
- Hongliang Cao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Pengyu Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Chengdong Shi
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Hao Du
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Wenqiang Zhang
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Zixuan Gou
- Bethune First Clinical School of Medicine, The First Hospital of Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Song Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Qin P, He Y, Shao H, Jiang D. Genetic insights into gut microbiota and risk of prostatitis: a Mendelian randomization study. Front Microbiol 2024; 15:1389715. [PMID: 38680919 PMCID: PMC11045958 DOI: 10.3389/fmicb.2024.1389715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Background The dysbiosis of gut microbiota (GM) is considered a contributing factor to prostatitis, yet the causality remains incompletely understood. Methods The genome-wide association study (GWAS) data for GM and prostatitis were sourced from MiBioGen and FinnGen R10, respectively. In the two-sample Mendelian randomization (MR) analysis, inverse variance weighting (IVW), MR-Egger, weighted median, simple mode, weighted mode, and maximum likelihood (ML) methods were utilized to investigate the causal relationship between GM and prostatitis. A series of sensitivity analysis were conducted to confirm the robustness of the main results obtained from the MR analysis. Results According to the IVW results, genus Sutterella (OR: 1.37, 95% CI: 1.09-1.71, p = 0.006) and genus Holdemania (OR: 1.21, 95% CI: 1.02-1.43, p = 0.028) were associated with an increased risk of prostatitis. The phylum Verrucomicrobia (OR: 0.76, 95% CI: 0.58-0.98, p = 0.033) and genus Parasutterella (OR: 0.84, 95% CI: 0.70-1.00, p = 0.045) exhibited a negative association with prostatitis, indicating a potential protective effect. Sensitivity analysis showed that these results were not affected by heterogeneity and horizontal pleiotropy. Furthermore, the majority of statistical methods yielded results consistent with those of the IVW analysis. Conclusions In this study, we identified two GM taxon that might be protective against prostatitis and two GM taxon that could increase the risk of developing prostatitis. These findings could potentially provide a valuable theoretical basis for the future development of preventive and therapeutic strategies for prostatitis.
Collapse
Affiliation(s)
| | | | | | - Dawei Jiang
- Department of Urology, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, China
| |
Collapse
|