1
|
Tripp JA, Feng NY, Bass AH. To hum or not to hum: Neural transcriptome signature of male courtship vocalization in a teleost fish. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12740. [PMID: 33960645 DOI: 10.1111/gbb.12740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/31/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
For many animal species, vocal communication is a critical social behavior and often a necessary component of reproductive success. Additionally, vocalizations are often demanding motor acts. Wanting to know whether a specific molecular toolkit might be required for vocalization, we used RNA-sequencing to investigate neural gene expression underlying the performance of an extreme vocal behavior, the courtship hum of the plainfin midshipman fish (Porichthys notatus). Single hums can last up to 2 h and may be repeated throughout an evening of courtship activity. We asked whether vocal behavioral states are associated with specific gene expression signatures in key brain regions that regulate vocalization by comparing transcript expression levels in humming versus non-humming males. We find that the circadian-related genes period3 and Clock are significantly upregulated in the vocal motor nucleus and preoptic area-anterior hypothalamus, respectively, in humming compared with non-humming males, indicating that internal circadian clocks may differ between these divergent behavioral states. In addition, we identify suites of differentially expressed genes related to synaptic transmission, ion channels and transport, neuropeptide and hormone signaling, and metabolism and antioxidant activity that together may support the neural and energetic demands of humming behavior. Comparisons of transcript expression across regions stress regional differences in brain gene expression, while also showing coordinated gene regulation in the vocal motor circuit in preparation for courtship behavior. These results underscore the role of differential gene expression in shifts between behavioral states, in this case neuroendocrine, motor and circadian control of courtship vocalization.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
- Department of Integrative Biology, University of Texas-Austin, Austin, Texas, USA
| | - Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Fernández-Vargas M. Rapid effects of estrogens and androgens on temporal and spectral features in ultrasonic vocalizations. Horm Behav 2017; 94:69-83. [PMID: 28687274 DOI: 10.1016/j.yhbeh.2017.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/24/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022]
|
3
|
Friesen CN, Ramsey ME, Cummings ME. Differential sensitivity to estrogen-induced opsin expression in two poeciliid freshwater fish species. Gen Comp Endocrinol 2017; 246:200-210. [PMID: 28013033 DOI: 10.1016/j.ygcen.2016.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
The sensory system shapes an individual's perception of the world, including social interactions with conspecifics, habitat selection, predator detection, and foraging behavior. Sensory signaling can be modulated by steroid hormones, making these processes particularly vulnerable to environmental perturbations. Here we examine the influence of exogenous estrogen manipulation on the visual physiology of female western mosquitofish (Gambusia affinis) and sailfin mollies (Poecilia latipinna), two poeciliid species that inhabit freshwater environments across the southern United States. We conducted two experiments to address this aim. First, we exposed females from both species to a one-week dose response experiment with three treatments of waterborne β-estradiol. Next, we conducted a one-week estrogen manipulation experiment with a waterborne estrogen (β-Estradiol), a selective estrogen receptor modulator (tamoxifen), or combination estrogen and tamoxifen treatment. We used quantitative PCR (qPCR) to examine the expression of cone opsins (SWS1, SWS2b, SWS2a, Rh2, LWS), rhodopsin (Rh1), and steroid receptor genes (ARα, ARβ, ERα, ERβ2, GPER) in the eyes of individual females from each species. Results from the dose response experiment revealed estradiol-sensitivity in opsin (SWS2a, Rh2, Rh1) and androgen receptor (ARα, ARβ) gene expression in mosquitofish females, but not sailfins. Meanwhile, our estrogen receptor modulation experiments revealed estrogen sensitivity in LWS opsin expression in both species, along with sensitivity in SWS1, SWS2b, and Rh2 opsins in mosquitofish. Comparisons of control females across experiments reveal species-level differences in opsin expression, with mosquitofish retinas dominated by short-wavelength sensitive opsins (SWS2b) and sailfins retinas dominated by medium- and long-wavelength sensitive opsins (Rh2 and LWS). Our research suggests that variation in exogenous levels of sex hormones within freshwater environments can modify the visual physiology of fishes in a species-specific manner.
Collapse
Affiliation(s)
- Caitlin N Friesen
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA. https://www.researchgate.net/profile/Caitlin_Friesen
| | - Mary E Ramsey
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Molly E Cummings
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
4
|
Feng NY, Fergus DJ, Bass AH. Neural transcriptome reveals molecular mechanisms for temporal control of vocalization across multiple timescales. BMC Genomics 2015; 16:408. [PMID: 26014649 PMCID: PMC4446069 DOI: 10.1186/s12864-015-1577-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022] Open
Abstract
Background Vocalization is a prominent social behavior among vertebrates, including in the midshipman fish, an established model for elucidating the neural basis of acoustic communication. Courtship vocalizations produced by territorial males are essential for reproductive success, vary over daily and seasonal cycles, and last up to hours per call. Vocalizations rely upon extreme synchrony and millisecond precision in the firing of a homogeneous population of motoneurons, the vocal motor nucleus (VMN). Although studies have identified neural mechanisms driving rapid, precise, and stable neuronal firing over long periods of calling, little is known about underlying genetic/molecular mechanisms. Results We used RNA sequencing-based transcriptome analyses to compare patterns of gene expression in VMN to the surrounding hindbrain across three daily and seasonal time points of high and low sound production to identify candidate genes that underlie VMN’s intrinsic and network neuronal properties. Results from gene ontology enrichment, enzyme pathway mapping, and gene category-wide expression levels highlighted the importance of cellular respiration in VMN function, consistent with the high energetic demands of sustained vocal behavior. Functionally important candidate genes upregulated in the VMN, including at time points corresponding to high natural vocal activity, encode ion channels and neurotransmitter receptors, hormone receptors and biosynthetic enzymes, neuromodulators, aerobic respiration enzymes, and antioxidants. Quantitative PCR and RNA-seq expression levels for 28 genes were significantly correlated. Many candidate gene products regulate mechanisms of neuronal excitability, including those previously identified in VMN motoneurons, as well as novel ones that remain to be investigated. Supporting evidence from previous studies in midshipman strongly validate the value of transcriptomic analyses for linking genes to neural characters that drive behavior. Conclusions Transcriptome analyses highlighted a suite of molecular mechanisms that regulate vocalization over behaviorally relevant timescales, spanning milliseconds to hours and seasons. To our knowledge, this is the first comprehensive characterization of gene expression in a dedicated vocal motor nucleus. Candidate genes identified here may belong to a conserved genetic toolkit for vocal motoneurons facing similar energetic and neurophysiological demands. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1577-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| | - Daniel J Fergus
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA. .,Current Address: North Carolina Museum of Natural Sciences, Genomics and Microbiology, 27601, Raleigh, NC, USA.
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
5
|
Forlano PM, Sisneros JA, Rohmann KN, Bass AH. Neuroendocrine control of seasonal plasticity in the auditory and vocal systems of fish. Front Neuroendocrinol 2015; 37:129-45. [PMID: 25168757 PMCID: PMC4342331 DOI: 10.1016/j.yfrne.2014.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/09/2014] [Accepted: 08/14/2014] [Indexed: 11/27/2022]
Abstract
Seasonal changes in reproductive-related vocal behavior are widespread among fishes. This review highlights recent studies of the vocal plainfin midshipman fish, Porichthys notatus, a neuroethological model system used for the past two decades to explore neural and endocrine mechanisms of vocal-acoustic social behaviors shared with tetrapods. Integrative approaches combining behavior, neurophysiology, neuropharmacology, neuroanatomy, and gene expression methodologies have taken advantage of simple, stereotyped and easily quantifiable behaviors controlled by discrete neural networks in this model system to enable discoveries such as the first demonstration of adaptive seasonal plasticity in the auditory periphery of a vertebrate as well as rapid steroid and neuropeptide effects on vocal physiology and behavior. This simple model system has now revealed cellular and molecular mechanisms underlying seasonal and steroid-driven auditory and vocal plasticity in the vertebrate brain.
Collapse
Affiliation(s)
- Paul M Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210, United States; Programs in Neuroscience, Ecology, Evolutionary Biology and Behavior, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY 10016, United States; Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY 11210, United States.
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA 98195, United States; Department of Biology, University of Washington, Seattle, WA 98195, United States; Virginia Merrill Bloedel Hearing Research Center, Seattle, WA 98195, United States
| | - Kevin N Rohmann
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, United States; Bodega Marine Laboratory, University of California, Bodega Bay, CA, 94923, United States
| |
Collapse
|
6
|
Pultorak JD, Fuxjager MJ, Kalcounis-Rueppell MC, Marler CA. Male fidelity expressed through rapid testosterone suppression of ultrasonic vocalizations to novel females in the monogamous California mouse. Horm Behav 2015; 70:47-56. [PMID: 25725427 DOI: 10.1016/j.yhbeh.2015.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/14/2015] [Accepted: 02/18/2015] [Indexed: 11/26/2022]
Abstract
The steroid hormone testosterone (T) is a well-known mediator of male sexual behavior in vertebrates. However, less is known about T's rapid effects on sexual behavior, particularly those involving ultrasonic vocalizations (USVs), a mode of communication that can influence mate acquisition in rodents. Using the monogamous California mouse, Peromyscus californicus, we tested whether T rapidly alters male USV production by giving T or saline injections to non-paired (sexually naïve) males and paired (paternally experienced and pair-bonded) males immediately prior to a brief exposure to an unrelated, novel female. Among non-paired males, no differences in the total number of USVs were observed; however, T increased the proportion of simple sweeps produced. Among paired males, T decreased the number of USVs produced, and this change was driven by a reduction in simple sweeps. These results suggest a differential rapid effect of T pulses between non-paired and paired males upon exposure to a novel female. Additionally, we observed a positive correlation in the production of USVs made between males and novel females, and this relationship was altered by T. Given the importance of USVs in sexual communication, our study supports an essential concept of monogamy in that mate fidelity is reinforced by decreased responsiveness to prospective mates outside of the pair bond. The central mechanism in pair bonded males that decreases their responsiveness to novel females appears to be one that T can trigger. This is among the first studies to demonstrate that T can inhibit sexually related behaviors and do so rapidly.
Collapse
Affiliation(s)
- Joshua D Pultorak
- Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, NC 27106, USA
| | | | - Catherine A Marler
- Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Cordes MA, Stevenson SA, Driessen TM, Eisinger BE, Riters LV. Sexually-motivated song is predicted by androgen-and opioid-related gene expression in the medial preoptic nucleus of male European starlings (Sturnus vulgaris). Behav Brain Res 2015; 278:12-20. [PMID: 25264575 PMCID: PMC4559756 DOI: 10.1016/j.bbr.2014.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022]
Abstract
Across vertebrates, communication conveys information about an individual's motivational state, yet little is known about the neuroendocrine regulation of motivational aspects of communication. For seasonally breeding songbirds, increases in testosterone in spring stimulate high rates of sexually-motivated courtship song, though not all birds sing at high rates. It is generally assumed that testosterone or its metabolites act within the medial preoptic nucleus (POM) to stimulate the motivation to sing. In addition to androgen receptors (ARs) and testosterone, opioid neuropeptides in the POM influence sexually-motivated song production, and it has been proposed that testosterone may in part regulate song by modifying opioid systems. To gain insight into a possible role for androgen-opioid interactions in the regulation of communication we examined associations between sexually-motivated song and relative expression of ARs, mu opioid receptors (muORs), and preproenkephalin (PENK) in the POM (and other regions) of male European starlings using qPCR. Both AR and PENK expression in POM correlated positively with singing behavior, whereas muOR in POM correlated negatively with song. Furthermore, the ratio of PENK/muOR expression correlated negatively with AR expression in POM. Finally, in the ventral tegmental area (VTA), PENK expression correlated negatively with singing behavior. Results support the hypothesis that ARs may alter opioid gene expression in POM to fine-tune singing to reflect a male's motivational state. Data also suggest that bidirectional relationships may exist between opioids and ARs in POM and song, and additionally support a role for opioids in the VTA, independent of AR activity in this region.
Collapse
Affiliation(s)
- M A Cordes
- University of Wisconsin, Madison Department of Zoology, 430 Lincoln Ave., Madison, WI, USA.
| | - S A Stevenson
- University of Wisconsin, Madison Department of Zoology, 430 Lincoln Ave., Madison, WI, USA
| | - T M Driessen
- University of Wisconsin, Madison Department of Zoology, 430 Lincoln Ave., Madison, WI, USA; Washington State University, Integrated Physiology and Neuroscience Department, 1815 Ferdinand's Lane, Pullman, WA, USA
| | - B E Eisinger
- University of Wisconsin, Madison Department of Zoology, 430 Lincoln Ave., Madison, WI, USA; University of Wisconsin-Madison School of Medicine and Public Health, Waisman Center and Department of Neuroscience, 1500 Highland Ave., Madison, WI 53705, USA
| | - L V Riters
- University of Wisconsin, Madison Department of Zoology, 430 Lincoln Ave., Madison, WI, USA
| |
Collapse
|
8
|
Remage-Healey L. Frank Beach Award Winner: Steroids as neuromodulators of brain circuits and behavior. Horm Behav 2014; 66:552-60. [PMID: 25110187 PMCID: PMC4180446 DOI: 10.1016/j.yhbeh.2014.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/27/2022]
Abstract
Neurons communicate primarily via action potentials that transmit information on the timescale of milliseconds. Neurons also integrate information via alterations in gene transcription and protein translation that are sustained for hours to days after initiation. Positioned between these two signaling timescales are the minute-by-minute actions of neuromodulators. Over the course of minutes, the classical neuromodulators (such as serotonin, dopamine, octopamine, and norepinephrine) can alter and/or stabilize neural circuit patterning as well as behavioral states. Neuromodulators allow many flexible outputs from neural circuits and can encode information content into the firing state of neural networks. The idea that steroid molecules can operate as genuine behavioral neuromodulators - synthesized by and acting within brain circuits on a minute-by-minute timescale - has gained traction in recent years. Evidence for brain steroid synthesis at synaptic terminals has converged with evidence for the rapid actions of brain-derived steroids on neural circuits and behavior. The general principle emerging from this work is that the production of steroid hormones within brain circuits can alter their functional connectivity and shift sensory representations by enhancing their information coding. Steroids produced in the brain can therefore change the information content of neuronal networks to rapidly modulate sensory experience and sensorimotor functions.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 01003, USA.
| |
Collapse
|
9
|
Fergus DJ, Bass AH. Localization and divergent profiles of estrogen receptors and aromatase in the vocal and auditory networks of a fish with alternative mating tactics. J Comp Neurol 2013; 521:2850-69. [PMID: 23460422 PMCID: PMC3688646 DOI: 10.1002/cne.23320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/06/2022]
Abstract
Estrogens play a salient role in the development and maintenance of both male and female nervous systems and behaviors. The plainfin midshipman (Porichthys notatus), a teleost fish, has two male reproductive morphs that follow alternative mating tactics and diverge in multiple somatic, hormonal, and neural traits, including the central control of morph-specific vocal behaviors. After we identified duplicate estrogen receptors (ERβ1 and ERβ2) in midshipman, we developed antibodies to localize protein expression in the central vocal-acoustic networks and saccule, the auditory division of the inner ear. As in other teleost species, ERβ1 and ERβ2 were robustly expressed in the telencephalon and hypothalamus in vocal-acoustic and other brain regions shown previously to exhibit strong expression of ERα and aromatase (estrogen synthetase, CYP19) in midshipman. Like aromatase, ERβ1 label colocalized with glial fibrillary acidic protein (GFAP) in telencephalic radial glial cells. Quantitative polymerase chain reaction revealed similar patterns of transcript abundance across reproductive morphs for ERβ1, ERβ2, ERα, and aromatase in the forebrain and saccule. In contrast, transcript abundance for ERs and aromatase varied significantly between morphs in and around the sexually polymorphic vocal motor nucleus (VMN). Together, the results suggest that VMN is the major estrogen target within the estrogen-sensitive hindbrain vocal network that directly determines the duration, frequency, and amplitude of morph-specific vocalizations. Comparable regional differences in steroid receptor abundances likely regulate morph-specific behaviors in males and females of other species exhibiting alternative reproductive tactics.
Collapse
Affiliation(s)
- Daniel J Fergus
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
10
|
Changing neuroestrogens within the auditory forebrain rapidly transform stimulus selectivity in a downstream sensorimotor nucleus. J Neurosci 2012; 32:8231-41. [PMID: 22699904 DOI: 10.1523/jneurosci.1114-12.2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The activity of sensory circuits is shaped by neuromodulators, which can have downstream consequences for both sensorimotor integration and behavioral output. Recent evidence indicates that brain-derived estrogens ("neuroestrogens") can act as local circuit modulators in the songbird auditory forebrain. Specifically, neuroestrogens fluctuate in the auditory caudomedial nidopallium (NCM) during social interactions and in response to song stimuli. Within minutes of elevation, neuroestrogens also enhance auditory response properties of NCM neurons, and acute blockade of estrogen production in NCM disrupts behavioral song preferences. Here, we test the hypothesis that fluctuating neuroestrogens within NCM influence stimulus selectivity in a downstream sensorimotor nucleus (HVC, used as a proper name) that receives indirect auditory input from NCM. Dual extracellular recordings coupled with retrodialysis delivery show that song selectivity in HVC is rapidly enhanced by increasing neuroestrogens in NCM in adult males. Conversely, inhibiting neuroestrogen production in NCM causes a rapid decline in song selectivity in HVC, demonstrating the endogenous nature of this modulatory network. In contrast, HVC selectivity is unaffected by neuroestrogen delivery to either nearby caudomedial mesopallium or into HVC itself, indicating that neuroestrogen actions are restricted to NCM. In juvenile males, identical neuroestrogen treatment in NCM also does not alter HVC selectivity, consistent with a developmental maturation of the auditory network. Lastly, the rapid actions of estrogens leading to enhanced HVC selectivity appear to be mediated by membrane-bound receptors in NCM. These findings indicate that steroid-dependent modulation of sensory processing is not locally restricted and can be transmitted transynaptically to influence downstream sensorimotor and premotor targets.
Collapse
|
11
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
12
|
Pradhan DS, Lau LYM, Schmidt KL, Soma KK. 3β-HSD in songbird brain: subcellular localization and rapid regulation by estradiol. J Neurochem 2010; 115:667-75. [DOI: 10.1111/j.1471-4159.2010.06954.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Kelley DB, Bass AH. Neurobiology of vocal communication: mechanisms for sensorimotor integration and vocal patterning. Curr Opin Neurobiol 2010; 20:748-53. [PMID: 20829032 DOI: 10.1016/j.conb.2010.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/10/2010] [Indexed: 01/22/2023]
Abstract
This review will focus on recent developments in the sensorimotor integration of vocal communication. Two broad themes are emphasized: the evolution of vocal production and perception, and the role of social context. Advances include: a proposal for the emergence of vocal patterning during vertebrate evolution, the role of sensory mechanisms such as categorical perception in decoding communication signals, contributions of sensorimotor integration phenomena including mirror neurons and vocal learning, and mechanisms of hormone-dependent plasticity in both auditory and vocal systems. Transcriptional networks activated in humans but not in chimps by the FoxP2 gene suggest molecular mechanisms underlying vocal gestures and the emergence of human language.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences, MC2432, Columbia University, New York, NY 10025, USA.
| | | |
Collapse
|