1
|
Zhang L, Mysore SP. The barn owl in systems and behavioral neuroscience: Progress and promise. Curr Opin Neurobiol 2025; 91:102983. [PMID: 39987690 DOI: 10.1016/j.conb.2025.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/24/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Though well-adapted to their evolutionary niches, animals exhibit a repertoire of behavioral functions that are common across species. Neuroscientific research that promotes the study of similar functions in multiple species, can illuminate shared versus specialized design features of the nervous system, revealing potentially profound insights into the neural basis of behavior and cognition. Here, we advance the idea that the barn owl is an excellent animal model in which to investigate such common functions. We do so by drawing attention to the range of exciting questions that can be asked in the owl beyond those deriving from its evolutionary specializations, by underscoring the variety of complex yet experimentally tractable behaviors it exhibits naturally, by emphasizing its complex network of brain systems, and by highlighting emerging opportunities for the application of modern neural technologies. Our goal is to motivate broader adoption of the powerful barn owl model for behavioral and systems neuroscience.
Collapse
Affiliation(s)
- Lilian Zhang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, USA.
| |
Collapse
|
2
|
Huang S, Hu P, Zhao Z, Shi L. Dynamic Nonlinear Spatial Integrations on Encoding Contrasting Stimuli of Tectal Neurons. Animals (Basel) 2024; 14:1577. [PMID: 38891623 PMCID: PMC11171053 DOI: 10.3390/ani14111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Animals detect targets using a variety of visual cues, with the visual salience of these cues determining which environmental features receive priority attention and further processing. Surround modulation plays a crucial role in generating visual saliency, which has been extensively studied in avian tectal neurons. Recent work has reported that the suppression of tectal neurons induced by motion contrasting stimulus is stronger than that by luminance contrasting stimulus. However, the underlying mechanism remains poorly understood. In this study, we built a computational model (called Generalized Linear-Dynamic Modulation) which incorporates independent nonlinear tuning mechanisms for excitatory and inhibitory inputs. This model aims to describe how tectal neurons encode contrasting stimuli. The results showed that: (1) The dynamic nonlinear integration structure substantially improved the accuracy (significant difference (p < 0.001, paired t-test) in the goodness of fit between the two models) of the predicted responses to contrasting stimuli, verifying the nonlinear processing performed by tectal neurons. (2) The modulation difference between luminance and motion contrasting stimuli emerged from the predicted response by the full model but not by that with only excitatory synaptic input (spatial luminance: 89 ± 2.8% (GL_DM) vs. 87 ± 2.1% (GL_DMexc); motion contrasting stimuli: 87 ± 1.7% (GL_DM) vs. 83 ± 2.2% (GL_DMexc)). These results validate the proposed model and further suggest the role of dynamic nonlinear spatial integrations in contextual visual information processing, especially in spatial integration, which is important for object detection performed by birds.
Collapse
Affiliation(s)
- Shuman Huang
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
| | - Pingge Hu
- Department of Automation, Tsinghua University, Beijing 100084, China;
| | - Zhenmeng Zhao
- School of Software, Henan Normal University, Xinxiang 453007, China;
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
3
|
Wagner H, Pappe I, Nalbach HO. Optocollic responses in adult barn owls (Tyto furcata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:239-251. [PMID: 34812911 PMCID: PMC8934767 DOI: 10.1007/s00359-021-01524-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/05/2022]
Abstract
Barn owls, like primates, have frontally oriented eyes, which allow for a large binocular overlap. While owls have similar binocular vision and visual-search strategies as primates, it is less clear whether reflexive visual behavior also resembles that of primates or is more similar to that of closer related, but lateral-eyed bird species. Test cases are visual responses driven by wide-field movement: the optokinetic, optocollic, and optomotor responses, mediated by eye, head and body movements, respectively. Adult primates have a so-called symmetric horizontal response: they show the same following behavior, if the stimulus, presented to one eye only, moves in the nasal-to-temporal direction or in the temporal-to-nasal direction. By contrast, lateral-eyed birds have an asymmetric response, responding better to temporal-to-nasal movement than to nasal-to-temporal movement. We show here that the horizontal optocollic response of adult barn owls is less asymmetric than that in the chicken for all velocities tested. Moreover, the response is symmetric for low velocities (< 20 deg/s), and similar to that of primates. The response becomes moderately asymmetric for middle-range velocities (20-40 deg/s). A definitive statement for the complex situation for higher velocities (> 40 deg/s) is not possible.
Collapse
Affiliation(s)
- Hermann Wagner
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, 72076, Tübingen, Germany.
- Institut für Biologie II, RWTH Aachen, Worringerweg 3, 52074, Aachen, Germany.
| | - Ina Pappe
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, 72076, Tübingen, Germany
- Universitätsklinik für Anaesthesiologie, Waldhörnlestrasse 22, 72072, Tübingen, Germany
| | - Hans-Ortwin Nalbach
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Niu X, Huang S, Yang S, Wang Z, Li Z, Shi L. Comparison of pop-out responses to luminance and motion contrasting stimuli of tectal neurons in pigeons. Brain Res 2020; 1747:147068. [PMID: 32827547 DOI: 10.1016/j.brainres.2020.147068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
The emergence of visual saliency has been widely studied in the primary visual cortex and the superior colliculus (SC) in mammals. There are fewer studies on the pop-out response to motion direction contrasting stimuli taken in the optic tectum (OT, homologous to mammalian SC), and these are mainly of owls and fish. To our knowledge the influence of spatial luminance has not been reported. In this study, we have recorded multi-units in pigeon OT and analyzed the tectal response to spatial luminance contrasting, motion direction contrasting, and contrasting stimuli from both feature dimensions. The comparison results showed that 1) the tectal response would pop-out in either motion direction or spatial luminance contrasting conditions. 2) The modulation from motion direction contrasting was independent of the temporal luminance variation of the visual stimuli. 3) When both spatial luminance and motion direction were salient, the response of tectal neurons was modulated more intensely by motion direction than by spatial luminance. The phenomenon was consistent with the innate instinct of avians in their natural environment. This study will help to deepen the understanding of mechanisms involved in bottom-up visual information processing and selective attention in the avian.
Collapse
Affiliation(s)
- Xiaoke Niu
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China; College of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuman Huang
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Shangfei Yang
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Zhizhong Wang
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Zhihui Li
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Li Shi
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China; Department of Automation, Tsinghua University, Beijing 100000, China.
| |
Collapse
|
5
|
Stacho M, Herold C, Rook N, Wagner H, Axer M, Amunts K, Güntürkün O. A cortex-like canonical circuit in the
avian forebrain. Science 2020; 369:369/6511/eabc5534. [DOI: 10.1126/science.abc5534] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Although the avian pallium seems to lack
an organization akin to that of the cerebral
cortex, birds exhibit extraordinary cognitive
skills that are comparable to those of mammals. We
analyzed the fiber architecture of the avian
pallium with three-dimensional polarized light
imaging and subsequently reconstructed local and
associative pallial circuits with tracing
techniques. We discovered an iteratively repeated,
column-like neuronal circuitry across the
layer-like nuclear boundaries of the hyperpallium
and the sensory dorsal ventricular ridge. These
circuits are connected to neighboring columns and,
via tangential layer-like connections, to higher
associative and motor areas. Our findings indicate
that this avian canonical circuitry is similar to
its mammalian counterpart and might constitute the
structural basis of neuronal computation.
Collapse
Affiliation(s)
- Martin Stacho
- Department of Biopsychology,
Institute of Cognitive Neuroscience, Faculty of
Psychology, Ruhr-University Bochum, 44801 Bochum,
Germany
- Department of Neurophysiology,
Institute of Physiology, Faculty of Medicine,
Ruhr-University Bochum, 44801 Bochum,
Germany
| | - Christina Herold
- Cécile and Oskar Vogt Institute for
Brain Research, Medical Faculty, Heinrich Heine
University of Düsseldorf, 40225 Düsseldorf,
Germany
| | - Noemi Rook
- Department of Biopsychology,
Institute of Cognitive Neuroscience, Faculty of
Psychology, Ruhr-University Bochum, 44801 Bochum,
Germany
| | - Hermann Wagner
- Institute for Biology II, RWTH Aachen
University, 52074 Aachen, Germany
| | - Markus Axer
- Institute of Neuroscience and
Medicine INM-1, Research Center Jülich, 52425
Jülich, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for
Brain Research, Medical Faculty, Heinrich Heine
University of Düsseldorf, 40225 Düsseldorf,
Germany
- Institute of Neuroscience and
Medicine INM-1, Research Center Jülich, 52425
Jülich, Germany
| | - Onur Güntürkün
- Department of Biopsychology,
Institute of Cognitive Neuroscience, Faculty of
Psychology, Ruhr-University Bochum, 44801 Bochum,
Germany
| |
Collapse
|
6
|
Bliard L, Paquet M, Robert A, Dufour P, Renoult JP, Grégoire A, Crochet PA, Covas R, Doutrelant C. Examining the link between relaxed predation and bird coloration on islands. Biol Lett 2020; 16:20200002. [PMID: 32315593 DOI: 10.1098/rsbl.2020.0002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insular ecosystems share analogous ecological conditions, leading to patterns of convergent evolution that are collectively termed as the 'island syndrome'. In birds, part of this syndrome is a tendency for a duller plumage, possibly as a result of relaxed sexual selection. Despite this global pattern, some insular species display a more colourful plumage than their mainland relatives, but why this occurs has remained unexplained. Here, we examine the hypothesis that these cases of increased plumage coloration on islands could arise through a relaxation of predation pressure. We used comparative analyses to investigate whether average insular richness of raptors of suitable mass influences the plumage colourfulness and brightness across 110 pairs of insular endemic species and their closest mainland relatives. As predicted, we find a likely negative relationship between insular coloration and insular predation while controlling for mainland predation and coloration, suggesting that species were more likely to become more colourful as the number of insular predators decreased. By contrast, plumage brightness was not influenced by predation pressure. Relaxation from predation, together with drift, might thus be a key mechanism of species phenotypic responses to insularity.
Collapse
Affiliation(s)
- Louis Bliard
- CEFE UMR 5175, CNRS - Université de Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier Cedex 05, France
| | - Matthieu Paquet
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, SE-75007 Uppsala, Sweden
| | - Aloïs Robert
- CEFE UMR 5175, CNRS - Université de Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier Cedex 05, France
| | - Paul Dufour
- Laboratoire d'Écologie Alpine, Université Grenoble Alpes, CNRS, Université Savoie Mont Blanc, LECA, F-38000 Grenoble, France
| | - Julien P Renoult
- CEFE UMR 5175, CNRS - Université de Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier Cedex 05, France
| | - Arnaud Grégoire
- CEFE UMR 5175, CNRS - Université de Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier Cedex 05, France
| | - Pierre-André Crochet
- CEFE UMR 5175, CNRS - Université de Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier Cedex 05, France
| | - Rita Covas
- CIBIO-InBio, University of Porto, Rua Monte-Crasto, 4485-661 Vairão, Portugal.,Biology Department, Science Faculty, University of Porto, Porto, Portugal.,Percy FitzPatrick Institute, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Doutrelant
- CEFE UMR 5175, CNRS - Université de Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier Cedex 05, France.,Percy FitzPatrick Institute, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
7
|
Borges R, Fonseca J, Gomes C, Johnson WE, O'Brien SJ, Zhang G, Gilbert MTP, Jarvis ED, Antunes A. Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype. Genome Biol Evol 2020; 11:2244-2255. [PMID: 31386143 PMCID: PMC6735850 DOI: 10.1093/gbe/evz111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Typical avian eyes are phenotypically engineered for photopic vision (daylight). In contrast, the highly derived eyes of the barn owl (Tyto alba) are adapted for scotopic vision (dim light). The dramatic modifications distinguishing barn owl eyes from other birds include: 1) shifts in frontal orientation to improve binocularity, 2) rod-dominated retina, and 3) enlarged corneas and lenses. Some of these features parallel mammalian eye patterns, which are hypothesized to have initially evolved in nocturnal environments. Here, we used an integrative approach combining phylogenomics and functional phenotypes of 211 eye-development genes across 48 avian genomes representing most avian orders, including the stem lineage of the scotopic-adapted barn owl. Overall, we identified 25 eye-development genes that coevolved under intensified or relaxed selection in the retina, lens, cornea, and optic nerves of the barn owl. The agtpbp1 gene, which is associated with the survival of photoreceptor populations, was pseudogenized in the barn owl genome. Our results further revealed that barn owl retinal genes responsible for the maintenance, proliferation, and differentiation of photoreceptors experienced an evolutionary relaxation. Signatures of relaxed selection were also observed in the lens and cornea morphology-associated genes, suggesting that adaptive evolution in these structures was essentially structural. Four eye-development genes (ephb1, phactr4, prph2, and rs1) evolved in positive association with the orbit convergence in birds and under relaxed selection in the barn owl lineage, likely contributing to an increased reliance on binocular vision in the barn owl. Moreover, we found evidence of coevolutionary interactions among genes that are expressed in the retina, lens, and optic nerve, suggesting synergetic adaptive events. Our study disentangles the genomic changes governing the binocularity and low-light perception adaptations of barn owls to nocturnal environments while revealing the molecular mechanisms contributing to the shift from the typical avian photopic vision to the more-novel scotopic-adapted eye.
Collapse
Affiliation(s)
- Rui Borges
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - João Fonseca
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Cidália Gomes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia.,Walter Reed Biosystematics Unit, Smithsonian Institution, Suitland, Maryland
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia.,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark.,China National GeneBank, BGI-Shenzen, Shenzhen, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, Rockefeller University.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
8
|
Dutta A, Lev-Ari T, Barzilay O, Mairon R, Wolf A, Ben-Shahar O, Gutfreund Y. Self-motion trajectories can facilitate orientation-based figure-ground segregation. J Neurophysiol 2020; 123:912-926. [PMID: 31967932 DOI: 10.1152/jn.00439.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Segregation of objects from the background is a basic and essential property of the visual system. We studied the neural detection of objects defined by orientation difference from background in barn owls (Tyto alba). We presented wide-field displays of densely packed stripes with a dominant orientation. Visual objects were created by orienting a circular patch differently from the background. In head-fixed conditions, neurons in both tecto- and thalamofugal visual pathways (optic tectum and visual Wulst) were weakly responsive to these objects in their receptive fields. However, notably, in freely viewing conditions, barn owls occasionally perform peculiar side-to-side head motions (peering) when scanning the environment. In the second part of the study we thus recorded the neural response from head-fixed owls while the visual displays replicated the peering conditions; i.e., the displays (objects and backgrounds) were shifted along trajectories that induced a retinal motion identical to sampled peering motions during viewing of a static object. These conditions induced dramatic neural responses to the objects, in the very same neurons that where unresponsive to the objects in static displays. By reverting to circular motions of the display, we show that the pattern of the neural response is mostly shaped by the orientation of the background relative to motion and not the orientation of the object. Thus our findings provide evidence that peering and/or other self-motions can facilitate orientation-based figure-ground segregation through interaction with inhibition from the surround.NEW & NOTEWORTHY Animals frequently move their sensory organs and thereby create motion cues that can enhance object segregation from background. We address a special example of such active sensing, in barn owls. When scanning the environment, barn owls occasionally perform small-amplitude side-to-side head movements called peering. We show that the visual outcome of such peering movements elicit neural detection of objects that are rotated from the dominant orientation of the background scene and which are otherwise mostly undetected. These results suggest a novel role for self-motions in sensing objects that break the regular orientation of elements in the scene.
Collapse
Affiliation(s)
- Arkadeb Dutta
- The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel
| | - Tidhar Lev-Ari
- The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel
| | - Ouriel Barzilay
- Faculty of Mechanical Engineering, The Technion, Haifa, Israel
| | - Rotem Mairon
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Wolf
- Faculty of Mechanical Engineering, The Technion, Haifa, Israel
| | - Ohad Ben-Shahar
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Zlotowski Center for Neuroscience Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoram Gutfreund
- The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel
| |
Collapse
|
9
|
Abstract
For many decades, sleep researchers have sought to determine which species 'have' rapid eye movement (REM) sleep. In doing so, they relied predominantly on a template derived from the expression of REM sleep in the adults of a small number of mammalian species. Here, we argue for a different approach that focuses less on a binary decision about haves and have nots, and more on the diverse expression of REM sleep components over development and across species. By focusing on the components of REM sleep and discouraging continued reliance on a restricted template, we aim to promote a richer and more biologically grounded developmental-comparative approach that spans behavioral, physiological, neural, and ecological domains.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne 3086, Australia
| | - Paul-Antoine Libourel
- Neurosciences Research Center of Lyon, CNRS UMR5292, INSERM U1028, University Claude Bernard Lyon 1 Neurocampus, 95 Boulevard Pinel, 69675 BRON, France
| | - Markus H Schmidt
- Department of Neurology, Bern University Hospital (Inselspital), University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland; Ohio Sleep Medicine Institute, 4975 Bradenton Avenue, Dublin, OH 43017, USA
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Haus 5, Seewiesen 82319, Germany.
| |
Collapse
|
10
|
Abstract
BACKGROUND Fundamental spatial vision capabilities of visual systems can be characterized by their contrast sensitivity and visual acuity. OBJECTIVE Comparison of contrast sensitivity and visual acuity in humans and other animals. MATERIAL AND METHODS An analysis of known contrast sensitivity functions and maximum visual acuity across selected taxa was carried out, with consideration of measurement principles, viewing conditions and allometry. RESULTS Comparing across all analyzed species, contrast sensitivity functions have inverted U‑shape characteristics, with key differences in both position and absolute sensitivity within the spectrum of spatial frequencies. Humans, for example, have a maximum sensitivity at 5 cycles/degree and mice at approximately 0.1 cycles/degree. Body and eye size generally correlate well with maximum visual acuity. Across eye types, lens eyes have the highest optical and visual resolution, all other things being equal. Diurnal species typically outperform crepuscular or nocturnal species. Humans generally excel at both maximum contrast sensitivity as well as visual acuity. CONCLUSION Despite great differences in optical, anatomical and neurophysiological structures between humans and animals, spatial vision capabilities are generally comparable across taxa. This favors the hypothesis that spatial vision in animals develops primarily towards meeting similar evolutionary needs within the limits of biophysical and optical laws.
Collapse
Affiliation(s)
- W M Harmening
- Universitäts-Augenklinik Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Deutschland.
| |
Collapse
|
11
|
Wagner H, Weger M, Klaas M, Schröder W. Features of owl wings that promote silent flight. Interface Focus 2017; 7:20160078. [PMID: 28163870 PMCID: PMC5206597 DOI: 10.1098/rsfs.2016.0078] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Owls are an order of birds of prey that are known for the development of a silent flight. We review here the morphological adaptations of owls leading to silent flight and discuss also aerodynamic properties of owl wings. We start with early observations (until 2005), and then turn to recent advances. The large wings of these birds, resulting in low wing loading and a low aspect ratio, contribute to noise reduction by allowing slow flight. The serrations on the leading edge of the wing and the velvet-like surface have an effect on noise reduction and also lead to an improvement of aerodynamic performance. The fringes at the inner feather vanes reduce noise by gliding into the grooves at the lower wing surface that are formed by barb shafts. The fringed trailing edge of the wing has been shown to reduce trailing edge noise. These adaptations to silent flight have been an inspiration for biologists and engineers for the development of devices with reduced noise production. Today several biomimetic applications such as a serrated pantograph or a fringed ventilator are available. Finally, we discuss unresolved questions and possible future directions.
Collapse
Affiliation(s)
- Hermann Wagner
- Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Matthias Weger
- Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Michael Klaas
- Institute of Aerodynamics, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
12
|
Proffitt JV, Clarke JA, Scofield RP. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast. J Anat 2016; 229:228-38. [PMID: 26916364 PMCID: PMC4948054 DOI: 10.1111/joa.12447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2016] [Indexed: 11/29/2022] Open
Abstract
Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy.
Collapse
Affiliation(s)
- J. V. Proffitt
- Jackson School of GeosciencesThe University of Texas at AustinAustinTXUSA
| | - J. A. Clarke
- Jackson School of GeosciencesThe University of Texas at AustinAustinTXUSA
| | | |
Collapse
|
13
|
Schnyder HA, Vanderelst D, Bartenstein S, Firzlaff U, Luksch H. The avian head induces cues for sound localization in elevation. PLoS One 2014; 9:e112178. [PMID: 25390036 PMCID: PMC4229125 DOI: 10.1371/journal.pone.0112178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
Accurate sound source localization in three-dimensional space is essential for an animal’s orientation and survival. While the horizontal position can be determined by interaural time and intensity differences, localization in elevation was thought to require external structures that modify sound before it reaches the tympanum. Here we show that in birds even without external structures like pinnae or feather ruffs, the simple shape of their head induces sound modifications that depend on the elevation of the source. Based on a model of localization errors, we show that these cues are sufficient to locate sounds in the vertical plane. These results suggest that the head of all birds induces acoustic cues for sound localization in the vertical plane, even in the absence of external ears.
Collapse
Affiliation(s)
- Hans A. Schnyder
- Chair of Zoology, Technische Universität München, Munich, Germany
- * E-mail:
| | - Dieter Vanderelst
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Active Perception Lab, University Antwerp, Antwerp, Belgium
| | | | - Uwe Firzlaff
- Chair of Zoology, Technische Universität München, Munich, Germany
| | - Harald Luksch
- Chair of Zoology, Technische Universität München, Munich, Germany
| |
Collapse
|
14
|
Krabichler Q, Vega-Zuniga T, Morales C, Luksch H, Marín GJ. The visual system of a Palaeognathous bird: Visual field, retinal topography and retino-central connections in the Chilean Tinamou (Nothoprocta perdicaria). J Comp Neurol 2014; 523:226-50. [DOI: 10.1002/cne.23676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Quirin Krabichler
- Chair of Zoology, Technische Universität München; Freising-Weihenstephan Germany
| | - Tomas Vega-Zuniga
- Chair of Zoology, Technische Universität München; Freising-Weihenstephan Germany
| | - Cristian Morales
- Laboratorio de Neurobiología y Biología del Conocer; Departamento de Biología; Facultad de Ciencias; Universidad de Chile; Santiago de Chile Chile
| | - Harald Luksch
- Chair of Zoology, Technische Universität München; Freising-Weihenstephan Germany
| | - Gonzalo J. Marín
- Laboratorio de Neurobiología y Biología del Conocer; Departamento de Biología; Facultad de Ciencias; Universidad de Chile; Santiago de Chile Chile
- Facultad de Medicina; Universidad Finis Terrae; Santiago de Chile Chile
| |
Collapse
|
15
|
Moritz GL, Melin AD, Tuh Yit Yu F, Bernard H, Ong PS, Dominy NJ. Niche convergence suggests functionality of the nocturnal fovea. Front Integr Neurosci 2014; 8:61. [PMID: 25120441 PMCID: PMC4110675 DOI: 10.3389/fnint.2014.00061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/08/2014] [Indexed: 11/24/2022] Open
Abstract
The fovea is a declivity of the retinal surface associated with maximum visual acuity. Foveae are widespread across vertebrates, but among mammals they are restricted to haplorhine primates (tarsiers, monkeys, apes, and humans), which are primarily diurnal. Thus primates have long contributed to the view that foveae are functional adaptations to diurnality. The foveae of tarsiers, which are nocturnal, are widely interpreted as vestigial traits and therefore evidence of a diurnal ancestry. This enduring premise is central to adaptive hypotheses on the origins of anthropoid primates; however, the question of whether tarsier foveae are functionless anachronisms or nocturnal adaptations remains open. To explore this question, we compared the diets of tarsiers (Tarsius) and scops owls (Otus), taxa united by numerous anatomical homoplasies, including foveate vision. A functional interpretation of these homoplasies predicts dietary convergence. We tested this prediction by analyzing stable isotope ratios that integrate dietary information. In Borneo and the Philippines, the stable carbon isotope compositions of Tarsius and Otus were indistinguishable, whereas the stable nitrogen isotope composition of Otus was marginally higher than that of Tarsius. Our results indicate that species in both genera consumed mainly ground-dwelling prey. Taken together, our findings support a functional interpretation of the many homoplasies shared by tarsiers and scops owls, including a retinal fovea. We suggest that the fovea might function similarly in tarsiers and scops owls by calibrating the auditory localization pathway. The integration of auditory localization and visual fixation during prey detection and acquisition might be critical at low light levels.
Collapse
Affiliation(s)
- Gillian L. Moritz
- Department of Biological Sciences, The Class of 1978 Life Sciences Center, Dartmouth CollegeHanover, NH, USA
| | - Amanda D. Melin
- Department of Anthropology, Washington University, St. LouisMO, USA
| | - Fred Tuh Yit Yu
- Research and Education Division, Zoology and EntomologyKota Kinabalu, Malaysia
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, Universiti Malaysia SabahKota Kinabalu, Malaysia
| | - Perry S. Ong
- Institute of Biology, University of the Philippines DilimanQuezon City, Philippines
| | - Nathaniel J. Dominy
- Department of Biological Sciences, The Class of 1978 Life Sciences Center, Dartmouth CollegeHanover, NH, USA
- Department of Anthropology, Dartmouth CollegeHanover, NH, USA
| |
Collapse
|
16
|
Gutiérrez-Ibáñez C, Iwaniuk AN, Lisney TJ, Wylie DR. Comparative study of visual pathways in owls (Aves: Strigiformes). BRAIN, BEHAVIOR AND EVOLUTION 2012; 81:27-39. [PMID: 23296024 DOI: 10.1159/000343810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022]
Abstract
Although they are usually regarded as nocturnal, owls exhibit a wide range of activity patterns, from strictly nocturnal, to crepuscular or cathemeral, to diurnal. Several studies have shown that these differences in the activity pattern are reflected in differences in eye morphology and retinal organization. Despite the evidence that differences in activity pattern among owl species are reflected in the peripheral visual system, there has been no attempt to correlate these differences with changes in the visual regions in the brain. In this study, we compare the relative size of nuclei in the main visual pathways in nine species of owl that exhibit a wide range of activity patterns. We found marked differences in the relative size of all visual structures among the species studied, both in the tectofugal and the thalamofugal pathway, as well in other retinorecipient nuclei, including the nucleus lentiformis mesencephali, the nucleus of the basal optic root and the nucleus geniculatus lateralis, pars ventralis. We show that the barn owl (Tyto alba), a species widely used in the study of the integration of visual and auditory processing, has reduced visual pathways compared to strigid owls. Our results also suggest there could be a trade-off between the relative size of visual pathways and auditory pathways, similar to that reported in mammals. Finally, our results show that although there is no relationship between activity pattern and the relative size of either the tectofugal or the thalamofugal pathway, there is a positive correlation between the relative size of both visual pathways and the relative number of cells in the retinal ganglion layer.
Collapse
|
17
|
Smith NA, Clarke JA. Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving. PLoS One 2012; 7:e49584. [PMID: 23209585 PMCID: PMC3507831 DOI: 10.1371/journal.pone.0049584] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 10/15/2012] [Indexed: 11/24/2022] Open
Abstract
Just as skeletal characteristics provide clues regarding behavior of extinct vertebrates, phylogenetically-informed evaluation of endocranial morphology facilitates comparisons among extinct taxa and extant taxa with known behavioral characteristics. Previous research has established that endocranial morphology varies across Aves; however, variation of those systems among closely related species remains largely unexplored. The Charadriiformes (shorebirds and allies) are an ecologically diverse clade with a comparatively rich fossil record, and therefore, are well suited for investigating interspecies variation, and potential links between endocranial morphology, phylogeny, ecology and other life history attributes. Endocranial endocasts were rendered from high resolution X-ray computed tomography data for 17 charadriiforms (15 extant and two flightless extinct species). Evaluation of endocranial character state changes on a phylogeny for Charadriiformes resulted in identification of characters that vary in taxa with distinct feeding and locomotor ecologies. In comparison with all other charadriiforms, stem and crown clade wing-propelled diving Pan-Alcidae displayed compressed semicircular canals, and indistinct occipital sinuses and cerebellar fissures. Flightless wing-propelled divers have relatively smaller brains for their body mass and smaller optic lobes than volant pan-alcids. Observed differences between volant and flightless wing-propelled sister taxa are striking given that flightless pan-alcids continue to rely on the flight stroke for underwater propulsion. Additionally, the brain of the Black Skimmer Rynchops niger, a taxon with a unique feeding ecology that involves continuous forward aerial motion and touch-based prey detection used both at day and night, is discovered to be unlike that of any other sampled charadriiform in having an extremely large wulst as well as a small optic lobe and distinct occipital sinus. Notably, the differences between the Black Skimmer and other charadriiforms are more pronounced than between wing-propelled divers and other charadriiforms. Finally, aspects of endosseous labyrinth morphology are remarkably similar between divers and non-divers, and may deserve further evaluation.
Collapse
Affiliation(s)
- N Adam Smith
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA.
| | | |
Collapse
|
18
|
Lisney TJ, Iwaniuk AN, Bandet MV, Wylie DR. Eye Shape and Retinal Topography in Owls (Aves: Strigiformes). BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:218-36. [DOI: 10.1159/000337760] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/23/2012] [Indexed: 11/19/2022]
|
19
|
Wagner H, Kettler L, Orlowski J, Tellers P. Neuroethology of prey capture in the barn owl (Tyto alba L.). ACTA ACUST UNITED AC 2012; 107:51-61. [PMID: 22510644 DOI: 10.1016/j.jphysparis.2012.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/12/2012] [Accepted: 03/30/2012] [Indexed: 11/19/2022]
Abstract
Barn owls are a model system for studying prey capture. These animals can catch mice by hearing alone, but use vision whenever light conditions allow this. The silent flight, the frontally oriented eyes, and the facial ruffs are specializations that evolved to optimize prey capture. The auditory system is characterized by high absolute sensitivity, a use of interaural time difference for azimuthal sound-localization over almost the total hearing range up to at least 9 kHz, and the use of interaural level difference for elevational sound localization in the upper frequency range. Response latencies towards auditory targets were shortened by covert attention, while overt attention helped to orient towards salient visual objects. However, only 20% of the fixation movements could be explained by the saliency of the fixated objects, suggesting a top-down control of attention. In a visual-search experiment the birds turned earlier and more often towards and spent more time at salient objects. The visual system also exhibits high absolute sensitivity, while the spatial resolution is not particularly high. Last but not least, head movements may be classified as fixations, translations, and rotations combined with translations. These motion primitives may be combined to complex head-movement patterns. With the expected easy availability of genetic techniques for specialists in the near future and the possibility to apply the findings in biomimetic devices prey capture in barn owls will remain an exciting field in the future.
Collapse
Affiliation(s)
- Hermann Wagner
- Department of Zoology, RWTH Aachen University, Mies-van-der-Rohe-Strasse 15, D-52074 Aachen, Germany.
| | - Lutz Kettler
- Department of Zoology, RWTH Aachen University, Mies-van-der-Rohe-Strasse 15, D-52074 Aachen, Germany.
| | - Julius Orlowski
- Department of Zoology, RWTH Aachen University, Mies-van-der-Rohe-Strasse 15, D-52074 Aachen, Germany.
| | - Philipp Tellers
- Department of Zoology, RWTH Aachen University, Mies-van-der-Rohe-Strasse 15, D-52074 Aachen, Germany.
| |
Collapse
|