1
|
Muinde J, Zhang TH, Liang ZL, Liu SP, Kioko E, Huang ZZ, Ge SQ. Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae). INSECTS 2024; 15:122. [PMID: 38392541 PMCID: PMC10889679 DOI: 10.3390/insects15020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The functional anatomy of the split compound eyes of whirligig beetles Dineutus mellyi (Coleoptera: Gyrinidae) was examined by advanced microscopy and microcomputed tomography. We report the first 3D visualization and analysis of the split compound eyes. On average, the dorsal and ventral eyes contain 1913 ± 44.5 facets and 3099 ± 86.2 facets, respectively. The larger area of ventral eyes ensures a higher field of vision underwater. The ommatidium of the split compound eyes is made up of laminated cornea lenses that offer protection against mechanical injuries, bullet-shaped crystalline cones that guide light to the photoreceptive regions, and screening pigments that ensure directional light passage. The photoreceptive elements, made up of eight retinular cells, exhibit a tri-tiered rhabdom structure, including the upper distal rhabdom, a clear zone that ensures maximum light passage, and an enlarged lower distal rhabdom that ensures optimal photon capture.
Collapse
Affiliation(s)
- Jacob Muinde
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Hao Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zu-Long Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Pei Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Esther Kioko
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
| | - Zheng-Zhong Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Wernet MF, Roberts NW, Belušič G. Non-celestial polarization vision in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:855-857. [PMID: 37874372 DOI: 10.1007/s00359-023-01679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Most insects can detect the pattern of polarized light in the sky with the dorsal rim area in their compound eyes and use this visual information to navigate in their environment by means of 'celestial' polarization vision. 'Non-celestial polarization vision', in contrast, refers to the ability of arthropods to analyze polarized light by means of the 'main' retina, excluding the dorsal rim area. The ability of using the main retina for polarization vision has been attracting sporadic, but steady attention during the last decade. This special issue of the Journal of Comparative Physiology A presents recent developments with a collection of seven original research articles, addressing different aspects of non-celestial polarization vision in crustaceans and insects. The contributions cover different sources of linearly polarized light in nature, the underlying retinal and neural mechanisms of object detection using polarization vision and the behavioral responses of arthropods to polarized reflections from water.
Collapse
Affiliation(s)
- Mathias F Wernet
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Freie Universität Berlin, Chemie and PharmazieKönigin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Nicholas W Roberts
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Gregor Belušič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Zeil J. Views from 'crabworld': the spatial distribution of light in a tropical mudflat. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:859-876. [PMID: 37460846 PMCID: PMC10643439 DOI: 10.1007/s00359-023-01653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 11/14/2023]
Abstract
Natural scene analysis has been extensively used to understand how the invariant structure of the visual environment may have shaped biological image processing strategies. This paper deals with four crucial, but hitherto largely neglected aspects of natural scenes: (1) the viewpoint of specific animals; (2) the fact that image statistics are not independent of the position within the visual field; (3) the influence of the direction of illumination on luminance, spectral and polarization contrast in a scene; and (4) the biologically relevant information content of natural scenes. To address these issues, I recorded the spatial distribution of light in a tropical mudflat with a spectrographic imager equipped with a polarizing filter in an attempt to describe quantitatively the visual environment of fiddler crabs. The environment viewed by the crabs has a distinct structure. Depending on the position of the sun, the luminance, the spectral composition, and the polarization characteristics of horizontal light distribution are not uniform. This is true for both skylight and for reflections from the mudflat surface. The high-contrast feature of the line of horizon dominates the vertical distribution of light and is a discontinuity in terms of luminance, spectral distribution and of image statistics. On a clear day, skylight intensity increases towards the horizon due to multiple scattering, and its spectral composition increasingly resembles that of sunlight. Sky-substratum contrast is highest at short wavelengths. I discuss the consequences of this extreme example of the topography of vision for extracting biologically relevant information from natural scenes.
Collapse
Affiliation(s)
- Jochen Zeil
- Research School of Biology, Australian National University, P.O. Box 475, Canberra, ACT, 2601, Australia.
| |
Collapse
|
4
|
Nahmad-Rohen L, Vorobyev M. Angular dependence of polarisation contrast sensitivity in octopus. Vision Res 2021; 192:107973. [PMID: 34906788 DOI: 10.1016/j.visres.2021.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/30/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cephalopod photoreceptors are polarisation-sensitive, giving them an ability to discriminate between lights of different angle and degree of polarisation. While colour vision is achieved by comparison of signals of photoreceptors tuned to different parts of light spectra, polarisation vision is achieved by comparison of signals of photoreceptors tuned to different orientations of e-vector. Therefore, from a theoretical point of view, polarisation vision is similar to colour vision. In particular, detection of polarised light against an unpolarised background is analogous to detection of chromatic light against grey. The dependence of polarisation contrast sensitivity on the angle of polarisation can be theoretically predicted using a receptor noise limited model in much the same way as it has been done for predicting the shape of the increment threshold spectral sensitivity in animals with colour vision. Here we report angular dependence of polarisation contrast sensitivity in octopus (O. tetricus, Gould 1852) and compare the theoretical predictions of polarisation contrast with the experimental results. Polarisation gratings were generated using LCD screens with removed polarisers and the orientation of polarisation was changed by rotating the screen. Reaction to the stimulus was recorded using a fixation reflex. We show that, in agreement with the theoretical predictions, the maximum contrast sensitivity is achieved at horizontal and vertical orientations of polarisation. Our results demonstrate that the dependence of polarisation contrast sensitivity on the angle of polarisation can be analysed in the same way as the dependence of colour thresholds on wavelength of monochromatic light added to a grey background.
Collapse
Affiliation(s)
- Luis Nahmad-Rohen
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, Auckland 0985, New Zealand
| | - Misha Vorobyev
- Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
5
|
Ciofini A, Yamahama Y, Mercatelli L, Hariyama T, Ugolini A. Specializations in the compound eye of Talitrus saltator (Crustacea, Amphipoda). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:711-723. [PMID: 32561972 DOI: 10.1007/s00359-020-01432-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
We investigated the eye regionalization in Talitrus saltator by morphological, electrophysiological and behavioural experiments. Each ommatidium possesses five radially arranged retinular cells producing a square fused rhabdom by R1-R4 cells; the smaller R5 exists between R1 and R4. The size of R5 rhabdomere is larger in the dorsal part and becomes smaller in the median and ventral parts of the eye. Spectral-sensitivity by electroretinograms were recorded from dorsal or ventral parts of the eye. The dorsal part possesses maxima at green and UV-blue region. The main response region in the ventral part is only from UV (390 nm) to blue (430 nm) decreasing at longer wavelengths. To evaluate the sandhoppers' celestial orientation, their eyes were painted black either in the dorsal or ventral part, under the natural sky or a blue filter with or without the vision of the sun. Sandhoppers with the dorsal region of the eyes painted and tested under the screened sun were more dispersed and their directions varied more than in other groups of individuals. Sandhoppers with this area of the eye obscured display considerable difficulties to head in a specific direction. This work suggests the existence of regional specializations in the eye of T. saltator.
Collapse
Affiliation(s)
- Alice Ciofini
- Department of Biology, University of Florence, Via Romana 17, 50125, Florence, Italy
| | - Yumi Yamahama
- Department of Biology, School of Medicine, Hamamatsu University, 1-20-1, Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Luca Mercatelli
- National Institute of Optics, CNR, Largo E. Fermi 6, 50125, Florence, Italy
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, School of Medicine, Hamamatsu University, 1-20-1, Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Alberto Ugolini
- Department of Biology, University of Florence, Via Romana 17, 50125, Florence, Italy.
| |
Collapse
|
6
|
Marshall NJ, Powell SB, Cronin TW, Caldwell RL, Johnsen S, Gruev V, Chiou THS, Roberts NW, How MJ. Polarisation signals: a new currency for communication. ACTA ACUST UNITED AC 2019; 222:222/3/jeb134213. [PMID: 30733259 DOI: 10.1242/jeb.134213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Most polarisation vision studies reveal elegant examples of how animals, mainly the invertebrates, use polarised light cues for navigation, course-control or habitat selection. Within the past two decades it has been recognised that polarised light, reflected, blocked or transmitted by some animal and plant tissues, may also provide signals that are received or sent between or within species. Much as animals use colour and colour signalling in behaviour and survival, other species additionally make use of polarisation signalling, or indeed may rely on polarisation-based signals instead. It is possible that the degree (or percentage) of polarisation provides a more reliable currency of information than the angle or orientation of the polarised light electric vector (e-vector). Alternatively, signals with specific e-vector angles may be important for some behaviours. Mixed messages, making use of polarisation and colour signals, also exist. While our knowledge of the physics of polarised reflections and sensory systems has increased, the observational and behavioural biology side of the story needs more (and more careful) attention. This Review aims to critically examine recent ideas and findings, and suggests ways forward to reveal the use of light that we cannot see.
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Samuel B Powell
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, MD 21250, USA
| | - Roy L Caldwell
- University of California Berkeley, Department of Integrative Biology, Berkeley, CA 94720-3140, USA
| | - Sonke Johnsen
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Viktor Gruev
- Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - T-H Short Chiou
- Department of Life Sciences, National Cheng-Kung University, Tainan City 701, Taiwan
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
7
|
Basnak MA, Pérez-Schuster V, Hermitte G, Berón de Astrada M. Polarized object detection in crabs: a two-channel system. ACTA ACUST UNITED AC 2018; 221:jeb.173369. [PMID: 29650753 DOI: 10.1242/jeb.173369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/10/2018] [Indexed: 11/20/2022]
Abstract
Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab. We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli. The motion stimulus consisted of an expanding disk with an 82 deg polarization difference between the object and the background. More than 90% of animals responded by freezing or trying to avoid the polarized stimulus. In addition, we co-rotated the electric vector (e-vector) orientation of the light from the object and background by increments of 30 deg and found that the animals' escape response varied periodically with a 90 deg period. Maximum escape responses were obtained for object and background e-vectors near the vertical and horizontal orientations. Changes in cardiac response showed parallel results but also a minimum response when e-vectors of object and background were shifted by 45 deg with respect to the maxima. These results are consistent with an orthogonal receptor arrangement for the detection of polarized light, in which two channels are aligned with the vertical and horizontal orientations. It has been hypothesized that animals with object-based polarization vision rely on a two-channel detection system analogous to that of color processing in dichromats. Our results, obtained by systematically varying the e-vectors of object and background, provide strong empirical support for this theoretical model of polarized object detection.
Collapse
Affiliation(s)
- Melanie Ailín Basnak
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina.,Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Verónica Pérez-Schuster
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina.,Departamento de Física, FCEyN, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | - Gabriela Hermitte
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina
| | - Martín Berón de Astrada
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina
| |
Collapse
|
8
|
Templin RM, How MJ, Roberts NW, Chiou TH, Marshall J. Circularly polarized light detection in stomatopod crustaceans: a comparison of photoreceptors and possible function in six species. ACTA ACUST UNITED AC 2017; 220:3222-3230. [PMID: 28667244 DOI: 10.1242/jeb.162941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022]
Abstract
A combination of behavioural and electrophysiological experiments have previously shown that two species of stomatopod, Odontodactylus scyllarus and Gonodactylaceus falcatus, can differentiate between left- and right-handed circularly polarized light (CPL), and between CPL and linearly polarized light (LPL). It remains unknown if these visual abilities are common across all stomatopod species, and if so, how circular polarization sensitivity may vary between and within species. A subsection of the midband, a specialized region of stomatopod eyes, contains distally placed photoreceptor cells, termed R8 (retinular cell number 8). These cells are specifically built with unidirectional microvilli and appear to be angled precisely to convert CPL into LPL. They are mostly quarter-wave retarders for human visible light (400-700 nm), as well as being ultraviolet-sensitive linear polarization detectors. The effectiveness of the R8 cells in this role is determined by their geometric and optical properties. In particular, the length and birefringence of the R8 cells are crucial for retardation efficiency. Here, our comparative studies show that most species investigated have the theoretical ability to convert CPL into LPL, such that the handedness of an incoming circular reflection or signal could be discriminated. One species, Haptosquilla trispinosa, shows less than quarter-wave retardance. Whilst some species are known to produce circularly polarized reflections (some Odontodactylus species and G. falcatus, for example), others do not, so a variety of functions for this ability are worth considering.
Collapse
Affiliation(s)
- Rachel M Templin
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Martin J How
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
9
|
Heras FJH, Laughlin SB. Optimizing the use of a sensor resource for opponent polarization coding. PeerJ 2017; 5:e2772. [PMID: 28316880 PMCID: PMC5355978 DOI: 10.7717/peerj.2772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/08/2016] [Indexed: 11/20/2022] Open
Abstract
Flies use specialized photoreceptors R7 and R8 in the dorsal rim area (DRA) to detect skylight polarization. R7 and R8 form a tiered waveguide (central rhabdomere pair, CRP) with R7 on top, filtering light delivered to R8. We examine how the division of a given resource, CRP length, between R7 and R8 affects their ability to code polarization angle. We model optical absorption to show how the length fractions allotted to R7 and R8 determine the rates at which they transduce photons, and correct these rates for transduction unit saturation. The rates give polarization signal and photon noise in R7, and in R8. Their signals are combined in an opponent unit, intrinsic noise added, and the unit's output analysed to extract two measures of coding ability, number of discriminable polarization angles and mutual information. A very long R7 maximizes opponent signal amplitude, but codes inefficiently due to photon noise in the very short R8. Discriminability and mutual information are optimized by maximizing signal to noise ratio, SNR. At lower light levels approximately equal lengths of R7 and R8 are optimal because photon noise dominates. At higher light levels intrinsic noise comes to dominate and a shorter R8 is optimum. The optimum R8 length fractions falls to one third. This intensity dependent range of optimal length fractions corresponds to the range observed in different fly species and is not affected by transduction unit saturation. We conclude that a limited resource, rhabdom length, can be divided between two polarization sensors, R7 and R8, to optimize opponent coding. We also find that coding ability increases sub-linearly with total rhabdom length, according to the law of diminishing returns. Consequently, the specialized shorter central rhabdom in the DRA codes polarization twice as efficiently with respect to rhabdom length than the longer rhabdom used in the rest of the eye.
Collapse
Affiliation(s)
- Francisco J H Heras
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; Current affiliation: Champalimaud Neuroscience Programme (CNP), Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Simon B Laughlin
- Department of Zoology, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
10
|
Abstract
The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs.
Collapse
Affiliation(s)
- Thomas Labhart
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zürich CH 8057, Switzerland
| |
Collapse
|
11
|
How M, Christy J, Temple S, Hemmi J, Marshall N, Roberts N. Target Detection Is Enhanced by Polarization Vision in a Fiddler Crab. Curr Biol 2015; 25:3069-73. [DOI: 10.1016/j.cub.2015.09.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/17/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022]
|
12
|
Sharkey CR, Partridge JC, Roberts NW. Polarization sensitivity as a visual contrast enhancer in the Emperor dragonfly larva, Anax imperator (Leach, 1815). J Exp Biol 2015; 218:3399-405. [DOI: 10.1242/jeb.122507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/25/2015] [Indexed: 11/20/2022]
Abstract
Polarization sensitivity (PS) is a common feature of invertebrate visual systems. In insects, PS is well known for its use in several different visually guided behaviours, particularly navigation and habitat search. Adult dragonflies use the polarization of light to find water but a role for PS in aquatic dragonfly larvae, a stage that inhabits a very different photic environment to the adults, has not been investigated. The optomotor response of the larvae of the Emperor dragonfly, Anax imperator, was used to determine whether these larvae use PS to enhance visual contrast underwater. Two different light scattering conditions were used to surround the larval animals: a naturalistic horizontally polarized light field and non-naturalistic weakly polarized light field. In both cases these scattering light fields obscured moving intensity stimuli that provoke an optokinetic response in the larvae. Animals were shown to track the movement of a square-wave grating more closely when it was viewed through the horizontally polarized light field, equivalent to a similar increase in tracking ability observed in response to an 8% increase in the intensity contrast of the stimuli. Our results suggest that larval PS enhances the intensity contrast of a visual scene under partially polarized lighting conditions that occur naturally in freshwater environments.
Collapse
Affiliation(s)
- Camilla R. Sharkey
- School of Biological Sciences, Bristol Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, BS8 1TQ, UK
| | - Julian C. Partridge
- School of Biological Sciences, Bristol Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, BS8 1TQ, UK
- School of Animal Biology and the Oceans Institute, Faculty of Science, University of Western Australia, 35 Stirling Highway, (M317), Crawley, WA 6009, Australia
| | - Nicholas W. Roberts
- School of Biological Sciences, Bristol Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
13
|
Alkaladi A, Zeil J. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda). J Comp Neurol 2014; 522:1264-83. [DOI: 10.1002/cne.23472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Ali Alkaladi
- ARC Centre of Excellence in Vision Science, Research School of Biology; Australian National University; Canberra Australia
| | - Jochen Zeil
- ARC Centre of Excellence in Vision Science, Research School of Biology; Australian National University; Canberra Australia
| |
Collapse
|
14
|
How MJ, Christy J, Roberts NW, Marshall NJ. Null point of discrimination in crustacean polarisation vision. J Exp Biol 2014; 217:2462-7. [DOI: 10.1242/jeb.103457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The polarisation of light is used by many species of cephalopods and crustaceans to discriminate objects or to communicate. Most visual systems with this ability, such as that of the fiddler crab, include receptors with photopigments that are oriented horizontally and vertically relative to the outside world. Photoreceptors in such an orthogonal array are maximally sensitive to polarised light with the same fixed e-vector orientation. Using opponent neural connections, this two-channel system may produce a single value of polarisation contrast and, consequently, it may suffer from null points of discrimination. Stomatopod crustaceans use a different system for polarisation vision, comprising at least four types of polarisation-sensitive photoreceptor arranged at 0°, 45°, 90° and 135° relative to each other, in conjunction with extensive rotational eye movements. This anatomical arrangement should not suffer from equivalent null points of discrimination. To test whether these two systems were vulnerable to null points, we presented the fiddler crab Uca heteropleura and the stomatopod Haptosquilla trispinosa with polarised looming stimuli on a modified LCD monitor. The fiddler crab was less sensitive to differences in the degree of polarised light when the e-vector was at -45°, than when the e-vector was horizontal. In comparison, stomatopods showed no difference in sensitivity between the two stimulus types. The results suggest that fiddler crabs suffer from a null point of sensitivity, while stomatopods do not.
Collapse
Affiliation(s)
| | - John Christy
- Smithsonian Tropical Research Institute, Republic of Panama
| | | | | |
Collapse
|
15
|
How MJ, Marshall NJ. Polarization distance: a framework for modelling object detection by polarization vision systems. Proc Biol Sci 2013; 281:20131632. [PMID: 24352940 DOI: 10.1098/rspb.2013.1632] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The discrimination of polarized light is widespread in the natural world. Its use for specific, large-field tasks, such as navigation and the detection of water bodies, has been well documented. Some species of cephalopod and crustacean have polarization receptors distributed across the whole visual field and are thought to use polarized light cues for object detection. Both object-based polarization vision systems and large field detectors rely, at least initially, on an orthogonal, two-channel receptor organization. This may increase to three-directional analysis at subsequent interneuronal levels. In object-based and some of the large-field tasks, the dominant e-vector detection axes are often aligned (through eye, head and body stabilization mechanisms) horizontally and vertically relative to the outside world. We develop Bernard and Wehner's 1977 model of polarization receptor dynamics to apply it to the detection and discrimination of polarized objects against differently polarized backgrounds. We propose a measure of 'polarization distance' (roughly analogous to 'colour distance') for estimating the discriminability of objects in polarized light, and conclude that horizontal/vertical arrays are optimally designed for detecting differences in the degree, and not the e-vector axis, of polarized light under natural conditions.
Collapse
Affiliation(s)
- Martin J How
- Sensory Neuroscience Group, Queensland Brain Institute, University of Queensland, , Queensland, Australia
| | | |
Collapse
|