1
|
Rößler H, May A, Dähne M. Biological relevance and methodological implications of unexpected hearing thresholds in a diving bird. Sci Rep 2024; 14:30592. [PMID: 39715765 DOI: 10.1038/s41598-024-82942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Many animals alternate between different media, such as air and water, thanks to specific adaptations. Among birds, penguins (Sphenisciformes) have the most extreme morphological, physiological, and behavioural adaptations to their amphibious lifestyle. Their auditory perception of sound, potentially matching different impedances in air and under water, is largely unknown particularly in terms of whether their underwater adaptations may have affected their in-air hearing capacity. In this context, we investigated the hearing ability of four captive Humboldt penguins (Spheniscus humboldti) in air using psychophysical hearing tests. The 50% hit rate was found to be below 76 dB rms re 20 µPa between 0.250 kHz and 10 kHz, with most sensitive hearing at 2 kHz (mean threshold of 15.3 dB rms re 20 µPa). The four penguins showed large inter-individual variation in sensitivity at a given frequency but within a common audiogram shape. Despite the variability, penguins detected 0.250 kHz at comparably low sound levels (mean = 36.8 dB rms re 20 µPa) after a rapid decline of sensitivity at 0.500 kHz (mean = 64.1 dB rms re 20 µPa). This finding was unexpected, and it is therefore difficult to interpret whether it is an artefact of the methods or a biologically relevant finding. An extensive discussion is presented and suggests that this finding may be biologically relevant but would need further investigation to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Helen Rößler
- Deutsches Meeresmuseum, Katharinenberg 14 - 20, 18439, Stralsund, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 15 a, 17487, Greifswald, Germany
| | - Anne May
- Deutsches Meeresmuseum, Katharinenberg 14 - 20, 18439, Stralsund, Germany
| | - Michael Dähne
- Deutsches Meeresmuseum, Katharinenberg 14 - 20, 18439, Stralsund, Germany.
- Bundesamt Für Naturschutz, Insel Vilm, 18581, Putbus, Germany.
| |
Collapse
|
2
|
Trumpp KM, Mayer J, Roman CE, Kent M. Hearing Assessment of Free-Ranging Owls and Implications for Wildlife Rehabilitation: 31 Cases (2014-2023). J Avian Med Surg 2024; 38:75-82. [PMID: 38980816 DOI: 10.1647/avianms-d-23-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Owls, members of the avian order Strigiformes, are nocturnal birds of prey that are found worldwide except for Antarctica. Traumatized, free-ranging owls are commonly presented to veterinary hospitals and wildlife rehabilitation facilities with the goal of providing medical care and rehabilitation to enable release back into their natural habitat. Minimal guidelines exist for the release of wildlife, and whereas a need for functional vision is described in raptors, assessing and evaluating hearing is usually not mentioned. This can be problematic for nocturnal predators because hearing is the primary sense utilized by owls when hunting and navigating in their dark environment. The brainstem auditory evoked response (BAER) test is a minimally invasive, objective assessment of hearing commonly used in companion animals. To the authors' knowledge, routine or standardized BAER evaluation has not been reported in traumatized, free-ranging owls. In the following retrospective study, 31 free-ranging owls presented to the University of Georgia Veterinary Teaching Hospital for known or suspected trauma or being found in a debilitated state underwent BAER testing to assess for the presence of complete sensorineural hearing loss. Similar to assessment of hearing in companion animals, the BAER test was elicited using a broad click stimulus delivered at 85 dB nHL. In all owls, qualitative assessment and peak latency measurements of the BAER test reflected hearing ability. This study highlights the importance of hearing in nocturnal raptors, how BAER testing can aid in decision making regarding rehabilitation, and provides a foundation for further investigation of hearing loss in traumatized owls. We suggest that veterinarians working with free-ranging owls in a rehabilitation setting should consider BAER testing as part of routine diagnostic testing.
Collapse
Affiliation(s)
- Kelsey M Trumpp
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, GA 30602, USA,
| | - Joerg Mayer
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, GA 30602, USA
| | | | - Marc Kent
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, GA 30602, USA
| |
Collapse
|
3
|
Ordiway G, McDonnell M, Sanchez JT. Revisiting the Chicken Auditory Brainstem Response: Frequency Specificity, Threshold Sensitivity, and Cross Species Comparison. Neurosci Insights 2024; 19:26331055241228308. [PMID: 38304551 PMCID: PMC10832403 DOI: 10.1177/26331055241228308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
The auditory brainstem response (ABR) is important for both clinical and basic auditory research. It is a non-invasive measure of hearing function with millisecond-level precision. The ABR can not only measure the synchrony, speed, and efficacy of auditory physiology but also detect different modalities of hearing pathology and hearing loss. ABRs are easily acquired in vertebrate animal models like reptiles, birds, and mammals, and complement existing molecular, developmental, and systems-level research. One such model system is the chicken; an excellent animal for studying auditory development, structure, and function. However, the ABR for chickens was last reported nearly 4 decades ago. The current study examines how decades of ABR characterization in other animal species support findings from the chicken ABR. We replicated and expanded on previous research using 43 chicken hatchlings 1- and 2-day post-hatch. We report that click-evoked chicken ABRs presented with a peak waveform morphology, amplitude, and latency like previous avian studies. Tone-evoked ABRs were found for frequencies from 250 to 4000 Hertz (Hz) and exhibited a range of best sensitivity between 750 and 2000 Hz. Objective click-evoked and tone-evoked ABR thresholds were comparable to subjective thresholds. With these revisited measurements, the chicken ABR still proves to be an excellent example of precocious avian development that complements decades of molecular, neuronal, and systems-level research in the same model organism.
Collapse
Affiliation(s)
- George Ordiway
- Roxelyn and Richard Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Central Auditory Physiology Laboratory, Northwestern University, Evanston, IL, USA
| | - Miranda McDonnell
- Roxelyn and Richard Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Central Auditory Physiology Laboratory, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Central Auditory Physiology Laboratory, Northwestern University, Evanston, IL, USA
- Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Goller B, Baumhardt P, Dominguez-Villegas E, Katzner T, Fernández-Juricic E, Lucas JR. Selecting auditory alerting stimuli for eagles on the basis of auditory evoked potentials. CONSERVATION PHYSIOLOGY 2022; 10:coac059. [PMID: 36134144 PMCID: PMC9486983 DOI: 10.1093/conphys/coac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Development of wind energy facilities results in interactions between wildlife and wind turbines. Raptors, including bald and golden eagles, are among the species known to incur mortality from these interactions. Several alerting technologies have been proposed to mitigate this mortality by increasing eagle avoidance of wind energy facilities. However, there has been little attempt to match signals used as alerting stimuli with the sensory capabilities of target species like eagles. One potential approach to tuning signals is to use sensory physiology to determine what stimuli the target eagle species are sensitive to even in the presence of background noise, thereby allowing the development of a maximally stimulating signal. To this end, we measured auditory evoked potentials of bald and golden eagles to determine what types of sounds eagles can process well, especially in noisy conditions. We found that golden eagles are significantly worse than bald eagles at processing rapid frequency changes in sounds, but also that noise effects on hearing in both species are minimal in response to rapidly changing sounds. Our findings therefore suggest that sounds of intermediate complexity may be ideal both for targeting bald and golden eagle hearing and for ensuring high stimulation in noisy field conditions. These results suggest that the sensory physiology of target species is likely an important consideration when selecting auditory alerting sounds and may provide important insight into what sounds have a reasonable probability of success in field applications under variable conditions and background noise.
Collapse
Affiliation(s)
- Benjamin Goller
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Patrice Baumhardt
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Todd Katzner
- U.S. Geological Survey, Forest & Rangeland Ecosystem Science Center, 230 N Collins Rd., Boise, ID 83702, USA
| | | | - Jeffrey R Lucas
- Corresponding author: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. Tel: 765-494-8112.
| |
Collapse
|
5
|
Dymskaya MM, Volodin IA, Smorkatcheva AV, Vasilieva NA, Volodina EV. Audible, but not ultrasonic, calls reflect surface-dwelling or subterranean specialization in pup and adult Brandt’s and mandarin voles. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Popper AN, Hawkins AD, Sisneros JA. Fish hearing "specialization" - A re-valuation. Hear Res 2021; 425:108393. [PMID: 34823877 DOI: 10.1016/j.heares.2021.108393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
Investigators working with fish bioacoustics used to refer to fishes that have a narrow hearing bandwidth and poor sensitivity as "hearing generalists" (or "non-specialists"), while fishes that could detect a wider hearing bandwidth and had greater sensitivity were referred to as specialists. However, as more was learned about fish hearing mechanism and capacities, these terms became hard to apply since it was clear there were gradations in hearing capabilities. Popper and Fay, in a paper in Hearing Research in 2011, proposed that these terms be dropped because of the gradation. While this was widely accepted by investigators, it is now apparent that the lack of relatively concise terminology for fish hearing capabilities makes it hard to discuss fish hearing. Thus, in this paper we resurrect the terms specialist and non-specialist but use them with modifiers to express the specific structure of function that is considered a specialization. Moreover, this resurrection recognizes that hearing specializations in fishes may not only be related to increased bandwidth and/or sensitivity, but to other, perhaps more important, aspects of hearing such as sound source localization, discrimination between sounds, and detection of sounds in the presence of masking signals.
Collapse
Affiliation(s)
- Arthur N Popper
- Department of Biology, University of Maryland, College Park, MD USA; Environmental BioAcoustics, LLC, Silver Spring, MD USA.
| | - Anthony D Hawkins
- Environmental BioAcoustics, LLC, Silver Spring, MD USA; Loughine Ltd, Aberdeen, UK
| | | |
Collapse
|
7
|
Boycott TJ, Mullis SM, Jackson BE, Swaddle JP. Field testing an "acoustic lighthouse": Combined acoustic and visual cues provide a multimodal solution that reduces avian collision risk with tall human-made structures. PLoS One 2021; 16:e0249826. [PMID: 33909647 PMCID: PMC8081207 DOI: 10.1371/journal.pone.0249826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
Billions of birds fatally collide with human-made structures each year. These mortalities have consequences for population viability and conservation of endangered species. This source of human-wildlife conflict also places constraints on various industries. Furthermore, with continued increases in urbanization, the incidence of collisions continues to increase. Efforts to reduce collisions have largely focused on making structures more visible to birds through visual stimuli but have shown limited success. We investigated the efficacy of a multimodal combination of acoustic signals with visual cues to reduce avian collisions with tall structures in open airspace. Previous work has demonstrated that a combination of acoustic and visual cues can decrease collision risk of birds in captive flight trials. Extending to field tests, we predicted that novel acoustic signals would combine with the visual cues of tall communication towers to reduce collision risk for birds. We broadcast two audible frequency ranges (4 to 6 and 6 to 8 kHz) in front of tall communication towers at locations in the Atlantic migratory flyway of Virginia during annual migration and observed birds' flight trajectories around the towers. We recorded an overall 12-16% lower rate of general bird activity surrounding towers during sound treatment conditions, compared with control (no broadcast sound) conditions. Furthermore, in 145 tracked "at-risk" flights, birds reduced flight velocity and deflected flight trajectories to a greater extent when exposed to the acoustic stimuli near the towers. In particular, the 4 to 6 kHz stimulus produced the greater effect sizes, with birds altering flight direction earlier in their trajectories and at larger distances from the towers, perhaps indicating that frequency range is more clearly audible to flying birds. This "acoustic lighthouse" concept reduces the risk of collision for birds in the field and could be applied to reduce collision risk associated with many human-made structures, such as wind turbines and tall buildings.
Collapse
Affiliation(s)
- Timothy J. Boycott
- Biology Department, William & Mary, Williamsburg, Virginia, United States of America
| | - Sally M. Mullis
- Biology Department, William & Mary, Williamsburg, Virginia, United States of America
| | - Brandon E. Jackson
- Department of Biological and Environmental Sciences, Longwood University, Farmville, Virginia, United States of America
| | - John P. Swaddle
- Biology Department, William & Mary, Williamsburg, Virginia, United States of America
- Institute for Integrative Conservation, William & Mary, Williamsburg, Virginia, United States of America
| |
Collapse
|
8
|
A comparative study of avian middle ear mechanics. Hear Res 2020; 395:108043. [DOI: 10.1016/j.heares.2020.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022]
|