1
|
Wang CWJ, Marshall NJ. Behavioural evidence of spectral opponent processing in the visual system of stomatopod crustaceans. J Exp Biol 2025; 228:jeb247952. [PMID: 39670570 PMCID: PMC11744319 DOI: 10.1242/jeb.247952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Stomatopods, commonly known as mantis shrimps, possess intricate colour vision with up to 12 photoreceptor classes arranged in four specialised ommatidia rows (rows 1-4 in the midband region of the eye) for colour perception. Whereas 2-4 spectral sensitivities suffice for most visual systems, the function and mechanism behind stomatopods' 12-channel colour vision remains unclear. Previous anatomical and behavioural studies have suggested that binning and opponent processing mechanisms may coexist in stomatopod colour vision. However, direct evidence of colour opponency has been lacking. We hypothesised that if colour opponency exists in stomatopod vision, they would be able to distinguish colour from grey under coloured illumination. Conversely, if only the binning system is used, they would not. By examining the colour vision of the stomatopod Haptosquilla trispinosa with modified von Frisch grey card experiments, we found that they can differentiate between colour and grey under various coloured illuminations. Our results provide the first direct behavioural evidence of spectral opponency in stomatopods, suggesting that they use a hybrid colour processing system combining opponent and binning mechanisms for colour vision. This study advances our understanding of the complex visual system in stomatopods and highlights the importance of further research into the processing mechanisms, function and evolution of their unique visual system.
Collapse
Affiliation(s)
- Ching-Wen Judy Wang
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Schnaitmann C, Pagni M, Meyer PB, Steinhoff L, Oberhauser V, Reiff DF. Horizontal-cell like Dm9 neurons in Drosophila modulate photoreceptor output to supply multiple functions in early visual processing. Front Mol Neurosci 2024; 17:1347540. [PMID: 38813436 PMCID: PMC11133737 DOI: 10.3389/fnmol.2024.1347540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
Dm9 neurons in Drosophila have been proposed as functional homologs of horizontal cells in the outer retina of vertebrates. Here we combine genetic dissection of neuronal circuit function, two-photon calcium imaging in Dm9 and inner photoreceptors, and immunohistochemical analysis to reveal novel insights into the functional role of Dm9 in early visual processing. Our experiments show that Dm9 receive input from all four types of inner photoreceptor R7p, R7y, R8p, and R8y. Histamine released from all types R7/R8 directly inhibits Dm9 via the histamine receptor Ort, and outweighs simultaneous histamine-independent excitation of Dm9 by UV-sensitive R7. Dm9 in turn provides inhibitory feedback to all R7/R8, which is sufficient for color-opponent processing in R7 but not R8. Color opponent processing in R8 requires additional synaptic inhibition by R7 of the same ommatidium via axo-axonal synapses and the second Drosophila histamine receptor HisCl1. Notably, optogenetic inhibition of Dm9 prohibits color opponent processing in all types of R7/R8 and decreases intracellular calcium in photoreceptor terminals. The latter likely results from reduced release of excitatory glutamate from Dm9 and shifts overall photoreceptor sensitivity toward higher light intensities. In summary, our results underscore a key role of Dm9 in color opponent processing in Drosophila and suggest a second role of Dm9 in regulating light adaptation in inner photoreceptors. These novel findings on Dm9 are indeed reminiscent of the versatile functions of horizontal cells in the vertebrate retina.
Collapse
Affiliation(s)
- Christopher Schnaitmann
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Manuel Pagni
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Patrik B. Meyer
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Lisa Steinhoff
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Vitus Oberhauser
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Dierk F. Reiff
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Longden KD, Rogers EM, Nern A, Dionne H, Reiser MB. Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila. Nat Commun 2023; 14:7693. [PMID: 38001097 PMCID: PMC10673857 DOI: 10.1038/s41467-023-43566-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Color and motion are used by many species to identify salient objects. They are processed largely independently, but color contributes to motion processing in humans, for example, enabling moving colored objects to be detected when their luminance matches the background. Here, we demonstrate an unexpected, additional contribution of color to motion vision in Drosophila. We show that behavioral ON-motion responses are more sensitive to UV than for OFF-motion, and we identify cellular pathways connecting UV-sensitive R7 photoreceptors to ON and OFF-motion-sensitive T4 and T5 cells, using neurogenetics and calcium imaging. Remarkably, this contribution of color circuitry to motion vision enhances the detection of approaching UV discs, but not green discs with the same chromatic contrast, and we show how this could generalize for systems with ON- and OFF-motion pathways. Our results provide a computational and circuit basis for how color enhances motion vision to favor the detection of saliently colored objects.
Collapse
Affiliation(s)
- Kit D Longden
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| | - Edward M Rogers
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Aljoscha Nern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Heather Dionne
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Michael B Reiser
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| |
Collapse
|
4
|
Kinoshita M, Arikawa K. 'Color' processing in the butterfly visual system. Trends Neurosci 2023; 46:338-340. [PMID: 36931972 DOI: 10.1016/j.tins.2023.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023]
Abstract
The swallowtail butterfly, Papilio xuthus, has excellent color discrimination abilities, and its visible light spectrum is notably wide. We discuss the neural basis of color vision in P. xuthus, highlighting some of the evolutionary adaptations in this species in relation to other insects. These adaptations include inter-photoreceptor (PR) interactions that produce spectral-opponent PRs, and complex higher order color-coding neurons.
Collapse
Affiliation(s)
- Michiyo Kinoshita
- Research Center for Integrative Evolutionary Studies, SOKENDAI, Hayama 240-0193, Kanagawa, Japan.
| | - Kentaro Arikawa
- Research Center for Integrative Evolutionary Studies, SOKENDAI, Hayama 240-0193, Kanagawa, Japan
| |
Collapse
|
5
|
Céchetto C, Arikawa K, Kinoshita M. Motion-sensitive neurons activated by chromatic contrast in a butterfly visual system. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210277. [PMID: 36058242 PMCID: PMC9441237 DOI: 10.1098/rstb.2021.0277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
A pattern of two equally bright colours contains only chromatic contrast. Unlike in flies, such a pattern elicits strong optokinetic responses in the butterfly Papilio xuthus. To investigate the neural basis of chromatic motion vision, we performed single-cell electrophysiology. We found spiking neurons exhibiting direction-selective motion sensitivity in the second optic ganglion, the medulla. We analysed the response characteristics of these neurons using two-colour stripe patterns moving vertically. We systematically manipulated the intensities of the colours so that the set of presented patterns included an isoluminant condition for the butterfly. Moving patterns containing only chromatic contrast still elicited a response in the neurons. The neurons' sensitivity profile is similar to that of the behavioural responses. Post-recording dye injection revealed that the neurons have dendrites in the ventral lateral protocerebrum and axonal processes in the medulla, suggesting a feedback role. Presumably, the neurons contribute to subtracting wide-field motion to facilitate the detection of small moving targets. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Clément Céchetto
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Michiyo Kinoshita
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama 240-0193, Japan
| |
Collapse
|
6
|
Ilić M, Chen PJ, Pirih P, Meglič A, Prevc J, Yago M, Belušič G, Arikawa K. Simple and complex, sexually dimorphic retinal mosaic of fritillary butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210276. [PMID: 36058236 PMCID: PMC9441240 DOI: 10.1098/rstb.2021.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/30/2022] [Indexed: 01/23/2023] Open
Abstract
Butterflies have variable sets of spectral photoreceptors that underlie colour vision. The photoreceptor organization may be optimized for the detection of body coloration. Fritillaries (Argynnini) are nymphalid butterflies exhibiting varying degrees of sexual dimorphism in wing coloration. In two sister species, the females have orange (Argynnis paphia) and dark wings (Argynnis sagana), respectively, while the males of both species have orange wings with large patches of pheromone-producing androconia. In spite of the differences in female coloration, the eyes of both species exhibit an identical sexual dimorphism. The female eyeshine is uniform yellow, while the males have a complex retinal mosaic with yellow and red-reflecting ommatidia. We found the basic set of ultraviolet-, blue- and green-peaking photoreceptors in both sexes. Males additionally have three more photoreceptor classes, peaking in green, yellow and red, respectively. The latter is the basal R9, indirectly measured through hyperpolarizations in the green-peaking R1-2. In many nymphalid tribes, including the closely related Heliconiini, the retinal mosaic is complex in both sexes. We hypothesize that the simple mosaic of female Argynnini is a secondary reduction, possibly driven by the use of olfaction for intraspecific recognition, whereas vision remains the primary sense for the task in the males. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Marko Ilić
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| | - Primož Pirih
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Jošt Prevc
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Masaya Yago
- The University Museum, The University of Tokyo, Hongo, 113-0033 Tokyo, Japan
| | - Gregor Belušič
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| |
Collapse
|
7
|
Pirih P, Ilić M, Meglič A, Belušič G. Opponent processing in the retinal mosaic of nymphalid butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210275. [PMID: 36058238 PMCID: PMC9441239 DOI: 10.1098/rstb.2021.0275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
The eyes of nymphalid butterflies, investigated with incident illumination, show colourful facet reflection patterns-the eye shine-which is uniform or heterogeneous, dependent on the species. Facet colours suggest that the ommatidia contain different sets of photoreceptors and screening pigments, but how the colours and the cell characteristics are associated has not been clearly established. Here, we analyse the retinae of two nymphalids, Apatura ilia, which has a uniform eyeshine, and Charaxes jasius, a species with a heterogeneous eye shine, using single-cell recordings, spectroscopy and optical pupillometry. Apatura has UV-, blue- and green-sensitive photoreceptors, allocated into three ommatidial types. The UV- and blue-sensitive cells are long visual fibres (LVFs), receiving opponent input from the green-sensitive short visual fibres (SVFs). Charaxes has an expanded set of photoreceptors, allocated into three additional, red-reflecting ommatidial types. All red ommatidia contain green-sensitive LVFs, receiving opponent input from red receptors. In both species, the SVFs do not receive any opponent input. The simple retina of Apatura with three ommatidial types and two colour-opponent channels can support trichromatic vision. Charaxes has six ommatidial types and three colour-opponent channels. Its expanded receptor set can support tetrachromatic vision. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Primož Pirih
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Marko Ilić
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Gregor Belušič
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Chen PJ, Li Y, Lee CH. Quantitative Analysis of Photoreceptor Intensity-Response Function in Fly Visual Neurons. Cold Spring Harb Protoc 2022; 2022:Pdb.prot107891. [PMID: 35641093 DOI: 10.1101/pdb.prot107891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this protocol, we illustrate how to process images acquired during functional imaging of fly visual neurons and how to analyze and quantify visually evoked activities. We use ImageJ/Fiji for the initial imaging processing. All images acquired previously should be registered to compensate for tissue movement. Next, we extract fluorescence signals specifically from neurons that respond to the light by marking the regions of interest (ROIs). The data are further analyzed in a data-analysis program, such as MATLAB, to plot response traces against time. Finally, we obtain different parameters to reveal the neuron's physiological properties by fitting the data with a Naka-Rushton function.
Collapse
Affiliation(s)
- Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Yan Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| |
Collapse
|
9
|
Abstract
A recent study has revealed how the connectivity of neurons in the lamina of the Asian swallowtail butterfly forms the basis of this insect's exceptional colour vision through two circuit motifs: colour opponency of photoreceptors and broadband colour integration by lamina neurons.
Collapse
Affiliation(s)
- Anna Stöckl
- Chair of Zoology 2, Würzburg University, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
10
|
Connectome of the lamina reveals the circuit for early color processing in the visual pathway of a butterfly. Curr Biol 2022; 32:2291-2299.e3. [DOI: 10.1016/j.cub.2022.03.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/06/2023]
|
11
|
McCulloch KJ, Macias-Muñoz A, Mortazavi A, Briscoe AD. Multiple mechanisms of photoreceptor spectral tuning in Heliconius butterflies. Mol Biol Evol 2022; 39:6555095. [PMID: 35348742 PMCID: PMC9048915 DOI: 10.1093/molbev/msac067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara CA 93106, USA.,Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Kinoshita M, Stewart FJ. Cortical-like colour-encoding neurons in the mushroom body of a butterfly. Curr Biol 2022; 32:R114-R115. [DOI: 10.1016/j.cub.2021.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Belušič G, Ilić M, Meglič A, Pirih P. Red-green opponency in the long visual fibre photoreceptors of brushfoot butterflies (Nymphalidae). Proc Biol Sci 2021; 288:20211560. [PMID: 34702070 PMCID: PMC8548807 DOI: 10.1098/rspb.2021.1560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
In many butterflies, the ancestral trichromatic insect colour vision, based on UV-, blue- and green-sensitive photoreceptors, is extended with red-sensitive cells. Physiological evidence for red receptors has been missing in nymphalid butterflies, although some species can discriminate red hues well. In eight species from genera Archaeoprepona, Argynnis, Charaxes, Danaus, Melitaea, Morpho, Heliconius and Speyeria, we found a novel class of green-sensitive photoreceptors that have hyperpolarizing responses to stimulation with red light. These green-positive, red-negative (G+R-) cells are allocated to positions R1/2, normally occupied by UV and blue-sensitive cells. Spectral sensitivity, polarization sensitivity and temporal dynamics suggest that the red opponent units (R-) are the basal photoreceptors R9, interacting with R1/2 in the same ommatidia via direct inhibitory synapses. We found the G+R- cells exclusively in butterflies with red-shining ommatidia, which contain longitudinal screening pigments. The implementation of the red colour channel with R9 is different from pierid and papilionid butterflies, where cells R5-8 are the red receptors. The nymphalid red-green opponent channel and the potential for tetrachromacy seem to have been switched on several times during evolution, balancing between the cost of neural processing and the value of extended colour information.
Collapse
Affiliation(s)
- Gregor Belušič
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Marko Ilić
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Primož Pirih
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Li Y, Chen PJ, Lin TY, Ting CY, Muthuirulan P, Pursley R, Ilić M, Pirih P, Drews MS, Menon KP, Zinn KG, Pohida T, Borst A, Lee CH. Neural mechanism of spatio-chromatic opponency in the Drosophila amacrine neurons. Curr Biol 2021; 31:3040-3052.e9. [PMID: 34033749 DOI: 10.1016/j.cub.2021.04.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
Visual animals detect spatial variations of light intensity and wavelength composition. Opponent coding is a common strategy for reducing information redundancy. Neurons equipped with both spatial and spectral opponency have been identified in vertebrates but not yet in insects. The Drosophila amacrine neuron Dm8 was recently reported to show color opponency. Here, we demonstrate Dm8 exhibits spatio-chromatic opponency. Antagonistic convergence of the direct input from the UV-sensing R7s and indirect input from the broadband receptors R1-R6 through Tm3 and Mi1 is sufficient to confer Dm8's UV/Vis (ultraviolet/visible light) opponency. Using high resolution monochromatic stimuli, we show the pale and yellow subtypes of Dm8s, inheriting retinal mosaic characteristics, have distinct spectral tuning properties. Using 2D white-noise stimulus and reverse correlation analysis, we found that the UV receptive field (RF) of Dm8 has a center-inhibition/surround-excitation structure. In the absence of UV-sensing R7 inputs, the polarity of the RF is inverted owing to the excitatory input from the broadband photoreceptors R1-R6. Using a new synGRASP method based on endogenous neurotransmitter receptors, we show that neighboring Dm8s form mutual inhibitory connections mediated by the glutamate-gated chloride channel GluClα, which is essential for both Dm8's spatial opponency and animals' phototactic behavior. Our study shows spatio-chromatic opponency could arise in the early visual stage, suggesting a common information processing strategy in both invertebrates and vertebrates.
Collapse
Affiliation(s)
- Yan Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chun-Yuan Ting
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pushpanathan Muthuirulan
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Randall Pursley
- Signal Processing and Instrumentation Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marko Ilić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Primož Pirih
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Michael S Drews
- Department Circuits-Computation-Models, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| | - Kaushiki P Menon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kai G Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas Pohida
- Signal Processing and Instrumentation Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Borst
- Department Circuits-Computation-Models, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
15
|
Vision: Space and colour meet in the fly optic lobes. Curr Biol 2021; 31:R909-R912. [PMID: 34314720 DOI: 10.1016/j.cub.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Colour vision involves colour-opponent cells, which are excited and inhibited by different wavelengths. Synaptic interconnections between Drosophila Dm8 cells are required for forming spatio-chromatic receptive fields with a center and surround of opposing polarity which can invert, depending on the stimulus.
Collapse
|
16
|
Pagni M, Haikala V, Oberhauser V, Meyer PB, Reiff DF, Schnaitmann C. Interaction of “chromatic” and “achromatic” circuits in Drosophila color opponent processing. Curr Biol 2021; 31:1687-1698.e4. [DOI: 10.1016/j.cub.2021.01.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
|
17
|
van der Kooi CJ, Stavenga DG, Arikawa K, Belušič G, Kelber A. Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:435-461. [PMID: 32966103 DOI: 10.1146/annurev-ento-061720-071644] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Color vision is widespread among insects but varies among species, depending on the spectral sensitivities and interplay of the participating photoreceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal. We review the diversity in compound eye structure, visual pigments, photoreceptor physiology, and visual ecology of insects. Based on an overview of the current information about the spectral sensitivities of insect photoreceptors, covering 221 species in 13 insect orders, we discuss the evolution of color vision and highlight present knowledge gaps and promising future research directions in the field.
Collapse
Affiliation(s)
- Casper J van der Kooi
- Faculty of Science and Engineering, University of Groningen, 9700 AK Groningen, The Netherlands;
| | - Doekele G Stavenga
- Faculty of Science and Engineering, University of Groningen, 9700 AK Groningen, The Netherlands;
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI Graduate University for Advanced Studies, Kanagawa 240-0193, Japan;
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Almut Kelber
- Lund Vision Group, Department of Biology, University of Lund, 22362 Lund, Sweden;
| |
Collapse
|
18
|
Meglič A, Ilić M, Quero C, Arikawa K, Belušič G. Two chiral types of randomly rotated ommatidia are distributed across the retina of the flathead oak borer Coraebus undatus (Coleoptera: Buprestidae). J Exp Biol 2020; 223:jeb225920. [PMID: 32532862 DOI: 10.1242/jeb.225920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022]
Abstract
Jewel beetles are colorful insects, which use vision to recognize their conspecifics and can be lured with colored traps. We investigated the retina and coloration of one member of this family, the flathead oak borer Coraebus undatus using microscopy, spectrometry, polarimetry, electroretinography and intracellular recordings of photoreceptor cell responses. The compound eyes are built of a highly unusual mosaic of mirror-symmetric or chiral ommatidia that are randomly rotated along the body axes. Each ommatidium has eight photoreceptors, two of them having rhabdomeres in tiers. The eyes contain six spectral classes of photoreceptors, peaking in the UV, blue, green and red. Most photoreceptors have moderate polarization sensitivity with randomly distributed angular maxima. The beetles have the necessary retinal substrate for complex color vision, required to recognize conspecifics and suitable for a targeted design of color traps. However, the jewel beetle array of freely rotated ommatidia is very different from the ordered mosaic in insects that have object-directed polarization vision. We propose that ommatidial rotation enables the cancelling out of polarization signals, thus allowing stable color vision, similar to the rhabdomeric twist in the eyes of flies and honeybees.
Collapse
Affiliation(s)
- Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marko Ilić
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Carmen Quero
- Department of Biological Chemistry and Molecular Modelling, IQAC (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Blake AJ, Hahn GS, Grey H, Kwok SA, McIntosh D, Gries G. Polarized light sensitivity in Pieris rapae is dependent on both color and intensity. J Exp Biol 2020; 223:jeb220350. [PMID: 32461306 DOI: 10.1242/jeb.220350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/18/2020] [Indexed: 08/26/2023]
Abstract
There is an ever increasing number of arthropod taxa shown to have polarization sensitivity throughout their compound eyes. However, the downstream processing of polarized reflections from objects is not well understood. The small white butterfly, Pieris rapae, has been demonstrated to exploit foliar polarized reflections, specifically the degree of linear polarization (DoLP), to recognize host plants. The well-described visual system of P. rapae includes several photoreceptor types (red, green, blue) that are sensitive to polarized light. Yet, the roles and interaction among photoreceptors underlying the behavioral responses of P. rapae to stimuli with different DoLP remain unknown. To investigate potential neurological mechanisms, we designed several two-choice behavioral bioassays, displaying plant images on paired LCD monitors, which allowed for independent control of polarization, color and intensity. When we presented choices between stimuli that differed in either color or DoLP, both decreasing and increasing the intensity of the more attractive stimulus reduced the strength of preference. This result suggests that differences in color and DoLP are perceived in a similar manner. When we offered a DoLP choice between plant images manipulated to minimize the response of blue, red, or blue and red photoreceptors, P. rapae shifted its preference for DoLP, suggesting a role for all of these photoreceptors. Modeling of P. rapae photoreceptor responses to test stimuli suggests that differential DoLP is not perceived solely as a color difference. Our combined results suggest that Prapae females process and interpret polarization reflections in a way different from that described for other polarization-sensitive taxa.
Collapse
Affiliation(s)
- Adam J Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Gina S Hahn
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Hayley Grey
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Shelby A Kwok
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Deby McIntosh
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
20
|
Visual circuits in arthropod brains. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:105-107. [PMID: 32036403 PMCID: PMC7069899 DOI: 10.1007/s00359-020-01407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022]
|