1
|
Johnson MG, Barrett M, Harrison JF. Solar radiation alters heat balance and thermoregulation in a flying desert bee. J Exp Biol 2025; 228:jeb247335. [PMID: 39670448 DOI: 10.1242/jeb.247335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Solar radiation is an important environmental variable for terrestrial animals, but its impact on the heat balance of large flying insects has been poorly studied. Desert bees are critical to ecosystem function through their pollination services, and are exposed to high radiant loads. We assessed the role of solar radiation in the heat balance of flying desert Centris pallida bees by calculating heat budgets for individuals in a respirometer in shaded versus sunny conditions from 16 to 37°C air temperatures, comparing the large and small male morphs and females. Solar radiation was responsible for 43 to 54% of mean total heat gain. Bees flying in the sun had thorax temperatures 1.7°C warmer than bees flying in the shade, storing a very small fraction of incident radiation in body tissues. In most cases, flight metabolic rate was not suppressed for bees flying in the sun, but evaporative water loss rates more than doubled. The most dramatic response to solar radiation was an increase in convection, mediated by a more than doubling of convective conductance, allowing thermoregulation while conserving body water. In large morph males and females, the increased convective conductance in the sun was mediated by increased heat transfer from the thorax to abdomen. Because convection is limited as body temperatures approach air temperatures, solar radiation combined with warming air temperatures may cause endothermic flying bees to reach a tipping point at which increases in non-sustainable evaporation are necessary for survival.
Collapse
Affiliation(s)
- Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Meghan Barrett
- Department of Biology, Indiana University, Indianapolis, IN 46202, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
2
|
Aksamit IC, Dorigão-Guimarães F, Gronenberg W, Godfrey RK. Brain size scaling through development in the whitelined sphinx moth (Hyles lineata) shows mass and cell number comparable to flies, bees, and wasps. ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 78:101329. [PMID: 38171085 DOI: 10.1016/j.asd.2023.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Factors regulating larval growth and determinants of adult body size are described for several holometabolous insects, but less is known about brain size scaling through development. Here we use the isotropic fractionation ("brain soup") method to estimate the number of brain cells and cell density for the whitelined sphinx moth (Lepidoptera: Hyles lineata) from the first instar through the adult stage. We measure mass and brain cell number and find that, during the larval stages, body mass shows an exponential relationship with head width, while the total number of brain cells increases asymptotically. Larval brain cell number increases by a factor of ten from nearly 8000 in the first instar to over 80,000 in the fifth instar. Brain cell number increases by another factor of 10 during metamorphosis, with the adult brain containing more than 900,000 cells. This is similar to increases during development in the vinegar fly (Drosophila melanogaster) and the black soldier fly (Hermetia illucens). The adult brain falls slightly below the brain-to-body allometry for wasps and bees but is comparable in the number of cells per unit brain mass, indicating a general conservation of brain cell density across these divergent lineages.
Collapse
Affiliation(s)
- Isabel C Aksamit
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Felipe Dorigão-Guimarães
- Biodiversity Graduate Program, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, SP, Brazil
| | | | - R Keating Godfrey
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Lösel PD, Monchanin C, Lebrun R, Jayme A, Relle JJ, Devaud JM, Heuveline V, Lihoreau M. Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning. PLoS Comput Biol 2023; 19:e1011529. [PMID: 37782674 PMCID: PMC10569549 DOI: 10.1371/journal.pcbi.1011529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/12/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Analysing large numbers of brain samples can reveal minor, but statistically and biologically relevant variations in brain morphology that provide critical insights into animal behaviour, ecology and evolution. So far, however, such analyses have required extensive manual effort, which considerably limits the scope for comparative research. Here we used micro-CT imaging and deep learning to perform automated analyses of 3D image data from 187 honey bee and bumblebee brains. We revealed strong inter-individual variations in total brain size that are consistent across colonies and species, and may underpin behavioural variability central to complex social organisations. In addition, the bumblebee dataset showed a significant level of lateralization in optic and antennal lobes, providing a potential explanation for reported variations in visual and olfactory learning. Our fast, robust and user-friendly approach holds considerable promises for carrying out large-scale quantitative neuroanatomical comparisons across a wider range of animals. Ultimately, this will help address fundamental unresolved questions related to the evolution of animal brains and cognition.
Collapse
Affiliation(s)
- Philipp D. Lösel
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, Australia
| | - Coline Monchanin
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Renaud Lebrun
- Institut des Sciences de l’Evolution de Montpellier, CC64, Université de Montpellier, Montpellier, France
- BioCampus, Montpellier Ressources Imagerie, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Alejandra Jayme
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Jacob J. Relle
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Heidelberg University Computing Centre (URZ), Heidelberg, Germany
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| |
Collapse
|
4
|
Gomez Ramirez WC, Thomas NK, Muktar IJ, Riabinina O. The neuroecology of olfaction in bees. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101018. [PMID: 36842606 DOI: 10.1016/j.cois.2023.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
The focus of bee neuroscience has for a long time been on only a handful of social honeybee and bumblebee species, out of thousands of bees species that have been described. On the other hand, information about the chemical ecology of bees is much more abundant. Here we attempted to compile the scarce information about olfactory systems of bees across species. We also review the major categories of intra- and inter-specific olfactory behaviors of bees, with specific focus on recent literature. We finish by discussing the most promising avenues for bee olfactory research in the near future.
Collapse
|
5
|
Polidori C, Piwczynski M, Ronchetti F, Johnston NP, Szpila K. Host-trailing satellite flight behaviour is associated with greater investment in peripheral visual sensory system in miltogrammine flies. Sci Rep 2022; 12:2773. [PMID: 35177753 PMCID: PMC8854417 DOI: 10.1038/s41598-022-06704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Insect sensory systems are the subjects of different selective pressures that shape their morphology. In many species of the flesh fly subfamily Miltogramminae (Diptera: Sarcophagidae) that are kleptoparasitic on bees and wasps, females perch on objects close to the host nests and, once a returning host is detected, they follow it in flight at a fixed distance behind until reaching the nest. We hypothesized that such satellite (SAT) flight behaviour, which implies a finely coordinated trailing flight, is associated with an improved visual system, compared to species adopting other, non-satellite (NON-SAT) strategies. After looking at body size and common ancestry, we found that SAT species have a greater number of ommatidia and a greater eye surface area when compared to NON-SAT species. Ommatidium area is only affected by body size, suggesting that selection changes disproportionately (relative to body size variation) the number of ommatidia and as a consequence the eye area, instead of ommatidium size. SAT species also tend to have larger ocelli, but their role in host-finding was less clear. This suggests that SAT species may have a higher visual acuity by increasing ommatidia number, as well as better stability during flight and motion perception through larger ocelli. Interestingly, antennal length was significantly reduced in SAT species, and ommatidia number negatively correlated with antennal length. While this finding does not imply a selection pressure of improved antennal sensory system in species adopting NON-SAT strategies, it suggests an inverse resource (i.e. a single imaginal disc) allocation between eyes and antennae in this fly subfamily.
Collapse
Affiliation(s)
- Carlo Polidori
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, via Celoria 26, 20133, Milan, Italy.
| | - Marcin Piwczynski
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Federico Ronchetti
- Department of Animal Ecology and Tropical Biology, University of Wuerzburg, Hubland Nord, 97074, Würzburg, Germany
| | - Nikolas P Johnston
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Krzysztof Szpila
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
6
|
Baudier KM, Bennett MM, Barrett M, Cossio FJ, Wu RD, O'Donnell S, Pavlic TP, Fewell JH. Soldier neural architecture is temporarily modality-specialized but poorly predicted by repertoire size in the stingless bee Tetragonisca angustula. J Comp Neurol 2021; 530:672-682. [PMID: 34773646 DOI: 10.1002/cne.25273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Individual heterogeneity within societies provides opportunities to test hypotheses about adaptive neural investment in the context of group cooperation. Here we explore neural investment in defense specialist soldiers of the eusocial stingless bee (Tetragonisca angustula) which are age sub-specialized on distinct defense tasks and have an overall higher lifetime task repertoire than other sterile workers within the colony. Consistent with predicted behavioral demands, soldiers had higher relative visual (optic lobe) investment than non-soldiers but only during the period when they were performing the most visually demanding defense task (hovering guarding). As soldiers aged into the less visually demanding task of standing guarding this difference disappeared. Neural investment was otherwise similar across all colony members. Despite having larger task repertoires, soldiers had similar absolute brain size and smaller relative brain size compared to other workers, meaning that lifetime task repertoire size was a poor predictor of brain size. Both high behavioral specialization in stable environmental conditions and reassignment across task groups during a crisis occur in T. angustula. The differences in neurobiology we report here are consistent with these specialized but flexible defense strategies. This work broadens our understanding of how neurobiology mediates age and morphological task specialization in highly cooperative societies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kaitlin M Baudier
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA.,School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Meghan M Bennett
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA.,USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, USA
| | - Meghan Barrett
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Frank J Cossio
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Robert D Wu
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA, USA.,Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Theodore P Pavlic
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.,School of Sustainability, Arizona State University, Tempe, AZ, USA.,School of Complex Adaptive Systems, Arizona State University, Tempe, AZ, USA
| | - Jennifer H Fewell
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
7
|
Hagadorn MA, Eck K, Del Grosso M, Haemmerle X, Wcislo WT, Kapheim KM. Age-related mushroom body expansion in male sweat bees and bumble bees. Sci Rep 2021; 11:17039. [PMID: 34426595 PMCID: PMC8382693 DOI: 10.1038/s41598-021-96268-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/04/2021] [Indexed: 01/20/2023] Open
Abstract
A well-documented phenomenon among social insects is that brain changes occur prior to or at the onset of certain experiences, potentially serving to prime the brain for specific tasks. This insight comes almost exclusively from studies considering developmental maturation in females. As a result, it is unclear whether age-related brain plasticity is consistent across sexes, and to what extent developmental patterns differ. Using confocal microscopy and volumetric analyses, we investigated age-related brain changes coinciding with sexual maturation in the males of the facultatively eusocial sweat bee, Megalopta genalis, and the obligately eusocial bumble bee, Bombus impatiens. We compared volumetric measurements between newly eclosed and reproductively mature males kept isolated in the lab. We found expansion of the mushroom bodies-brain regions associated with learning and memory-with maturation, which were consistent across both species. This age-related plasticity may, therefore, play a functionally-relevant role in preparing male bees for mating, and suggests that developmentally-driven neural restructuring can occur in males, even in species where it is absent in females.
Collapse
Affiliation(s)
- Mallory A Hagadorn
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, 84322, USA.
| | - Karlee Eck
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, 84322, USA
| | - Matthew Del Grosso
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, 84322, USA
| | - Xavier Haemmerle
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, 84322, USA
| | - William T Wcislo
- Smithsonian Tropical Research Institute, 0843-03092, Panama City, Republic of Panama
| | - Karen M Kapheim
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, 84322, USA.
- Smithsonian Tropical Research Institute, 0843-03092, Panama City, Republic of Panama.
| |
Collapse
|