1
|
Yadav VK, Pramanik S, Alghamdi S, Atwah B, Qusty NF, Babalghith AO, Solanki VS, Agarwal N, Gupta N, Niazi P, Patel A, Choudhary N, Zairov R. Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes. Int J Nanomedicine 2025; 20:403-444. [PMID: 39816378 PMCID: PMC11734620 DOI: 10.2147/ijn.s462031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025] Open
Abstract
Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features. MTB and magnetosomes have gained popularity in cancer treatment and diagnosis, especially in magnetic resonance imaging. Distinctive features highlighted include advancements in extraction, characterization, and functionalization techniques, alongside breakthroughs in utilizing MTB-based magnetosomes as contrast agents in imaging, biocompatible drug carriers, and tools for minimally invasive therapies. The biocompatible nature, functionalizing of the surface of bacterial magnetosomes, and response to the external magnetic field make them a potential candidate for the theragnostic purpose of MTB and magnetosomes. In the present review, emphasis has been given to the foundation of magnetosomes at a genetic level, mass production of magnetosomes, etc. Further authors have reviewed the various functionalization methods of the magnetosomes for cancer treatment. Finally, the authors have reviewed the recent advancements in MTB and magnetosome-based cancer detection, diagnosis, and treatment. Challenges such as scalability, long-term safety, and clinical translation are also discussed, presenting a roadmap for future research exploiting MTBs and magnetosomes' unique properties.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Banan Atwah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vijendra Singh Solanki
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | - Neha Agarwal
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Nishant Gupta
- Department of Engineering and Medical Devices, River Engineering Pvt Ltd, Ecotech-III, Greater Noida, U.p., India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Nisha Choudhary
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Rustem Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center RAS, Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
2
|
Abdelhamid MAA, Ki MR, Pack SP. Biominerals and Bioinspired Materials in Biosensing: Recent Advancements and Applications. Int J Mol Sci 2024; 25:4678. [PMID: 38731897 PMCID: PMC11083057 DOI: 10.3390/ijms25094678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Inspired by nature's remarkable ability to form intricate minerals, researchers have unlocked transformative strategies for creating next-generation biosensors with exceptional sensitivity, selectivity, and biocompatibility. By mimicking how organisms orchestrate mineral growth, biomimetic and bioinspired materials are significantly impacting biosensor design. Engineered bioinspired materials offer distinct advantages over their natural counterparts, boasting superior tunability, precise controllability, and the ability to integrate specific functionalities for enhanced sensing capabilities. This remarkable versatility enables the construction of various biosensing platforms, including optical sensors, electrochemical sensors, magnetic biosensors, and nucleic acid detection platforms, for diverse applications. Additionally, bioinspired materials facilitate the development of smartphone-assisted biosensing platforms, offering user-friendly and portable diagnostic tools for point-of-care applications. This review comprehensively explores the utilization of naturally occurring and engineered biominerals and materials for diverse biosensing applications. We highlight the fabrication and design strategies that tailor their functionalities to address specific biosensing needs. This in-depth exploration underscores the transformative potential of biominerals and materials in revolutionizing biosensing, paving the way for advancements in healthcare, environmental monitoring, and other critical fields.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
3
|
Alsharedeh R, Alshraiedeh N, Aljabali AA, Tambuwala MM. Magnetosomes as Potential Nanocarriers for Cancer Treatment. Curr Drug Deliv 2024; 21:1073-1081. [PMID: 37340750 DOI: 10.2174/1567201820666230619155528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Magnetotactic bacteria (MTBs) and their organelles, magnetosomes, are intriguing options that might fulfill the criteria of using bacterial magnetosomes (BMs). The ferromagnetic crystals contained in BMs can condition the magnetotaxis of MTBs, which is common in water storage facilities. This review provides an overview of the feasibility of using MTBs and BMs as nanocarriers in cancer treatment. More evidence suggests that MTBs and BMs can be used as natural nanocarriers for conventional anticancer medicines, antibodies, vaccine DNA, and siRNA. In addition to improving the stability of chemotherapeutics, their usage as transporters opens the possibilities for the targeted delivery of single ligands or combinations of ligands to malignant tumors. Magnetosome magnetite crystals are different from chemically made magnetite nanoparticles (NPs) because they are strong single-magnetic domains that stay magnetized even at room temperature. They also have a narrow size range and a uniform crystal morphology. These chemical and physical properties are essential for their usage in biotechnology and nanomedicine. Bioremediation, cell separation, DNA or antigen regeneration, therapeutic agents, enzyme immobilization, magnetic hyperthermia, and contrast enhancement of magnetic resonance are just a few examples of the many uses for magnetite-producing MTB, magnetite magnetosomes, and magnetosome magnetite crystals. From 2004 to 2022, data mining of the Scopus and Web of Science databases showed that most research using magnetite from MTB was carried out for biological reasons, such as in magnetic hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Rawan Alsharedeh
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Nid'a Alshraiedeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
4
|
Zhang G, Liu T, Zhao D, Sun X, Xing W, Zhang S, Yan L. External magnetic field have significant effects on diversity of magnetotactic bacteria in sediments from Yangtze River, Chagan Lake and Zhalong Wetland in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115604. [PMID: 37871562 DOI: 10.1016/j.ecoenv.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Magnetotactic bacteria (MTB) can rapidly relocate to optimal habitats by magnetotaxis, and play an important role in iron biogeochemical cycling. This study aimed to evaluate the contribution of the external magnetostatic field to the diversity of MTB in freshwater sediments from Yangtze River (Changjiang River, CJ), Chagan Lake (CGH) and Zhalong Wetland (ZL). The magnetic field intensity was tightly associated with the community richness of MTB in CJ, whereas it was closely related to the diversity of MTB in CGH and ZL (p < 0.05), elucidating a significant variation in the community composition of MTB. Magnetic exposure time appeared more significant correlation with community richness than diversity for MTB in CJ and CGH (p < 0.05), while an opposite relationship existed in ZL (p < 0.01). Herbaspirillum (93.81-96.48 %) dominated in the sediments of these surfacewatesr regardless of waterbody types, while it shifted to Magnetospirillum in ZL under 100 Gs magnetic field. The network connectivity and stability of MTB deteriorate with the increase of magnetic field intensity. Functional analysis showed that the Two-component system and ABC transporter system of MTB obviously responded to magnetic field intensity and exposure time. Our findings will pave the way to understanding the response mechanism of MTB community in freshwater sediments to the external magnetostatic field.
Collapse
Affiliation(s)
- Guojing Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Xindi Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Weijia Xing
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| |
Collapse
|
5
|
Putman NF. Magnetosensation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:1-7. [PMID: 35098367 DOI: 10.1007/s00359-021-01538-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
|