1
|
Pelster B, Wood CM, Val AL. Nitrogen excretion and oxygen consumption under severe hypoxia in siluriform fishes from the Amazon. JOURNAL OF FISH BIOLOGY 2025. [PMID: 40087985 DOI: 10.1111/jfb.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/17/2025]
Abstract
Siluriform fishes collected from the Rio Negro and Rio Solimões proved to be highly resistant to aquatic hypoxia. In all four species analysed in this study, aquatic oxygen consumption significantly decreased from normoxic levels at water PO2 values near 1 kPa. Air-breathing activity was observed only in Sturisoma sp. (Rio Negro). In this species, under severe hypoxia, oxygen uptake from the air dominated, but total oxygen uptake was significantly lower than that under normoxic conditions. In Anadoras weddellii (Rio Solimões), aquatic surface respiration was detected. However, the other species (Tympanopleura atronasus and three members of the family of Sternopygidae; Rio Solimões) showed no attempt to supplement aquatic oxygen uptake, even under severe hypoxia. In all species tested, neither ammonia nor urea-N excretion was affected by the decreasing water PO2. At the lowest water PO2 levels, the reduction in total oxygen uptake in the face of unchanged nitrogenous waste excretion resulted in extraordinary high nitrogen quotient (NQ) ratios. In normoxia, NQ ratios ranged from 0.16 to 0.34. Urea-N excretion contributed between 19% and 28% to total nitrogen excretion and appeared to be unrelated to natural diet as indicated by the gut length-to-fork length ratio or to plasma urea-N levels. Overall, our data underline the quantitative importance of urea-N for nitrogen excretion in siluriform fishes.
Collapse
Affiliation(s)
- Bernd Pelster
- Institut für Zoologie, University of Innsbruck, Innsbruck, Austria
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Adalberto Luis Val
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Jiang C, Storey KB, Yang H, Sun L. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States. Int J Mol Sci 2023; 24:14093. [PMID: 37762394 PMCID: PMC10531719 DOI: 10.3390/ijms241814093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Aestivation is considered to be one of the "purest" hypometabolic states in nature, as it involves aerobic dormancy that can be induced and sustained without complex factors. Animals that undergo aestivation to protect themselves from environmental stressors such as high temperatures, droughts, and food shortages. However, this shift in body metabolism presents new challenges for survival, including oxidative stress upon awakening from aestivation, accumulation of toxic metabolites, changes in energy sources, adjustments to immune status, muscle atrophy due to prolonged immobility, and degeneration of internal organs due to prolonged food deprivation. In this review, we summarize the physiological and metabolic strategies, key regulatory factors, and networks utilized by aestivating animals to address the aforementioned components of aestivation. Furthermore, we present a comprehensive overview of the advancements made in aestivation research across major species, including amphibians, fish, reptiles, annelids, mollusks, and echinoderms, categorized according to their respective evolutionary positions. This approach offers a distinct perspective for comparative analysis, facilitating an understanding of the shared traits and unique features of aestivation across different groups of organisms.
Collapse
Affiliation(s)
- Chunxi Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhang R, Liu Q, Pan S, Zhang Y, Qin Y, Du X, Yuan Z, Lu Y, Song Y, Zhang M, Zhang N, Ma J, Zhang Z, Jia X, Wang K, He S, Liu S, Ni M, Liu X, Xu X, Yang H, Wang J, Seim I, Fan G. A single-cell atlas of West African lungfish respiratory system reveals evolutionary adaptations to terrestrialization. Nat Commun 2023; 14:5630. [PMID: 37699889 PMCID: PMC10497629 DOI: 10.1038/s41467-023-41309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The six species of lungfish possess both lungs and gills and are the closest extant relatives of tetrapods. Here, we report a single-cell transcriptome atlas of the West African lungfish (Protopterus annectens). This species manifests the most extreme form of terrestrialization, a life history strategy to survive dry periods that can last for years, characterized by dormancy and reversible adaptive changes of the gills and lungs. Our atlas highlights the cell type diversity of the West African lungfish, including gene expression consistent with phenotype changes of terrestrialization. Comparison with terrestrial tetrapods and ray-finned fishes reveals broad homology between the swim bladder and lung cell types as well as shared and idiosyncratic changes of the external gills of the West African lungfish and the internal gills of Atlantic salmon. The single-cell atlas presented here provides a valuable resource for further exploration of the respiratory system evolution in vertebrates and the diversity of lungfish terrestrialization.
Collapse
Affiliation(s)
- Ruihua Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Qun Liu
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Shanshan Pan
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yingying Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yating Qin
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Xiao Du
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- BGI Research, 518083, Shenzhen, China
| | - Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yongrui Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Yue Song
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Nannan Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Jie Ma
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, 252000, Liaocheng, Shandong, P.R. China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Shanshan Liu
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Ming Ni
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Xin Liu
- BGI Research, 518083, Shenzhen, China
| | - Xun Xu
- BGI Research, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, 518083, Shenzhen, China
| | | | - Jian Wang
- BGI Research, 518083, Shenzhen, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia.
| | - Guangyi Fan
- BGI Research, 266555, Qingdao, China.
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China.
- BGI Research, 518083, Shenzhen, China.
| |
Collapse
|
4
|
Niu Y, Guan L, Wang C, Jiang H, Li G, Yang L. Aestivation induces widespread transcriptional changes in the African lungfish. Front Genet 2023; 14:1096929. [PMID: 36733343 PMCID: PMC9886888 DOI: 10.3389/fgene.2023.1096929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Aestivation is a special ability possessed by some animals to cope with hot and dry environments utilizing dormancy. At a macroscopic level, dormant animals stop moving and eating. At the microscopic level, the expression of a large number of genes in these animals is strictly controlled. However, little is known about what changes occur during aestivation, especially in fish. In this study, we used transcriptome analysis to examine what changes occur in the gills and lungs of the African lungfish (Protopterus annectens) during the maintenance phase of aestivation and speculated on their causes. We found that aestivating transcriptomes were highly similar between gills and lungs. We also found that some genes showed differential expression or alternative splicing, which may be associated with different organs. In addition, differential expression analysis revealed that the lungs maintained significantly higher bioactivity during aestivation, which suggests that the main respiratory organ in aestivating lungfish can transform. Our study provides a reference point for studying the relationship between aestivation and hibernation and further increases understanding of aestivation.
Collapse
Affiliation(s)
- Yuhan Niu
- College of Life Sciences, Qinghai Normal University, Xining, Qinghai, China,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Lihong Guan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guogang Li
- College of Life Sciences, Qinghai Normal University, Xining, Qinghai, China,Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China,Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, China,*Correspondence: Guogang Li, ; Liandong Yang,
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China,*Correspondence: Guogang Li, ; Liandong Yang,
| |
Collapse
|
5
|
Kovarik JJ, Morisawa N, Wild J, Marton A, Takase‐Minegishi K, Minegishi S, Daub S, Sands JM, Klein JD, Bailey JL, Kovalik J, Rauh M, Karbach S, Hilgers KF, Luft F, Nishiyama A, Nakano D, Kitada K, Titze J. Adaptive physiological water conservation explains hypertension and muscle catabolism in experimental chronic renal failure. Acta Physiol (Oxf) 2021; 232:e13629. [PMID: 33590667 PMCID: PMC8244025 DOI: 10.1111/apha.13629] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Aim We have reported earlier that a high salt intake triggered an aestivation‐like natriuretic‐ureotelic body water conservation response that lowered muscle mass and increased blood pressure. Here, we tested the hypothesis that a similar adaptive water conservation response occurs in experimental chronic renal failure. Methods In four subsequent experiments in Sprague Dawley rats, we used surgical 5/6 renal mass reduction (5/6 Nx) to induce chronic renal failure. We studied solute and water excretion in 24‐hour metabolic cage experiments, chronic blood pressure by radiotelemetry, chronic metabolic adjustment in liver and skeletal muscle by metabolomics and selected enzyme activity measurements, body Na+, K+ and water by dry ashing, and acute transepidermal water loss in conjunction with skin blood flow and intra‐arterial blood pressure. Results 5/6 Nx rats were polyuric, because their kidneys could not sufficiently concentrate the urine. Physiological adaptation to this renal water loss included mobilization of nitrogen and energy from muscle for organic osmolyte production, elevated norepinephrine and copeptin levels with reduced skin blood flow, which by means of compensation reduced their transepidermal water loss. This complex physiologic‐metabolic adjustment across multiple organs allowed the rats to stabilize their body water content despite persisting renal water loss, albeit at the expense of hypertension and catabolic mobilization of muscle protein. Conclusion Physiological adaptation to body water loss, termed aestivation, is an evolutionary conserved survival strategy and an under‐studied research area in medical physiology, which besides hypertension and muscle mass loss in chronic renal failure may explain many otherwise unexplainable phenomena in medicine.
Collapse
Affiliation(s)
- Johannes J. Kovarik
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Clinical Division of Nephrology and Dialysis Department of Internal Medicine III Medical University of Vienna Vienna Austria
| | - Norihiko Morisawa
- Department of Pharmacology Faculty of Medicine Kagawa University Kagawa Japan
| | - Johannes Wild
- Division for Cardiology 1 Centre for Cardiology Johannes Gutenberg‐University Mainz Mainz Germany
| | - Adriana Marton
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
| | - Kaoru Takase‐Minegishi
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Department of Stem Cell and Immune Regulation Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Shintaro Minegishi
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Steffen Daub
- Division for Cardiology 1 Centre for Cardiology Johannes Gutenberg‐University Mainz Mainz Germany
| | - Jeff M. Sands
- Renal Division Department of Medicine Emory University Atlanta GA USA
| | - Janet D. Klein
- Renal Division Department of Medicine Emory University Atlanta GA USA
| | - James L. Bailey
- Renal Division Department of Medicine Emory University Atlanta GA USA
| | - Jean‐Paul Kovalik
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
| | - Manfred Rauh
- Division of Paediatrics Research Laboratory Erlangen Germany
| | - Susanne Karbach
- Division for Cardiology 1 Centre for Cardiology Johannes Gutenberg‐University Mainz Mainz Germany
| | - Karl F. Hilgers
- Division of Nephrology and Hypertension University Clinic Erlangen Erlangen Germany
| | - Friedrich Luft
- Experimental and Clinical Research Center Max Delbrück Center for Molecular Medicine Berlin Germany
| | - Akira Nishiyama
- Department of Pharmacology Faculty of Medicine Kagawa University Kagawa Japan
| | - Daisuke Nakano
- Department of Pharmacology Faculty of Medicine Kagawa University Kagawa Japan
| | - Kento Kitada
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- JSPS Overseas Research Fellow Japan Society for the Promotion of Science Tokyo Japan
| | - Jens Titze
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Division of Nephrology and Hypertension University Clinic Erlangen Erlangen Germany
- Division of Nephrology Duke University School of Medicine Durham NC USA
| |
Collapse
|
6
|
Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, Fan G, Hu J, Xu W, Bi X, Zhu Y, Song Y, Chen H, Ma T, Zhao R, Jiang H, Zhang B, Feng C, Yuan Y, Gan X, Li Y, Zeng H, Liu Q, Zhang Y, Shao F, Hao S, Zhang H, Xu X, Liu X, Wang D, Zhu M, Zhang G, Zhao W, Qiu Q, He S, Wang W. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 2021; 184:1362-1376.e18. [PMID: 33545087 DOI: 10.1016/j.cell.2021.01.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.
Collapse
Affiliation(s)
- Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jue Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangyi Fan
- BGI-Qingdao, Qingdao 266555, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiang Hu
- Grandomics Biosciences, Beijing 102200, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Youan Zhu
- Institute of Vertebrate Paleontology and Paleoanthropology, China Academy of Sciences, Beijing 100044, China
| | - Yue Song
- BGI-Qingdao, Qingdao 266555, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Tiantian Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bin Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qun Liu
- BGI-Qingdao, Qingdao 266555, China
| | | | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | | - He Zhang
- BGI-Qingdao, Qingdao 266555, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Liu
- BGI-Qingdao, Qingdao 266555, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102200, China
| | - Min Zhu
- Institute of Vertebrate Paleontology and Paleoanthropology, China Academy of Sciences, Beijing 100044, China
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenming Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
7
|
Marton A, Kaneko T, Kovalik JP, Yasui A, Nishiyama A, Kitada K, Titze J. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol 2020; 17:65-77. [PMID: 33005037 DOI: 10.1038/s41581-020-00350-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
Therapeutic inhibition of the sodium-glucose co-transporter 2 (SGLT2) leads to substantial loss of energy (in the form of glucose) and additional solutes (in the form of Na+ and its accompanying anions) in urine. However, despite the continuously elevated solute excretion, long-term osmotic diuresis does not occur in humans with SGLT2 inhibition. Rather, patients on SGLT2 inhibitor therapy adjust to the reduction in energy availability and conserve water. The metabolic adaptations that are induced by SGLT2 inhibition are similar to those observed in aestivation - an evolutionarily conserved survival strategy that enables physiological adaptation to energy and water shortage. Aestivators exploit amino acids from muscle to produce glucose and fatty acid fuels. This endogenous energy supply chain is coupled with nitrogen transfer for organic osmolyte production, which allows parallel water conservation. Moreover, this process is often accompanied by a reduction in metabolic rate. By comparing aestivation metabolism with the fuel switches that occur during therapeutic SGLT2 inhibition, we suggest that SGLT2 inhibitors induce aestivation-like metabolic patterns, which may contribute to the improvements in cardiac and renal function observed with this class of therapeutics.
Collapse
Affiliation(s)
- Adriana Marton
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Tatsuroh Kaneko
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan
| | - Jean-Paul Kovalik
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Atsutaka Yasui
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.,Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Jens Titze
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore. .,Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany. .,Division of Nephrology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
8
|
Minegishi S, Luft FC, Titze J, Kitada K. Sodium Handling and Interaction in Numerous Organs. Am J Hypertens 2020; 33:687-694. [PMID: 32198504 DOI: 10.1093/ajh/hpaa049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
Salt (NaCl) is a prerequisite for life. Excessive intake of salt, however, is said to increase disease risk, including hypertension, arteriosclerosis, heart failure, renal disease, stroke, and cancer. Therefore, considerable research has been expended on the mechanism of sodium handling based on the current concepts of sodium balance. The studies have necessarily relied on relatively short-term experiments and focused on extremes of salt intake in humans. Ultra-long-term salt balance has received far less attention. We performed long-term salt balance studies at intakes of 6, 9, and 12 g/day and found that although the kidney remains the long-term excretory gate, tissue and plasma sodium concentrations are not necessarily the same and that urinary salt excretion does not necessarily reflect total-body salt content. We found that to excrete salt, the body makes a great effort to conserve water, resulting in a natriuretic-ureotelic principle of salt excretion. Of note, renal sodium handling is characterized by osmolyte excretion with anti-parallel water reabsorption, a state-of-affairs that is achieved through the interaction of multiple organs. In this review, we discuss novel sodium and water balance concepts in reference to our ultra-long-term study. An important key to understanding body sodium metabolism is to focus on water conservation, a biological principle to protect from dehydration, since excess dietary salt excretion into the urine predisposes to renal water loss because of natriuresis. We believe that our research direction is relevant not only to salt balance but also to cardiovascular regulatory mechanisms.
Collapse
Affiliation(s)
- Shintaro Minegishi
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Friedrich C Luft
- Experimental & Clinical Research Center, a joint collaboration between Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin, Berlin, Germany
| | - Jens Titze
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany
| | - Kento Kitada
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
9
|
The NOS/NO system in an example of extreme adaptation: The African lungfish. J Therm Biol 2020; 90:102594. [PMID: 32479389 DOI: 10.1016/j.jtherbio.2020.102594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022]
Abstract
African dipnoi (lungfish) are aestivating fish and obligate air breathers that, throughout their complex life cycle, undergo remarkable morpho-functional organ readjustment from biochemical to morphological level. In the present review we summarize the changes of the NOS/NO (Nitric Oxide Synthase/Nitric Oxide) system occurring in lungs, gills, kidney, heart, and myotomal muscle of African lungfish of the genus Protopterus (P. dolloi and P. annectens), in relation to the switch from freshwater to aestivation, and vice-versa. In particular, the expression and localization patterns of NOS, and its protein partners Akt, Hsp-90 and HIF-1α, have been discussed, together with the apoptosis rate, evaluated by TUNEL technique. We hypothesize that all these molecular components are crucial in signalling transduction/integration networks induced by environmental challenges (temperature, dehydration, inactivity)experienced at the beginning, during, and at the end of the dry season.
Collapse
|
10
|
Wang MC, Lin HC. The Air-Breathing Paradise Fish ( Macropodus opercularis) Differs From Aquatic Breathers in Strategies to Maintain Energy Homeostasis Under Hypoxic and Thermal Stresses. Front Physiol 2018; 9:1645. [PMID: 30524308 PMCID: PMC6262364 DOI: 10.3389/fphys.2018.01645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
Two major strategies are used by most fish to maintain energy homeostasis under hypoxia. One is to utilize alternative metabolic pathways to increase energy production, and the other is to limit energy expenditure by suppressing energy-consuming processes, especially ionoregulation. Some anabantoid fishes live in tropical rivers, where hypoxic environments occur frequently. We previously found that under ambient hypoxia, anabantoid fishes do not downregulate Na+/K+-ATPase (NKA) activity to conserve energy in gills but instead increase the frequency of air-breathing respiration (ABR). In addition to the hypoxic condition, another factor that may cause cellular hypoxia in fish is abnormally high environmental temperatures. The frequency of such extreme thermal events has increased due to global climate change. In the present study, we examined whether the anabantoid fish, Macropodus opercularis employs the two strategies mentioned above to resist both ambient hypoxic and elevated thermal (cellular hypoxic) conditions. Results indicate that neither glucose metabolism nor gill NKA activity were altered by hypoxia (DO = 1.5 ± 1 mg/L), but glucose metabolism was increased by thermal stress (34 ± 1°C). NH4 + excretion and ABR frequency were both increased under hypoxia, thermal or hypoxic-and-thermal treatments. In fish that were restricted from breathing air, increased mortality and glucose metabolism were observed under hypoxic or thermal treatments. These results suggest that for M. opercularis, increasing ABR is an important strategy for coping with unmet oxygen demand under hypoxic or thermal stress. This behavioral compensation allows anabantoid fish to physiologically withstand hypoxic and thermal stresses, and constitutes a mechanism of stress resistance that is unavailable to water-breathing fishes.
Collapse
Affiliation(s)
- Min-Chen Wang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Hui-Chen Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
11
|
Abstract
During water-land transition, ancient fishes acquired the ability to breathe air, but air-breathing engendered problems in nitrogenous waste excretion. Nitrogen is a fundamental component of amino acids, proteins, and nucleic acids, and the degradation of these nitrogen-containing compounds releases ammonia. Ammonia is toxic and must be removed. Fishes in water excrete ammonia as the major nitrogenous waste through gills, but gills of air-breathing fishes are modified for air-breathing or largely replaced by air-breathing organs. Notably, fishes emerged from water can no longer excrete ammonia effectively because of a lack of water to flush the gills. Hence, ancient fishes that participated in water-land transition must have developed means to deal with ammonia toxicity. Extant air-breathing fishes, particularly amphibious ones, can serve as models to examine adaptations which might have facilitated the emergence of ancient fishes from water. Some of these fishes can actively emerge from water and display complex behaviors on land, while a few can burrow into mud and survive for years during drought. Many of them are equipped with mechanisms to ameliorate ammonia toxicity during emersion. In this review, the mechanisms adopted by air-breathing fishes to deal with ammonia toxicity during emersion were organized into seven disparate strategies. In addition, eight extant air-breathing fishes with distinctive terrestrial behaviors and peculiar natural habitats were selected to describe in detail how these seven strategies could be adopted in disparate combinations to ameliorate ammonia toxicity during emersion.
Collapse
|
12
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Molecular characterization of three Rhesus glycoproteins from the gills of the African lungfish, Protopterus annectens, and effects of aestivation on their mRNA expression levels and protein abundance. PLoS One 2017; 12:e0185814. [PMID: 29073147 PMCID: PMC5657625 DOI: 10.1371/journal.pone.0185814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
African lungfishes are ammonotelic in water. They can aestivate for long periods on land during drought. During aestivation, the gills are covered with dried mucus and ammonia excretion ceases. In fishes, ammonia excretion through the gills involves Rhesus glycoproteins (RhGP/Rhgp). This study aimed to obtain the complete cDNA coding sequences of rhgp from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Three isoforms of rhgp (rhag, rhbg and rhcg) were obtained in the gills of P. annectens. Their complete cDNA coding sequences ranged between 1311 and 1398 bp, coding for 436 to 465 amino acids with estimated molecular masses between 46.8 and 50.9 kDa. Dendrogramic analyses indicated that Rhag was grouped closer to fishes, while Rhbg and Rhcg were grouped closer to tetrapods. During the induction phase, the protein abundance of Rhag, but not its transcript level, was down-regulated in the gills, suggesting that there could be a decrease in the release of ammonia from the erythrocytes to the plasma. Furthermore, the branchial transcript levels of rhbg and rhcg decreased significantly, in preparation for the subsequent shutdown of gill functions. During the maintenance phase, the branchial expression levels of rhag/Rhag, rhbg/Rhbg and rhcg/Rhcg decreased significantly, indicating that their transcription and translation were down-regulated. This could be part of an overall mechanism to shut down branchial functions and save metabolic energy used for transcription and translation. It could also be regarded as an adaptive response to stop ammonia excretion. During the arousal phase, it is essential for the lungfish to regain the ability to excrete ammonia. Indeed, the protein abundance of Rhag, Rhbg and Rhcg recovered to the corresponding control levels after 1 day or 3 days of recovery from 6 months of aestivation.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
13
|
Ong JLY, Chng YR, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Ip YK. Molecular characterization of myostatin from the skeletal muscle of the African lungfish, Protopterus annectens, and changes in its mRNA and protein expression levels during three phases of aestivation. J Comp Physiol B 2017; 187:575-589. [PMID: 28184997 DOI: 10.1007/s00360-017-1057-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/26/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - You R Chng
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Xiu L Chen
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore.
| |
Collapse
|
14
|
Abstract
Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.
Collapse
Affiliation(s)
- Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Hiong KC, Ip YK, Wong WP, Chew SF. Differential gene expression in the liver of the African lungfish, Protopterus annectens, after 6 months of aestivation in air or 1 day of arousal from 6 months of aestivation. PLoS One 2015; 10:e0121224. [PMID: 25822522 PMCID: PMC4378924 DOI: 10.1371/journal.pone.0121224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/29/2015] [Indexed: 01/15/2023] Open
Abstract
The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the liver of P. annectens after 6 months (the maintenance phase) of aestivation as compared with the freshwater control, or after 1 day of arousal from 6 months aestivation as compared with 6 months of aestivation using suppression subtractive hybridization. During the maintenance phase of aestivation, the mRNA expression of argininosuccinate synthetase 1 and carbamoyl phosphate synthetase III were up-regulated, indicating an increase in the ornithine-urea cycle capacity to detoxify ammonia to urea. There was also an increase in the expression of betaine homocysteine-S-transferase 1 which could reduce and prevent the accumulation of hepatic homocysteine. On the other hand, the down-regulation of superoxide dismutase 1 expression could signify a decrease in ROS production during the maintenance phase of aestivation. In addition, the maintenance phase was marked by decreases in expressions of genes related to blood coagulation, complement fixation and iron and copper metabolism, which could be strategies used to prevent thrombosis and to conserve energy. Unlike the maintenance phase of aestivation, there were increases in expressions of genes related to nitrogen, carbohydrate and lipid metabolism and fatty acid transport after 1 day of arousal from 6 months aestivation. There were also up-regulation in expressions of genes that were involved in the electron transport system and ATP synthesis, indicating a greater demand for metabolic energy during arousal. Overall, our results signify the importance of sustaining a low rate of waste production and conservation of energy store during the maintenance phase, and the dependence on internal energy store for repair and structural modification during the arousal phase, of aestivation in the liver of P. annectens.
Collapse
Affiliation(s)
- Kum C. Hiong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Science, National University of Singapore, Singapore, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
16
|
Ong JLY, Woo JM, Hiong KC, Ching B, Wong WP, Chew SF, Ip YK. Molecular characterization of betaine-homocysteine methyltransferase 1 from the liver, and effects of aestivation on its expressions and homocysteine concentrations in the liver, kidney and muscle, of the African lungfish, Protopterus annectens. Comp Biochem Physiol B Biochem Mol Biol 2015; 183:30-41. [PMID: 25575738 DOI: 10.1016/j.cbpb.2014.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
Homocysteine accumulation has numerous deleterious effects, and betaine-homocysteine S-methyltransferase (BHMT) catalyses the synthesis of methionine from homocysteine and betaine. This study aimed to determine homocysteine concentrations, and mRNA expression levels and protein abundances of bhmt1/Bhmt1 in the liver, kidney and muscle of the African lungfish, Protopterus annectens, during the induction (6 days), maintenance (6 months) or arousal (3 days after arousal) phase of aestivation. The homocysteine concentration decreased significantly in the liver of P. annectens after 6 days or 6 months of aestivation, but it returned to the control level upon arousal. By contrast, homocysteine concentrations in the kidney and muscle remained unchanged during the three phases of aestivation. The complete coding cDNA sequence of bhmt1 from P. annectens consisted of 1236 bp, coding for 412 amino acids. The Bhmt1 from P. annectens had a close phylogenetic relationship with those from tetrapods and Callorhinchus milii. The expression of bhmt1 was detected in multiple organs/tissues of P. annectens, and this is the first report on the expression of bhmt1/Bhmt1 in animal skeletal muscle. The mRNA and protein expression levels of bhmt1/Bhmt1 were up-regulated in the liver of P. annectens during the induction and maintenance phases of aestivation, possibly to regulate the hepatic homocysteine concentration. The significant increase in hepatic Bhmt1 protein abundance during the arousal phase could be a response to increased cellular methylation for the purpose of tissue reconstruction. Unlike the liver, Bhmt1 expression in the kidney and muscle of P. annectens was regulated translationally, and its up-regulation could be crucial to prevent homocysteine accumulation.
Collapse
Affiliation(s)
- Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Jia M Woo
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore; The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119227, Republic of Singapore.
| |
Collapse
|
17
|
Garofalo F, Amelio D, Icardo J, Chew S, Tota B, Cerra M, Ip Y. Signal molecule changes in the gills and lungs of the African lungfish Protopterus annectens, during the maintenance and arousal phases of aestivation. Nitric Oxide 2015; 44:71-80. [DOI: 10.1016/j.niox.2014.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 01/20/2023]
|
18
|
Hiong KC, Tan XR, Boo MV, Wong WP, Chew SF, Ip YK. Aestivation induces changes in transcription and translation of coagulation factor II and fibrinogen gamma chain in the liver of the African lungfish, Protopterus annectens. J Exp Biol 2015; 218:3717-28. [DOI: 10.1242/jeb.125260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022]
Abstract
This study aimed to sequence and characterize two pro-coagulant genes, coagulation factor II (f2) and fibrinogen gamma chain (fgg), from the liver of the African lungfish Protopterus annectens, and to determine their hepatic mRNA expression levels during three phases of aestivation. The protein abundances of F2 and Fgg in the liver and plasma were determined by immunoblotting. Results indicated that F2 and Fgg of P. annectens were phylogenetically closer to those of amphibians than those of teleosts. Three days of aestivation resulted in an up-regulation in the hepatic fgg mRNA expression level, while 6 days of aestivation led to a significant increase (3-fold) in the protein abundance of Fgg in the plasma. Hence, there could be an increase in the blood clotting ability in P. annectens during the induction phase of aestivation. By contrast, the blood clotting ability in P. annectens might be reduced in response to decreased blood flow and increased possibility of thrombosis during the maintenance phase of aestivation, as 6 months of aestivation led to significant decreases in mRNA expression levels of f2 and fgg in the liver. There could also be a decrease in the export of F2 and Fgg from the liver to the plasma so as to avert thrombosis. Upon 3-6 days of arousal from 6 months of aestivation, the protein abundances of F2 and Fgg recovered partially in the plasma of P. annectens, and a complete recovery of the transcription and translation of f2/F2 in the liver might occur only after refeeding.
Collapse
Affiliation(s)
- Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Xiang R. Tan
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V. Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
- The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119227, Republic of Singapore
| |
Collapse
|
19
|
Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation. J Comp Physiol B 2014; 184:835-53. [PMID: 25034132 DOI: 10.1007/s00360-014-0842-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 02/05/2023]
Abstract
Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia-reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.
Collapse
|
20
|
Ching B, Ong JLY, Chng YR, Chen XL, Wong WP, Chew SF, Ip YK. L‐gulono‐7‐lactone oxidase expression and vitamin C synthesis in the brain and kidney of the African lungfish,
Protopterus annectens. FASEB J 2014; 28:3506-17. [DOI: 10.1096/fj.14-249508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Biyun Ching
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| | - Jasmine L. Y. Ong
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| | - You Rong Chng
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| | - Xiu Ling Chen
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| | - Wai P. Wong
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science EducationNational Institute of Education, Nanyang Technological UniversitySingaporeRepublic of Singapore
| | - Yuen K. Ip
- Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
| |
Collapse
|
21
|
Chew SF, Ip YK. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes. JOURNAL OF FISH BIOLOGY 2014; 84:603-38. [PMID: 24438022 DOI: 10.1111/jfb.12279] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in which it lives.
Collapse
Affiliation(s)
- S F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | | |
Collapse
|
22
|
Hiong KC, Ip YK, Wong WP, Chew SF. Differential gene expression in the brain of the African lungfish, Protopterus annectens, after six days or six months of aestivation in air. PLoS One 2013; 8:e71205. [PMID: 23976998 PMCID: PMC3745453 DOI: 10.1371/journal.pone.0071205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022] Open
Abstract
The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the brain of P. annectens during the induction (6 days) and maintenance (6 months) phases of aestivation as compared with the freshwater control using suppression subtractive hybridization. During the induction phase of aestivation, the mRNA expression of prolactin (prl) and growth hormone were up-regulated in the brain of P. annectens, which indicate for the first time the possible induction role of these two hormones in aestivation. Also, the up-regulation of mRNA expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein γ polypeptide and the down-regulation of phosphatidylethanolamine binding protein, suggest that there could be a reduction in biological and neuronal activities in the brain. The mRNA expression of cold inducible RNA-binding protein and glucose regulated protein 58 were also up-regulated in the brain, probably to enhance their cytoprotective effects. Furthermore, the down-regulation of prothymosin α expression suggests that there could be a suppression of transcription and cell proliferation in preparation for the maintenance phase. In general, the induction phase appeared to be characterized by reduction in glycolytic capacity and metabolic activity, suppression of protein synthesis and degradation, and an increase in defense against ammonia toxicity. In contrast, there was a down-regulation in the mRNA expression of prl in the brain of P. annectens during the maintenance phase of aestivation. In addition, there could be an increase in oxidative defense capacity, and up-regulation of transcription, translation, and glycolytic capacities in preparation for arousal. Overall, our results signify the importance of reconstruction of protein structures and regulation of energy expenditure during the induction phase, and the needs to suppress protein degradation and conserve metabolic fuel stores during the maintenance phase of aestivation.
Collapse
Affiliation(s)
- Kum C. Hiong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
23
|
Amelio D, Garofalo F, Wong WP, Chew SF, Ip YK, Cerra MC, Tota B. Nitric oxide synthase-dependent "on/off" switch and apoptosis in freshwater and aestivating lungfish, Protopterus annectens: skeletal muscle versus cardiac muscle. Nitric Oxide 2013; 32:1-12. [PMID: 23545405 DOI: 10.1016/j.niox.2013.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/14/2013] [Accepted: 03/22/2013] [Indexed: 01/15/2023]
Abstract
African lungfishes (Protopterus spp.) are obligate air breathers which enter in a prolonged torpor (aestivation) in association with metabolic depression, and biochemical and morpho-functional readjustments during the dry season. During aestivation, the lungfish heart continues to pump, while the skeletal muscle stops to function but can immediately contract during arousal. Currently, nothing is known regarding the orchestration of the multilevel rearrangements occurring in myotomal and myocardial muscles during aestivation and arousal. Because of its universal role in cardio-circulatory and muscle homeostasis, nitric oxide (NO) could be involved in coordinating these stress-induced adaptations. Western blotting and immunofluorescence microscopy on cardiac and skeletal muscles of Protopterus annectens (freshwater, 6months of aestivation and 6days after arousal) showed that expression, localization and activity of the endothelial-like nitric oxide synthase (eNOS) isoform and its partners Akt and Hsp-90 are tissue-specifically modulated. During aestivation, phospho-eNOS/eNOS and phospho-Akt/Akt ratios increased in the heart but decreased in the skeletal muscle. By contrast, Hsp-90 increased in both muscle types during aestivation. TUNEL assay revealed that increased apoptosis occurred in the skeletal muscle of aestivating lungfish, but the myocardial apoptotic rate of the aestivating lungfish remained unchanged as compared with the freshwater control. Consistent with the preserved cardiac activity during aestivation, the expression of apoptosis repressor (ARC) also remained unchanged in the heart of aestivating and aroused fish as compared with the freshwater control. Contrarily, ARC expression was strongly reduced in the skeletal muscle of aestivating lungfish. On the whole, our data indicate that changes in the eNOS/NO system and cell turnover are implicated in the morpho-functional readjustments occurring in lungfish cardiac and skeletal muscle during the switch from freshwater to aestivation, and between the maintenance and arousal phases of aestivation.
Collapse
Affiliation(s)
- D Amelio
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Ip YK, Loong AM, Chng YR, Hiong KC, Chew SF. Hepatic carbamoyl phosphate synthetase (CPS) I and urea contents in the hylid tree frog, Litoria caerulea: transition from CPS III to CPS I. J Comp Physiol B 2012; 182:1081-94. [PMID: 22736308 DOI: 10.1007/s00360-012-0682-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/26/2012] [Accepted: 06/01/2012] [Indexed: 11/26/2022]
Abstract
The complete cDNA sequence of CPS I obtained from the liver of the hylid tree frog, Litoria caerulea, consisted of 4,485 bp which coded for 1,495 amino acids with an estimated molecular mass of 163.7 kDa. The deduced CPS I consisted of a mitochondrial targeting sequence of 33 amino acid residues, a glutaminase amidotransferase component spanning from tyrosine 95 to leucine 425, and a methylglyoxal synthetase-like component spanning from valine 441 to lysine 1566. It also comprised two cysteine residues (cysteine 1360 and cysteine 1370) that are characteristic of N-acetyl-L-glutamate dependency. Similar to the CPS I of Rana catesbeiana and Cps III of lungfishes and teleosts, it contained the Cys-His-Glu catalytic triad (cysteine 304, histidine 388 and glutamate 390). All Cps III contain methionine 305 and glutamine 308, which are essential for the Cys-His-Glu triad to react with glutamine, but the CPS I of R. catesbeiana contains lysine 305 and glutamate 308, and therefore cannot effectively utilize glutamine as a substrate. However, the CPS I of L. caerulea, unlike that of R. catesbeiana, contained besides glutamate 308, methionine 305 instead of lysine 305, and thus represented a transitional form between Cps III and CPS I. Indeed, CPS I of L. caerulea could utilize glutamine or NH₄⁺ as a substrate in vitro, but the activity obtained with glutamine + NH₄⁺ reflected that obtained with NH₄⁺ alone. Furthermore, only <5 % of the glutamine synthetase activity was present in the hepatic mitochondria, indicating that CPS I of L. caerulea did not have an effective supply of glutamine in vivo. Hence, our results confirmed that the evolution of CPS I from Cps III occurred in amphibians. Since L. caerulea contained high levels of urea in its muscle and liver, which increased significantly in response to desiccation, its CPS I had the dual functions of detoxifying ammonia to urea and producing urea to reduce evaporative water loss.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore.
| | | | | | | | | |
Collapse
|
25
|
Loong AM, Chng YR, Chew SF, Wong WP, Ip YK. Molecular characterization and mRNA expression of carbamoyl phosphate synthetase III in the liver of the African lungfish, Protopterus annectens, during aestivation or exposure to ammonia. J Comp Physiol B 2011; 182:367-79. [PMID: 22038021 DOI: 10.1007/s00360-011-0626-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 01/01/2023]
Abstract
This study aimed to obtain the full sequence of carbamoyl phosphate synthetase III (cps III) from, and to determine the mRNA expression of cps III in, the liver of P. annectens during aestivation in air, hypoxia or mud, or exposure to environmental ammonia (100 mmol l(-1) NH(4)Cl). The complete coding cDNA sequence of cps III from the liver of P. annectens consisted of 4530 bp, which coded for 1,510 amino acids with an estimated molecular mass of 166.1 kDa. The Cps III of P. annectens consisted of a mitochondrial targeting sequence of 44 amino acid residues, a GAT domain spanning from tyrosine 45 to isoleucine 414, and a methylglyoxal synthase-like domain spanning from valine 433 to arginine 1513. Two cysteine residues (cysteine 1337 and cysteine 1347) that are characteristic of N-acetylglutamate dependency were also present. The critical Cys-His-Glu catalytic triad (cysteine 301, histidine 385 and glutamate 387) together with methionine 302 and glutamine 305 affirmed that P. annectens expressed Cps III and not Cps I. A comparison of the translated amino acid sequence of Cps III from P. annectens with CPS sequences from other animals revealed that it shared the highest similarity with elasmobranch Cps III. A phylogenetic analysis indicates that P. annectens CPS III could have evolved from Cps III of elasmobranchs. Indeed, Cps III from P. annectens used mainly glutamine as the substrate, and its activity decreased significantly when glutamine and ammonia were included together in the assay system. There were significant increases (9- to 12-fold) in the mRNA expression of cps III in the liver of fish during the induction phase (days 3 and 6) of aestivation in air. Aestivation in hypoxia or in mud had a delayed effect on the increase in the mRNA expression of cps III, which extended beyond the induction phase of aestivation, reiterating the importance of differentiating effects that are intrinsic to aestivation from those intrinsic to hypoxia. Furthermore, results from this study confirmed that environmental ammonia exposure led to a significant increase in the mRNA expression of cps III in the liver of P. annectens, alluding to the important functional role of urea not only as a product of ammonia detoxification but also as a putative internal cue for aestivation.
Collapse
Affiliation(s)
- A M Loong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, 117543, Republic of Singapore
| | | | | | | | | |
Collapse
|
26
|
Differential gene expression in the liver of the African lungfish, Protopterus annectens, after 6 days of estivation in air. J Comp Physiol B 2011; 182:231-45. [PMID: 21915614 DOI: 10.1007/s00360-011-0613-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/21/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
This study aimed to identify estivation-specific gene clusters through the determination of differential gene expressions in the liver of Protopterus annectens after 6 days of estivation in a mucus cocoon in air (normoxia) using suppression subtractive hybridization polymerase chain reaction. Our results demonstrated that 6 days of estivation in normoxia led to up-regulation of mRNA expressions of several genes related to urea synthesis, including carbamoyl phosphate synthetase (Cps), argininosuccinate synthetase and glutamine synthetase. They indicate that increased urea synthesis, despite being energy-intensive, is an important adaptive response of estivation. They also offer indirect support to the proposition that urea synthesis in this lungfish involved a Cps that uses glutamine as a substrate. In addition, up- or down-regulation of several gene clusters occurred in the liver of P. annectens after 6 days of estivation in normoxia. These estivation-specific genes were involved in the prevention of clot formation, activation of the lectin pathway for complement activation, conservation of minerals (e.g. iron and copper) and increased production of hemoglobin beta. Since there were up- and down-regulation of mRNA expressions of genes related to ribosomal proteins and translational elongation factors, there could be simultaneous increases in protein degradation and protein synthesis during the first 6 days (the induction phase) of estivation, confirming the importance of reconstruction of protein structures in preparation for the maintenance phase of estivation.
Collapse
|
27
|
Uliano E, Cataldi M, Carella F, Migliaccio O, Iaccarino D, Agnisola C. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2010; 157:283-90. [PMID: 20674761 DOI: 10.1016/j.cbpa.2010.07.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 11/30/2022]
Abstract
Acute stress may affect metabolism and nitrogen excretion as part of the adaptive response that allows animals to face adverse environmental changes. In the present paper the acute effects of different salinities and temperatures on routine metabolism, spontaneous activity and excretion of ammonia and urea were studied in two freshwater fish: gambusia, Gambusia affinis and zebrafish, Danio rerio, acclimated to 27 degrees C. The effects on gill morphology were also evaluated. Five salinities (0 per thousand, 10 per thousand, 20 per thousand, 30 per thousand and 35 per thousand) were tested in gambusia, while four salinities were used in zebrafish (0 per thousand, 10 per thousand, 20 per thousand and 25 per thousand). Each salinity acute stress was tested alone or in combination with an acute temperature reduction to 20 degrees C. In gambusia, both salinity and temperature acute stress strongly stimulated urea excretion. Routine oxygen consumption was barely affected by acute salinity or temperature stress, and was reduced by the combined effects of temperature and high salinity. Gills maintained their structural integrity in all stressing conditions; hyperplasia and hypertrophy of mitochondria-rich cells were observed. In zebrafish, temperature and salinity acute changes, both alone and in combination, scarcely affected any parameter tested. The major effect observed was a reduction of nitrogen excretion at 20 degrees C-25 per thousand; under these extreme conditions a significant structural disruption of gills was observed. These results confirm the high tolerance to acute salinity and temperature stress in gambusia, and demonstrate the involvement of urea excretion modulation in the stress response in this species.
Collapse
Affiliation(s)
- E Uliano
- Department of Biological Sciences, University of Naples Federico II, Italy
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Richards JG. Metabolic Rate Suppression as a Mechanism for Surviving Environmental Challenge in Fish. AESTIVATION 2010; 49:113-39. [DOI: 10.1007/978-3-642-02421-4_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Tng YYM, Chew SF, Wee NLJ, Wong FK, Wong WP, Tok CY, Ip YK. Acute ammonia toxicity and the protective effects of methionine sulfoximine on the swamp eel, Monopterus albus. ACTA ACUST UNITED AC 2009; 311:676-88. [PMID: 19544359 DOI: 10.1002/jez.555] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The objectives of this study were to examine how the swamp eel, Monopterus albus, defended against acute ammonia toxicity derived from the intraperitoneal injection with a sublethal dose (10 micromol g(-1) fish) of ammonium acetate (CH(3)COONH(4)) followed by 24 hr of emersion, and to elucidate the mechanisms of acute ammonia toxicity with respect to glutamine accumulation in the brain using L-methionine S-sulfoximine [MSO; a glutamine synthetase inhibitor]. When confronted with a sublethal dose of CH(3)COONH(4) followed by emersion, only a small fraction of the exogenous ammonia was excreted, and ammonia contents in various organs, especially the brain, increased transiently to high levels. Increased glutamine synthesis and decreased amino acid catabolism in and outside the brain were involved in the defence against acute ammonia toxicity. When injected with a lethal dose (16 micromol g(-1) fish) of CH(3)COONH(4) followed by emersion, ammonia (approximately 30 micromol g(-1) tissue), but not glutamine ( approximately 5 micromol g(-1) tissue), accumulated to extraordinarily high levels in the brain of succumbed fish. Hence, glutamine accumulation in the brain might not be the major mechanism of acute ammonia toxicity in M. albus. MSO (100 microg g(-1) fish) had a partial protective effect in fish injected with a lethal dose of CH(3)COONH(4). However, this effect was unrelated to the suppression of glutamine synthesis and accumulation in the brain. Instead, MSO suppressed the rate of ammonia buildup in the brain, possibly through its effects on glutamate dehydrogenase therein.
Collapse
Affiliation(s)
- Yvonne Y M Tng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
31
|
Hung CYC, Galvez F, Ip YK, Wood CM. Increased gene expression of a facilitated diffusion urea transporter in the skin of the African lungfish (Protopterus annectens) during massively elevated post-terrestrialization urea excretion. J Exp Biol 2009; 212:1202-11. [PMID: 19329753 DOI: 10.1242/jeb.025239] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The full-length cDNA sequence of a putative urea transporter (lfUT) of the facilitated diffusion UT-A type has been cloned from the African lungfish Protopterus annectens. The lfUT cDNA is 1990 bp in length and its open reading frame encodes a 409 amino acid long protein, with a calculated molecular mass of 44,723 Da. The sequence is closest to those of amphibians ( approximately 65% amino acid homology), followed by mammals and elasmobranchs ( approximately 60%), and then teleosts ( approximately 50%). lfUT was clearly expressed in gill, kidney, liver, skeletal muscle and skin. Upon re-immersion in water after 33 days of air exposure ('terrestrialization'), lungfish exhibited a massive rise in urea-N excretion which peaked at 12-30 h with rates of 2000-5000 micromol-N kg(-1) h(-1) (versus normal aquatic rates of <130 micromol-N kg(-1) h(-1)) and persisted until 70 h. This appears to occur mainly through the skin. Total 'excess' urea-N excretion amounted to approximately 81,000-91,000 micromol-N kg(-1) over 3 days. By real-time PCR, there was no difference in lfUT expression in the ventral abdominal skin between aquatic ammoniotelic controls and terrestrialized lungfish immediately after return to water (0 h), and no elevation of urea-N excretion at this time. However, skin biopsies revealed a significant 2.55-fold elevation of lfUT expression at 14 h, coincident with peak urea-N excretion. At 48 h, there was no longer any significant difference in lfUT mRNA levels from those at 0 and 14 h, or from aquatic fed controls. In accordance with earlier studies, which identified elevated urea-N excretion via the skin of P. dolloi with pharmacology typical of UT-A carriers, these results argue that transcriptional activation of a facilitated diffusion type urea transporter (lfUT) occurs in the skin during re-immersion. This serves to clear the body burden of urea-N accumulated during terrestrialization.
Collapse
Affiliation(s)
- Carrie Y C Hung
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | | | | | | |
Collapse
|
32
|
Patel M, Iftikar FI, Smith RW, Ip YK, Wood CM. Water balance and renal function in two species of African lungfish Protopterus dolloi and Protopterus annectens. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:149-57. [DOI: 10.1016/j.cbpa.2008.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
|
33
|
Ojeda JL, Wong WP, Ip YK, Icardo JM. Renal Corpuscle of the African LungfishProtopterus dolloi: Structural and Histochemical Modifications During Aestivation. Anat Rec (Hoboken) 2008; 291:1156-72. [DOI: 10.1002/ar.20729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Icardo JM, Amelio D, Garofalo F, Colvee E, Cerra MC, Wong WP, Tota B, Ip YK. The structural characteristics of the heart ventricle of the African lungfish Protopterus dolloi: freshwater and aestivation. J Anat 2008; 213:106-19. [PMID: 18482286 PMCID: PMC2526117 DOI: 10.1111/j.1469-7580.2008.00901.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2008] [Indexed: 11/27/2022] Open
Abstract
This paper reports on the structure and ultrastructure of the ventricular myocardium of the African lungfish Protopterus dolloi in freshwater (FW), in aestivation (AE), and after the AE period. The myocardium shows a conventional myofibrillar structure. All the myocytes contain large intracytoplasmic spaces occupied by a pale material that could contain glycosaminoglycans and/or glycogen, which may be used as food and water reservoirs. In FW, the myocytes in the trabeculae associated with the free ventricular wall show structural signs of low transcriptional and metabolic activity (heterochromatin, mitochondria of the dense type). These signs are partially reversed during the AE period (euchromatin, mitochondria with a light matrix), with a return to the FW appearance after arousal. The myocytes in the septum show, in FW conditions, nuclear polymorphism (heterochromatin, euchromatin), and two types (colliquative and coagulative) of necrosis. In AE, all the septal myocytes show euchromatin, and the number of necrotic cells increases greatly. Cell necrosis appears to be related to the septal architecture. After arousal, the septal myocytes exhibit a heterochromatin pattern, the number of necrotic cells decreases, cell debris accumulates under the endocardium, and phagocytosis takes place. Despite being a morphologic continuum, the trabeculae associated with the free ventricular wall appear to constitute a different compartment from that formed by the trabeculae in the ventricular septum. Paradoxically, AE appears to trigger an increase in transcriptional and synthetic myocardial activities, especially at the level of the ventricular septum. This activity may be involved in mechanisms of autocrine/paracrine regulation. Aestivation cannot be regarded as the result of a general depression of all cellular and organic activities. Rather, it is a much more complex state in which the interplay between upregulation and downregulation of diverse cell activities appears to play a fundamental role.
Collapse
Affiliation(s)
- José M Icardo
- Department of Anatomy and Cell Biology, University of Cantabria, Santander, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Effects of hypoxia on the energy status and nitrogen metabolism of African lungfish during aestivation in a mucus cocoon. J Comp Physiol B 2008; 178:853-65. [PMID: 18504593 DOI: 10.1007/s00360-008-0273-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 04/25/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
We examined the energy status, nitrogen metabolism and hepatic glutamate dehydrogenase activity in the African lungfish Protopterus annectens during aestivation in normoxia (air) or hypoxia (2% O(2) in N(2)), with tissues sampled on day 3 (aerial exposure with preparation for aestivation), day 6 (entering into aestivation) or day 12 (undergoing aestivation). There was no accumulation of ammonia in tissues of fish exposed to normoxia or hypoxia throughout the 12-day period. Ammonia toxicity was avoided by increased urea synthesis and/or decreased endogenous N production (as ammonia), but the dependency on these two mechanisms differed between the normoxic and the hypoxic fish. The rate of urea synthesis increased 2.4-fold, with only a 12% decrease in the rate of N production in the normoxic fish. By contrast, the rate of N production in the hypoxic fish decreased by 58%, with no increase in the rate of urea synthesis. Using in vivo (31)P NMR spectroscopy, it was demonstrated that hypoxia led to significantly lower ATP concentration on day 12 and significantly lower creatine phosphate concentration on days 1, 6, 9 and 12 in the anterior region of the fish as compared with normoxia. Additionally, the hypoxic fish had lower creatine phosphate concentration in the middle region than the normoxic fish on day 9. Hence, lowering the dependency on increased urea synthesis to detoxify ammonia, which is energy intensive by reducing N production, would conserve cellular energy during aestivation in hypoxia. Indeed, there were significant increases in glutamate concentrations in tissues of fish aestivating in hypoxia, which indicates decreases in its degradation and/or transamination. Furthermore, there were significant increases in the hepatic glutamate dehydrogenase (GDH) amination activity, the amination/deamination ratio and the dependency of the amination activity on ADP activation in fish on days 6 and 12 in hypoxia, but similar changes occurred only in the normoxic fish on day 12. Therefore, our results indicate for the first time that P. annectens exhibited different adaptive responses during aestivation in normoxia and in hypoxia. They also indicate that reduction in nitrogen metabolism, and probably metabolic rate, did not occur simply in association with aestivation (in normoxia) but responded more effectively to a combined effect of aestivation and hypoxia.
Collapse
|