1
|
Bhatt M, Di Iacovo A, Romanazzi T, Roseti C, Cinquetti R, Bossi E. The "www" of Xenopus laevis Oocytes: The Why, When, What of Xenopus laevis Oocytes in Membrane Transporters Research. MEMBRANES 2022; 12:membranes12100927. [PMID: 36295686 PMCID: PMC9610376 DOI: 10.3390/membranes12100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 05/16/2023]
Abstract
After 50 years, the heterologous expression of proteins in Xenopus laevis oocytes is still essential in many research fields. New approaches and revised protocols, but also classical methods, such as the two-electrode voltage clamp, are applied in studying membrane transporters. New and old methods for investigating the activity and the expression of Solute Carriers (SLC) are reviewed, and the kinds of experiment that are still useful to perform with this kind of cell are reported. Xenopus laevis oocytes at the full-grown stage have a highly efficient biosynthetic apparatus that correctly targets functional proteins at the defined compartment. This small protein factory can produce, fold, and localize almost any kind of wild-type or recombinant protein; some tricks are required to obtain high expression and to verify the functionality. The methodologies examined here are mainly related to research in the field of membrane transporters. This work is certainly not exhaustive; it has been carried out to be helpful to researchers who want to quickly find suggestions and detailed indications when investigating the functionality and expression of the different members of the solute carrier families.
Collapse
Affiliation(s)
- Manan Bhatt
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Experimental and Translational Medicine, University of Insubria, Via Ottorino Rossi 9, 21100 Varese, Italy
| | - Angela Di Iacovo
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Experimental and Translational Medicine, University of Insubria, Via Ottorino Rossi 9, 21100 Varese, Italy
| | - Tiziana Romanazzi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Experimental and Translational Medicine, University of Insubria, Via Ottorino Rossi 9, 21100 Varese, Italy
| | - Cristina Roseti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Centre for Neuroscience—Via Manara 7, University of Insubria, 21052 Busto Arsizio, Italy
| | - Raffaella Cinquetti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Centre for Neuroscience—Via Manara 7, University of Insubria, 21052 Busto Arsizio, Italy
- Correspondence:
| |
Collapse
|
2
|
Pourcel L, Buron F, Arib G, Le Fourn V, Regamey A, Bodenmann I, Girod P, Mermod N. Influence of cytoskeleton organization on recombinant protein expression by CHO cells. Biotechnol Bioeng 2020; 117:1117-1126. [PMID: 31956990 PMCID: PMC7079171 DOI: 10.1002/bit.27277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/27/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
In this study, we assessed the importance of cytoskeleton organization in the mammalian cells used to produce therapeutic proteins. Two cytoskeletal genes, Actin alpha cardiac muscle 1 (ACTC1) and a guanosine triphosphate GTPase-activating protein (TAGAP), were found to be upregulated in highly productive therapeutic protein-expressing Chinese hamster ovary (CHO) cells selected by the deprivation of vitamin B5. We report here that the overexpression of the ACTC1 protein was able to improve significantly recombinant therapeutic production, as well as to decrease the levels of toxic lactate metabolic by-products. ACTC1 overexpression was accompanied by altered as well as decreased polymerized actin, which was associated with high protein production by CHO cell cultured in suspension. We suggest that the depolymerization of actin and the possible modulation of integrin signaling, as well as changes in basal metabolism, may be driving the increase of protein secretion by CHO cells.
Collapse
Affiliation(s)
- Lucille Pourcel
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| | - Flavien Buron
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| | | | | | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|