1
|
Pottier P, Kearney MR, Wu NC, Gunderson AR, Rej JE, Rivera-Villanueva AN, Pollo P, Burke S, Drobniak SM, Nakagawa S. Vulnerability of amphibians to global warming. Nature 2025; 639:954-961. [PMID: 40044855 PMCID: PMC11946914 DOI: 10.1038/s41586-025-08665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025]
Abstract
Amphibians are the most threatened vertebrates, yet their resilience to rising temperatures remains poorly understood1,2. This is primarily because knowledge of thermal tolerance is taxonomically and geographically biased3, compromising global climate vulnerability assessments. Here we used a phylogenetically informed data-imputation approach to predict the heat tolerance of 60% of amphibian species and assessed their vulnerability to daily temperature variations in thermal refugia. We found that 104 out of 5,203 species (2%) are currently exposed to overheating events in shaded terrestrial conditions. Despite accounting for heat-tolerance plasticity, a 4 °C global temperature increase would create a step change in impact severity, pushing 7.5% of species beyond their physiological limits. In the Southern Hemisphere, tropical species encounter disproportionally more overheating events, while non-tropical species are more susceptible in the Northern Hemisphere. These findings challenge evidence for a general latitudinal gradient in overheating risk4-6 and underscore the importance of considering climatic variability in vulnerability assessments. We provide conservative estimates assuming access to cool shaded microenvironments. Thus, the impacts of global warming will probably exceed our projections. Our microclimate-explicit analyses demonstrate that vegetation and water bodies are critical in buffering amphibians during heat waves. Immediate action is needed to preserve and manage these microhabitat features.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Alex R Gunderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Julie E Rej
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - A Nayelli Rivera-Villanueva
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango (CIIDIR), Instituto Politécnico Nacional, Durango, Mexico
- Laboratorio de Biología de la Conservación y Desarrollo Sostenible de la Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Mihaljevic JR, Páez DJ. Systematic shifts in the variation among host individuals must be considered in climate-disease theory. Proc Biol Sci 2025; 292:20242515. [PMID: 39904391 PMCID: PMC11793970 DOI: 10.1098/rspb.2024.2515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 02/06/2025] Open
Abstract
To make more informed predictions of host-pathogen interactions under climate change, studies have incorporated the thermal performance of host, vector and pathogen traits into disease models to quantify effects on average transmission rates. However, this body of work has omitted the fact that variation in susceptibility among individual hosts affects disease spread and long-term patterns of host population dynamics. Furthermore, and especially for ectothermic host species, variation in susceptibility is likely to be plastic, influenced by variables such as environmental temperature. For example, as host individuals respond idiosyncratically to temperature, this could affect the population-level variation in susceptibility, such that there may be predictable functional relationships between variation in susceptibility and temperature. Quantifying the relationship between temperature and among-host trait variation will therefore be critical for predicting how climate change and disease will interact to influence host-pathogen population dynamics. Here, we use a model to demonstrate how short-term effects of temperature on the distribution of host susceptibility can drive epidemic characteristics, fluctuations in host population sizes and probabilities of host extinction. Our results emphasize that more research is needed in disease ecology and climate biology to understand the mechanisms that shape individual trait variation, not just trait averages.
Collapse
Affiliation(s)
- Joseph R. Mihaljevic
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ86011, USA
| | - David J. Páez
- School of Aquatic and Fishery Sciences, The University of Washington, Seattle, WA98195, USA
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, Nordland, WA98358, USA
| |
Collapse
|
3
|
Claunch NM, Goodman CM, Kluever BM, Barve N, Guralnick RP, Romagosa CM. Commonly collected thermal performance data can inform species distributions in a data-limited invader. Sci Rep 2023; 13:15880. [PMID: 37741922 PMCID: PMC10517990 DOI: 10.1038/s41598-023-43128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Predicting potential distributions of species in new areas is challenging. Physiological data can improve interpretation of predicted distributions and can be used in directed distribution models. Nonnative species provide useful case studies. Panther chameleons (Furcifer pardalis) are native to Madagascar and have established populations in Florida, USA, but standard correlative distribution modeling predicts no suitable habitat for F. pardalis there. We evaluated commonly collected thermal traits- thermal performance, tolerance, and preference-of F. pardalis and the acclimatization potential of these traits during exposure to naturally-occurring environmental conditions in North Central Florida. Though we observed temperature-dependent thermal performance, chameleons maintained similar thermal limits, performance, and preferences across seasons, despite long-term exposure to cool temperatures. Using the physiological data collected, we developed distribution models that varied in restriction: time-dependent exposure near and below critical thermal minima, predicted activity windows, and predicted performance thresholds. Our application of commonly collected physiological data improved interpretations on potential distributions of F. pardalis, compared with correlative distribution modeling approaches that predicted no suitable area in Florida. These straightforward approaches can be applied to other species with existing physiological data or after brief experiments on a limited number of individuals, as demonstrated here.
Collapse
Affiliation(s)
- Natalie M Claunch
- USDA, APHIS, Wildlife Services, National Wildlife Research Center, Florida Field Station, Gainesville, FL, USA.
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
- Department of Natural History, Florida Museum of Natural History, Gainesville, FL, USA.
| | - Colin M Goodman
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Bryan M Kluever
- USDA, APHIS, Wildlife Services, National Wildlife Research Center, Florida Field Station, Gainesville, FL, USA
| | - Narayani Barve
- Department of Natural History, Florida Museum of Natural History, Gainesville, FL, USA
| | - Robert P Guralnick
- Department of Natural History, Florida Museum of Natural History, Gainesville, FL, USA
| | - Christina M Romagosa
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Abstract
Rising temperatures represent a significant threat to the survival of ectothermic animals. As such, upper thermal limits represent an important trait to assess the vulnerability of ectotherms to changing temperatures. For instance, one may use upper thermal limits to estimate current and future thermal safety margins (i.e., the proximity of upper thermal limits to experienced temperatures), use this trait together with other physiological traits in species distribution models, or investigate the plasticity and evolvability of these limits for buffering the impacts of changing temperatures. While datasets on thermal tolerance limits have been previously compiled, they sometimes report single estimates for a given species, do not present measures of data dispersion, and are biased towards certain parts of the globe. To overcome these limitations, we systematically searched the literature in seven languages to produce the most comprehensive dataset to date on amphibian upper thermal limits, spanning 3,095 estimates across 616 species. This resource will represent a useful tool to evaluate the vulnerability of amphibians, and ectotherms more generally, to changing temperatures.
Collapse
|
5
|
Kloepper LN, Young VKH. Foundations of form and function: A synthesis-based curriculum for introductory-level organismal biology. Ecol Evol 2021; 11:15458-15467. [PMID: 34824767 PMCID: PMC8601921 DOI: 10.1002/ece3.8315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
First-year majors organismal biology courses are frequently taught as survey courses that promote memorization rather than synthesis of biological concepts. To address the shortcomings of this approach, we redesigned the organismal portion of our introductory biology curriculum to create a "Foundations of Form and Function" course. Foundations of Form and Function introduces different organismal forms and focuses on the relationship between those forms and the execution of key physiological functions. Goals of our new course include the following: developing student recognition of common characteristics that unite living organisms as well as features that distinguish taxonomic groups, facilitating student understanding of how organisms accomplish similar functions through different forms, and reinforcing course themes with independent student research. In this paper, we describe course learning outcomes, organization, content, assessment, and laboratory activities. We also present student perspectives and outcomes of our course design based on data from four years of student evaluations. Finally, we explain how we modified our course to meet remote learning and social-distancing challenges presented by the COVID-19 pandemic in 2020 and 2021.
Collapse
|
6
|
Cooper RD, Shaffer HB. Allele-specific expression and gene regulation help explain transgressive thermal tolerance in non-native hybrids of the endangered California tiger salamander (Ambystoma californiense). Mol Ecol 2021; 30:987-1004. [PMID: 33338297 DOI: 10.1111/mec.15779] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 01/26/2023]
Abstract
Hybridization between native and non-native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an understanding of both physiological performance and the underlying mechanisms that drive transgressive hybrid traits. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and F1 hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 33% (4/12) able to tolerate temperatures greater than either parent. We then quantified the genomic response, measured at the RNA transcript level, of each salamander, to explore the mechanisms underlying thermal tolerance strategies. We found that CTS and BTS have strikingly different values and tissue-specific patterns of overall gene expression, with hybrids expressing intermediate values. F1 hybrids display abundant and variable degrees of allele-specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms between CTS and BTS. We found evidence that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting a link between ASE and expanded thermal tolerance that may contribute to the success of hybrid salamanders in California. Future climate change may further complicate management of CTS if hybrid salamanders are better equipped to deal with rising temperatures.
Collapse
Affiliation(s)
- Robert D Cooper
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Relationship between Behavioral Thermoregulation and Physiological Function in Larval Stream Salamanders. J HERPETOL 2016. [DOI: 10.1670/15-028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Exposure to solar radiation drives organismal vulnerability to climate: Evidence from an intertidal limpet. J Therm Biol 2016; 57:92-100. [DOI: 10.1016/j.jtherbio.2016.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 11/23/2022]
|
9
|
|
10
|
Dowd WW, King FA, Denny MW. Thermal variation, thermal extremes and the physiological performance of individuals. J Exp Biol 2015; 218:1956-67. [DOI: 10.1242/jeb.114926] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
In this review we consider how small-scale temporal and spatial variation in body temperature, and biochemical/physiological variation among individuals, affect the prediction of organisms' performance in nature. For ‘normal’ body temperatures – benign temperatures near the species' mean – thermal biology traditionally uses performance curves to describe how physiological capabilities vary with temperature. However, these curves, which are typically measured under static laboratory conditions, can yield incomplete or inaccurate predictions of how organisms respond to natural patterns of temperature variation. For example, scale transition theory predicts that, in a variable environment, peak average performance is lower and occurs at a lower mean temperature than the peak of statically measured performance. We also demonstrate that temporal variation in performance is minimized near this new ‘optimal’ temperature. These factors add complexity to predictions of the consequences of climate change. We then move beyond the performance curve approach to consider the effects of rare, extreme temperatures. A statistical procedure (the environmental bootstrap) allows for long-term simulations that capture the temporal pattern of extremes (a Poisson interval distribution), which is characterized by clusters of events interspersed with long intervals of benign conditions. The bootstrap can be combined with biophysical models to incorporate temporal, spatial and physiological variation into evolutionary models of thermal tolerance. We conclude with several challenges that must be overcome to more fully develop our understanding of thermal performance in the context of a changing climate by explicitly considering different forms of small-scale variation. These challenges highlight the need to empirically and rigorously test existing theories.
Collapse
Affiliation(s)
- W. Wesley Dowd
- Loyola Marymount University, Department of Biology, Los Angeles, CA 90045, USA
| | - Felicia A. King
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - Mark W. Denny
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|