1
|
Na ES, Lam DD, Yokosawa E, Adams JM, Olson DP, Low MJ. Decreased sensitivity to the anorectic effects of leptin in mice that lack a Pomc-specific neural enhancer. PLoS One 2021; 15:e0244793. [PMID: 33382813 PMCID: PMC7775064 DOI: 10.1371/journal.pone.0244793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Enhancer redundancy has been postulated to provide a buffer for gene expression against genetic and environmental perturbations. While work in Drosophila has identified functionally overlapping enhancers, work in mammalian models has been limited. Recently, we have identified two partially redundant enhancers, nPE1 and nPE2, that drive proopiomelanocortin gene expression in the hypothalamus. Here we demonstrate that deletion of nPE1 produces mild obesity while knockout of nPE2 has no discernible metabolic phenotypes. Additionally, we show that acute leptin administration has significant effects on nPE1 knockout mice, with food intake and body weight change significantly impacted by peripheral leptin treatment. nPE1 knockout mice became less responsive to leptin treatment over time as percent body weight change increased over 2 week exposure to peripheral leptin. Both Pomc and Agrp mRNA were not differentially affected by chronic leptin treatment however we did see a decrease in Pomc and Agrp mRNA in both nPE1 and nPE2 knockout calorie restricted mice as compared to calorie restricted PBS-treated WT mice. Collectively, these data suggest dynamic regulation of Pomc by nPE1 such that mice with nPE1 knockout become less responsive to the anorectic effects of leptin treatment over time. Our results also support our earlier findings in which nPE2 may only be critical in adult mice that lack nPE1, indicating that these neural enhancers work synergistically to influence metabolism.
Collapse
Affiliation(s)
- Elisa S. Na
- Department of Psychology & Philosophy Texas Woman’s University, Denton, Texas, United States of America
- * E-mail: (ESN); (DDL)
| | - Daniel D. Lam
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Neurogenetics, Neurological Clinic and Polyclinic, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- * E-mail: (ESN); (DDL)
| | - Eva Yokosawa
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jessica M. Adams
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David P. Olson
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Malcolm J. Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Ganjam GK, Bolte K, Matschke LA, Neitemeier S, Dolga AM, Höllerhage M, Höglinger GU, Adamczyk A, Decher N, Oertel WH, Culmsee C. Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons. Cell Death Dis 2019; 10:865. [PMID: 31727879 PMCID: PMC6856124 DOI: 10.1038/s41419-019-2091-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
Abstract
Evolving concepts on Parkinson’s disease (PD) pathology suggest that α-synuclein (aSYN) promote dopaminergic neuron dysfunction and death through accumulating in the mitochondria. However, the consequence of mitochondrial aSYN localisation on mitochondrial structure and bioenergetic functions in neuronal cells are poorly understood. Therefore, we investigated deleterious effects of mitochondria-targeted aSYN in differentiated human dopaminergic neurons in comparison with wild-type (WT) aSYN overexpression and corresponding EGFP (enhanced green fluorescent protein)-expressing controls. Mitochondria-targeted aSYN enhanced mitochondrial reactive oxygen species (ROS) formation, reduced ATP levels and showed severely disrupted structure and function of the dendritic neural network, preceding neuronal death. Transmission electron microscopy illustrated distorted cristae and many fragmented mitochondria in response to WT-aSYN overexpression, and a complete loss of cristae structure and massively swollen mitochondria in neurons expressing mitochondria-targeted aSYN. Further, the analysis of mitochondrial bioenergetics in differentiated dopaminergic neurons, expressing WT or mitochondria-targeted aSYN, elicited a pronounced impairment of mitochondrial respiration. In a pharmacological compound screening, we found that the pan-caspase inhibitors QVD and zVAD-FMK, and a specific caspase-1 inhibitor significantly prevented aSYN-induced cell death. In addition, the caspase inhibitor QVD preserved mitochondrial function and neuronal network activity in the human dopaminergic neurons overexpressing aSYN. Overall, our findings indicated therapeutic effects by caspase-1 inhibition despite aSYN-mediated alterations in mitochondrial morphology and function.
Collapse
Affiliation(s)
- Goutham K Ganjam
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany. .,Department of Neurology, University of Marburg, Marburg, Germany. .,Center for Mind, Brain and Behaviour - CMBB, Marburg, Germany.
| | - Kathrin Bolte
- Laboratory for Cell Biology I, Department of Biology, University of Marburg, Marburg, Germany
| | - Lina A Matschke
- Institute of Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | - Sandra Neitemeier
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany
| | - Amalia M Dolga
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | | | - Agata Adamczyk
- Department of Cellular Signaling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Niels Decher
- Institute of Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behaviour - CMBB, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behaviour - CMBB, Marburg, Germany.,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Cylindromatosis mediates neuronal cell death in vitro and in vivo. Cell Death Differ 2018; 25:1394-1407. [PMID: 29352268 PMCID: PMC6113218 DOI: 10.1038/s41418-017-0046-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/18/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023] Open
Abstract
The tumor-suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme and key regulator of cell proliferation and inflammation. A genome-wide siRNA screen linked CYLD to receptor interacting protein-1 (RIP1) kinase-mediated necroptosis; however, the exact mechanisms of CYLD-mediated cell death remain unknown. Therefore, we investigated the precise role of CYLD in models of neuronal cell death in vitro and evaluated whether CYLD deletion affects brain injury in vivo. In vitro, downregulation of CYLD increased RIP1 ubiquitination, prevented RIP1/RIP3 complex formation, and protected neuronal cells from oxidative death. Similar protective effects were achieved by siRNA silencing of RIP1 or RIP3 or by pharmacological inhibition of RIP1 with necrostatin-1. In vivo, CYLD knockout mice were protected from trauma-induced brain damage compared to wild-type littermate controls. These findings unravel the mechanisms of CYLD-mediated cell death signaling in damaged neurons in vitro and suggest a cell death-mediating role of CYLD in vivo.
Collapse
|