1
|
Morris CJ, Rolf MG, Starnes L, Villar IC, Pointon A, Kimko H, Di Veroli GY. Modelling hemodynamics regulation in rats and dogs to facilitate drugs safety risk assessment. Front Pharmacol 2024; 15:1402462. [PMID: 39534082 PMCID: PMC11555398 DOI: 10.3389/fphar.2024.1402462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/28/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmaceutical companies routinely screen compounds for hemodynamics related safety risk. In vitro secondary pharmacology is initially used to prioritize compounds while in vivo studies are later used to quantify and translate risk to humans. This strategy has shown limitations but could be improved via the incorporation of molecular findings in the animal-based toxicological risk assessment. The aim of this study is to develop a mathematical model for rat and dog species that can integrate secondary pharmacology modulation and therefore facilitate the overall pre-clinical safety translation assessment. Following an extensive literature review, we built two separate models recapitulating known regulation processes in dogs and rats. We describe the resulting models and show that they can reproduce a variety of interventions in both species. We also show that the models can incorporate the mechanisms of action of a pre-defined list of 50 pharmacological mechanisms whose modulation predict results consistent with known pharmacology. In conclusion, a mechanistic model of hemodynamics regulations in rat and dog species has been developed to support mechanism-based safety translation in drug discovery and development.
Collapse
Affiliation(s)
- Christopher J. Morris
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael G. Rolf
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Starnes
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Inmaculada C. Villar
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Giovanni Y. Di Veroli
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
2
|
Okada Y, Sato T, Islam ST, Ohke H, Saitoh M, Ishii H. Site-specific autonomic vasomotor responses and their interactions in rat gingiva. Microvasc Res 2024; 152:104646. [PMID: 38092222 DOI: 10.1016/j.mvr.2023.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Blood flow in the gingiva, comprising the interdental papilla as well as attached and marginal gingiva, is important for maintaining of gingival function and is modulated by risk factors such as stress that may lead to periodontal disease. Marked blood flow changes mediated by the autonomic (parasympathetic and sympathetic) nervous system may be essential for gingival hemodynamics. However, differences in autonomic vasomotor responses and their functional significance in different parts of the gingiva are unclear. We examined the differences in autonomic vasomotor responses and their interactions in the gingiva of anesthetized rats. Parasympathetic vasodilation evoked by the trigeminal (lingual nerve)-mediated reflex elicited frequency-dependent blood flow increases in gingivae, with the increases being greatest in the interdental papilla. Parasympathetic blood flow increases were significantly reduced by intravenous administration of the atropine and VIP antagonist. The blood flow increase evoked by acetylcholine administration was higher in the interdental papilla than in the attached gingiva, whereas that evoked by VIP agonist administration was greater in the attached gingiva than in the interdental papilla. Activation of the cervical sympathetic nerves decreased gingival blood flow and inhibited parasympathetically induced blood flow increases. Our results suggest that trigeminal-parasympathetic reflex vasodilation 1) is more involved in the regulation of blood flow in the interdental papilla than in the other parts of the gingiva, 2) is mediated by cholinergic (interdental papilla) and VIPergic systems (attached gingiva), and 3) is inhibited by excess sympathetic activity. These results suggest a role in the etiology of periodontal diseases during mental stress.
Collapse
Affiliation(s)
- Yunosuke Okada
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Syed Taufiqul Islam
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hanako Ohke
- Division of Dental Anesthesiology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Masato Saitoh
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
3
|
Powell K, Lin K, Tambo W, Saavedra AP, Sciubba D, Al Abed Y, Li C. Trigeminal nerve stimulation: a current state-of-the-art review. Bioelectron Med 2023; 9:30. [PMID: 38087375 PMCID: PMC10717521 DOI: 10.1186/s42234-023-00128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 09/26/2024] Open
Abstract
Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Emory University, Atlanta, GA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Daniel Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al Abed
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
4
|
Jin GY, Jin LL, Jin BX, Zheng J, He BJ, Li SJ. Neural control of cerebral blood flow: scientific basis of scalp acupuncture in treating brain diseases. Front Neurosci 2023; 17:1210537. [PMID: 37650106 PMCID: PMC10464620 DOI: 10.3389/fnins.2023.1210537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/03/2023] [Indexed: 09/01/2023] Open
Abstract
Scalp acupuncture (SA), as a modern acupuncture therapy in the treatment of brain diseases, especially for acute ischemic strokes, has accumulated a wealth of experience and tons of success cases, but the current hypothesized mechanisms of SA therapy still seem to lack significant scientific validity, which may not be conducive to its ultimate integration into mainstream medicine. This review explores a novel perspective about the mechanisms of SA in treating brain diseases based on its effects on cerebral blood flow (CBF). To date, abundant evidence has shown that CBF is significantly increased by stimulating specific SA points, areas or nerves innervating the scalp, which parallels the instant or long-term improvement of symptoms of brain diseases. Over time, the neural pathways that improve CBF by stimulating the trigeminal, the facial, and the cervical nerves have also been gradually revealed. In addition, the presence of the core SA points or areas frequently used for brain diseases can be rationally explained by the characteristics of nerve distribution, including nerve overlap or convergence in certain parts of the scalp. But such characteristics also suggest that the role of these SA points or areas is relatively specific and not due to a direct correspondence between the current hypothesized SA points, areas and the functional zones of the cerebral cortex. The above evidence chain indicates that the efficacy of SA in treating brain diseases, especially ischemic strokes, is mostly achieved by stimulating the scalp nerves, especially the trigeminal nerve to improve CBF. Of course, the mechanisms of SA in treating various brain diseases might be multifaceted. However, the authors believe that understanding the neural regulation of SA on CBF not only captures the main aspects of the mechanisms of SA therapy, but also facilitates the elucidation of other mechanisms, which may be of greater significance to further its clinical applications.
Collapse
Affiliation(s)
- Guan-Yuan Jin
- International Institute of Systems Medicine, Inc., Milwaukee, WI, United States
- Ace Acupuncture Clinic of Milwaukee, LLC, Milwaukee, WI, United States
| | - Louis Lei Jin
- The Woodlands Acupuncture and Herbal Clinic, The Woodlands, TX, United States
| | - Bonnie Xia Jin
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jin Zheng
- HCA Houston Healthcare Conroe, Conroe, TX, United States
| | - Belinda Jie He
- The Woodlands Acupuncture and Herbal Clinic, The Woodlands, TX, United States
| | - Shi-Jiang Li
- Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Bao C, Chen O, Sheng H, Zhang J, Luo Y, Hayes BW, Liang H, Liedtke W, Ji RR, Abraham SN. A mast cell-thermoregulatory neuron circuit axis regulates hypothermia in anaphylaxis. Sci Immunol 2023; 8:eadc9417. [PMID: 36930731 PMCID: PMC10331449 DOI: 10.1126/sciimmunol.adc9417] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023]
Abstract
IgE-mediated anaphylaxis is an acute life-threatening systemic reaction to allergens, including certain foods and venoms. Anaphylaxis is triggered when blood-borne allergens activate IgE-bound perivascular mast cells (MCs) throughout the body, causing an extensive systemic release of MC mediators. Through precipitating vasodilatation and vascular leakage, these mediators are believed to trigger a sharp drop in blood pressure in humans and in core body temperature in animals. We report that the IgE/MC-mediated drop in body temperature in mice associated with anaphylaxis also requires the body's thermoregulatory neural circuit. This circuit is activated when granule-borne chymase from MCs is deposited on proximal TRPV1+ sensory neurons and stimulates them via protease-activated receptor-1. This triggers the activation of the body's thermoregulatory neural network, which rapidly attenuates brown adipose tissue thermogenesis to cause hypothermia. Mice deficient in either chymase or TRPV1 exhibited limited IgE-mediated anaphylaxis, and, in wild-type mice, anaphylaxis could be recapitulated simply by systemically activating TRPV1+ sensory neurons. Thus, in addition to their well-known effects on the vasculature, MC products, especially chymase, promote IgE-mediated anaphylaxis by activating the thermoregulatory neural circuit.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey Zhang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yikai Luo
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Byron W. Hayes
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York NY 10010
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N. Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC 27710, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| |
Collapse
|
6
|
Suzuki T, Waki H, Imai K, Hisajima T. Electroacupuncture on the Ophthalmic Branch of the Trigeminal Nerve Affects Cerebral Blood Flow in the Frontopolar Cortex During Mental Arithmetic: A Randomized Crossover Trial. Med Acupunct 2023. [DOI: 10.1089/acu.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Takuya Suzuki
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| | - Hideaki Waki
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| | - Kenji Imai
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| | - Tatsuya Hisajima
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Differences in the regulatory mechanism of blood flow in the orofacial area mediated by neural and humoral systems. J Comp Physiol B 2023; 193:109-124. [PMID: 36436073 DOI: 10.1007/s00360-022-01470-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Marked blood flow (BF) changes mediated by the autonomic neural and humoral systems may be important for orofacial hemodynamics and functions. However, it remains questionable whether differences in the autonomic vasomotor responses mediated by neural and humoral systems exist in the orofacial area. This study examined whether there are differences in changes in the BF and vascular conductance (VC) between the masseter muscle and lower lip mediated by autonomic neural and humoral systems in urethane-anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve elicited BF increases in the masseter (mainly cholinergic) and lower lip (mainly non-cholinergic), accompanied by an increase in arterial blood pressure (ABP), while cervical sympathetic trunk stimulation consistently decreased BF at both sites. The lingual nerve stimulation induced a biphasic change in the VC in the masseter, consisting of an initial decrease and a successive increase. This decrease in VC was positively correlated with changes in ABP and diminished by guanethidine. Cervical vagus nerve stimulation also induced BF increases at both sites; the increases were greater in the masseter than in the lower lip. Adrenal nerve stimulation and isoproterenol administration induced BF increases in the masseter but not in the lower lip. These results indicate that cholinergic parasympathetic-mediated hemodynamics evoked by trigeminal somatosensory inputs are closely related to ABP changes. The sympathetic nervous system, including the sympathoadrenal system and visceral inputs, may be more involved in hemodynamics in the muscles than in epithelial tissues in the orofacial area.
Collapse
|
8
|
Mito K, Sato T, Ishikawa R, Ramadhani R, Okada Y, Hirohata Y, Saito T, Ishii H. Age-related decrease of cholinergic parasympathetic reflex vasodilation in the rat masseter muscle. Microvasc Res 2021; 138:104214. [PMID: 34217740 DOI: 10.1016/j.mvr.2021.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Skeletal muscle hemodynamics, including that in jaw muscles, is an important in their functions and is modulated by aging. Marked blood flow increases mediated by parasympathetic vasodilation may be important for blood flow in the masseter muscle (MBF); however, the relationship between parasympathetic vasodilation and aging is unclear. We examined the effect of aging on parasympathetic vasodilation evoked by trigeminal afferent inputs and their mechanisms by investigating the MBF during stimulation of the lingual nerve (LN) in young and old urethane-anesthetized and vago-sympathectomized rats. Electrical stimulation of the central cut end of the LN elicited intensity- and frequency-dependent increases in MBF in young rats, while these increases were significantly reduced in old rats. Increases in the MBF evoked by LN stimulation in the young rats were greatly reduced by hexamethonium and atropine administration. Increases in MBF in young rats were produced by exogenous acetylcholine in a dose-dependent manner, whereas acetylcholine did not influence the MBF in old rats. Significant levels of muscarinic acetylcholine receptor type 1 (MR1) and type 3 (MR3) mRNA were observed in the masseter muscle in young rats, but not in old rats. Our results indicate that cholinergic parasympathetic reflex vasodilation evoked by trigeminal afferent inputs to the masseter muscle is reduced by aging and that this reduction may be mediated by suppression of the expression of MR1 and MR3 in the masseter muscle with age.
Collapse
Affiliation(s)
- Kohei Mito
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Rina Ishikawa
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Ratna Ramadhani
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yunosuke Okada
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yuri Hirohata
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tetsuro Saito
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
9
|
Li C, White TG, Shah KA, Chaung W, Powell K, Wang P, Woo HH, Narayan RK. Percutaneous Trigeminal Nerve Stimulation Induces Cerebral Vasodilation in a Dose-Dependent Manner. Neurosurgery 2021; 88:E529-E536. [PMID: 33677599 DOI: 10.1093/neuros/nyab053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The trigeminal nerve directly innervates key vascular structures both centrally and peripherally. Centrally, it is known to innervate the brainstem and cavernous sinus, whereas peripherally the trigemino-cerebrovascular network innervates the majority of the cerebral vasculature. Upon stimulation, it permits direct modulation of cerebral blood flow (CBF), making the trigeminal nerve a promising target for the management of cerebral vasospasm. However, trigeminally mediated cerebral vasodilation has not been applied to the treatment of vasospasm. OBJECTIVE To determine the effect of percutaneous electrical stimulation of the infraorbital branch of the trigeminal nerve (pTNS) on the cerebral vasculature. METHODS In order to determine the stimulus-response function of pTNS on cerebral vasodilation, CBF, arterial blood pressure, cerebrovascular resistance, intracranial pressure, cerebral perfusion pressure, cerebrospinal fluid calcitonin gene-related peptide (CGRP) concentrations, and the diameter of cerebral vessels were measured in healthy and subarachnoid hemorrhage (SAH) rats. RESULTS The present study demonstrates, for the first time, that pTNS increases brain CGRP concentrations in a dose-dependent manner, thereby producing controllable cerebral vasodilation. This vasodilatory response appears to be independent of the pressor response induced by pTNS, as it is maintained even after transection of the spinal cord at the C5-C6 level and shown to be confined to the infraorbital nerve by administration of lidocaine or destroying it. Furthermore, such pTNS-induced vasodilatory response of cerebral vessels is retained after SAH-induced vasospasm. CONCLUSION Our study demonstrates that pTNS is a promising vasodilator and increases CBF, cerebral perfusion, and CGRP concentration both in normal and vasoconstrictive conditions.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Timothy G White
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Kevin A Shah
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Henry H Woo
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
10
|
White TG, Powell K, Shah KA, Woo HH, Narayan RK, Li C. Trigeminal Nerve Control of Cerebral Blood Flow: A Brief Review. Front Neurosci 2021; 15:649910. [PMID: 33927590 PMCID: PMC8076561 DOI: 10.3389/fnins.2021.649910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 01/13/2023] Open
Abstract
The trigeminal nerve, the fifth cranial nerve, is known to innervate much of the cerebral arterial vasculature and significantly contributes to the control of cerebrovascular tone in both healthy and diseased states. Previous studies have demonstrated that stimulation of the trigeminal nerve (TNS) increases cerebral blood flow (CBF) via antidromic, trigemino-parasympathetic, and other central pathways. Despite some previous reports on the role of the trigeminal nerve and its control of CBF, there are only a few studies that investigate the effects of TNS on disorders of cerebral perfusion (i.e., ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury). In this mini review, we present the current knowledge regarding the mechanisms of trigeminal nerve control of CBF, the anatomic underpinnings for targeted treatment, and potential clinical applications of TNS, with a focus on the treatment of impaired cerebral perfusion.
Collapse
Affiliation(s)
- Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Kevin A Shah
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Henry H Woo
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
11
|
Suzuki T, Waki H, Imai K, Hisajima T. Electroacupuncture of the Ophthalmic Branch of the Trigeminal Nerve: Effects on Prefrontal Cortex Blood Flow. Med Acupunct 2020; 32:143-149. [PMID: 32595821 DOI: 10.1089/acu.2019.1406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: The current authors observed enhanced cerebral blood flow (CBF) in the prefrontal cortex (PFC) in response to 100-Hz electroacupuncture (EA) stimulation of the ophthalmic branch of the trigeminal nerve. However, it is not yet clear if responsiveness to 100-Hz EA depends on stimulus intensity. This study examined the effects of stimulus strength on PFC CBF during 100-Hz EA of the ophthalmic branch of the trigeminal nerve. Materials and Methods: Twelve subjects underwent 3 acupuncture sessions: I, control, no stimulation; II, 0.1 mA EA; and III, 0.2 mA EA). Needles were inserted 1 cm lateral of the head median line; the anterior insertion point was on the front hairline and the posterior insertion point was ∼7 cm behind the hairline. Stimulation frequency was set to 100-Hz. PFC CBF was measured in terms of oxygenated, deoxygenated, and total hemoglobin (OxyHb, DeoxyHb, TotalHb, respectively), using 16-channel (Ch) near-infrared spectroscopy. Results: Stimulation of 0.2 mA was associated with significant elevation of OxyHb levels in the 0.1 mA condition in Chs 6, 10, and 12. Ch 2-6, 10, 12 signals were notably higher than in the control condition. Stimulation of 0.2 mA and 0.1 mA were associated with significant declines in DeoxyHb levels, compared to the control condition in Ch 4. Finally, 0.2 mA stimulation in Chs 12 and 13 was associated with significant elevation of TotalHb levels in the control condition. Conclusions: Using 0.2-mA stimulation, 100-Hz EA of the ophthalmic nerve enhances PFC CBF more strongly than 0.1-mA stimulation.
Collapse
Affiliation(s)
- Takuya Suzuki
- Graduate School of Health Sciences, Teikyo Heisei University, Toshima-ku, Tokyo, Japan
| | - Hideaki Waki
- Faculty of Health Care, Teikyo Heisei University, Toshima-ku, Tokyo, Japan.,Research Institute of Oriental Medicine, Toshima-ku, Tokyo, Japan
| | - Kenji Imai
- Faculty of Health Care, Teikyo Heisei University, Toshima-ku, Tokyo, Japan.,Research Institute of Oriental Medicine, Toshima-ku, Tokyo, Japan
| | - Tatsuya Hisajima
- Faculty of Health Care, Teikyo Heisei University, Toshima-ku, Tokyo, Japan.,Research Institute of Oriental Medicine, Toshima-ku, Tokyo, Japan
| |
Collapse
|
12
|
Ohke H, Sato T, Mito K, Terumitsu M, Ishii H. Effect of the parasympathetic vasodilation on temperature regulation via trigeminal afferents in the orofacial area. J Physiol Sci 2020; 70:22. [PMID: 32234014 PMCID: PMC7109144 DOI: 10.1186/s12576-020-00749-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/20/2020] [Indexed: 02/03/2023]
Abstract
The skin temperature (Tm) of the orofacial area influences orofacial functions and is related to the blood flow (BF). Marked increases in BF mediated by parasympathetic vasodilation may be important for orofacial Tm regulation. Therefore, we examined the relationship between parasympathetic reflex vasodilation and orofacial Tm in anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve (LN) elicited significant increases in BF and Tm in the lower lip. These increases were significantly reduced by hexamethonium, but not atropine. VIP agonist increased both BF and Tm in the lower lip. The activation of the superior cervical sympathetic trunk (CST) decreased BF and Tm in the lower lip; however, these decreases were significantly inhibited by LN stimulation. Our results suggest that parasympathetic vasodilation plays an important role in the maintaining the hemodynamics and Tm in the orofacial area, and that VIP may be involved in this response.
Collapse
Affiliation(s)
- Hanako Ohke
- Division of Dental Anesthesiology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Kohei Mito
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Makoto Terumitsu
- Division of Dental Anesthesiology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
13
|
Li C, Chiluwal A, Afridi A, Chaung W, Powell K, Yang WL, Wang P, Narayan RK. Trigeminal Nerve Stimulation: A Novel Method of Resuscitation for Hemorrhagic Shock. Crit Care Med 2019; 47:e478-e484. [PMID: 30889027 DOI: 10.1097/ccm.0000000000003735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine if trigeminal nerve stimulation can ameliorate the consequences of acute blood loss and improve survival after severe hemorrhagic shock. DESIGN Animal study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Severe hemorrhagic shock was induced in rats by withdrawing blood until the mean arterial blood pressure reached 27 ± 1 mm Hg for the first 5 minutes and then maintained at 27 ± 2 mm Hg for 30 minutes. The rats were randomly assigned to either control, vehicle, or trigeminal nerve stimulation treatment groups. The effects of trigeminal nerve stimulation on survival rate, autonomic nervous system activity, hemodynamics, brain perfusion, catecholamine release, and systemic inflammation after severe hemorrhagic shock in the absence of fluid resuscitation were analyzed. MEASUREMENTS AND MAIN RESULTS Trigeminal nerve stimulation significantly increased the short-term survival of rats following severe hemorrhagic shock in the absence of fluid resuscitation. The survival rate at 60 minutes was 90% in trigeminal nerve stimulation treatment group whereas 0% in control group (p < 0.001). Trigeminal nerve stimulation elicited strong synergistic coactivation of the sympathetic and parasympathetic nervous system as measured by heart rate variability. Without volume expansion with fluid resuscitation, trigeminal nerve stimulation significantly attenuated sympathetic hyperactivity paralleled by increase in parasympathetic tone, delayed hemodynamic decompensation, and improved brain perfusion following severe hemorrhagic shock. Furthermore, trigeminal nerve stimulation generated sympathetically mediated low-frequency oscillatory patterns of systemic blood pressure associated with an increased tolerance to central hypovolemia and increased levels of circulating norepinephrine levels. Trigeminal nerve stimulation also decreased systemic inflammation compared with the vehicle. CONCLUSIONS Trigeminal nerve stimulation was explored as a novel resuscitation strategy in an animal model of hemorrhagic shock. The results of this study showed that the stimulation of trigeminal nerve modulates both sympathetic and parasympathetic nervous system activity to activate an endogenous pressor response, improve cerebral perfusion, and decrease inflammation, thereby improving survival.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Amrit Chiluwal
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Adil Afridi
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Wayne Chaung
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Keren Powell
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Raj K Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| |
Collapse
|
14
|
Ishii H, Sato T. Interactions between β-adrenergic vasodilation and cervical sympathetic nerves are mediated by α 2-adrenoceptors in the rat masseter muscle. J Physiol Sci 2017; 67:699-709. [PMID: 27826897 PMCID: PMC5910521 DOI: 10.1007/s12576-016-0499-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/25/2016] [Indexed: 11/24/2022]
Abstract
Neural and humoral autonomic mechanisms may be important in the maintenance of blood flow in the masseter muscle (MBF). However, their interactions remain unclear. In this study, we examined interactions between neural and humoral regulation of MBF and investigated the mechanisms mediating these interactions in urethane-anesthetized rats. Stimulation of the adrenal nerve (AN) projecting to the adrenal medulla increased MBF, and this increase was mediated by β-adrenoceptors. Sectioning of the superior cervical sympathetic trunk (CST) significantly inhibited increases in MBF induced by AN stimulation during high activity in the CST, but not during low activity. AN stimulation with clonidine after CST sectioning induced a significant increased in MBF, however phenylephrine had no observable effect. Pretreatment with yohimbine or propranolol significantly inhibited the increase in the MBF. Our results suggest an interaction between β-adrenergic vasodilation evoked by circulating adrenaline and the cervical sympathetic nerves that is mediated by α2-adrenoceptors in the masseter muscle.
Collapse
Affiliation(s)
- Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| | - Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| |
Collapse
|
15
|
Chiluwal A, Narayan RK, Chaung W, Mehan N, Wang P, Bouton CE, Golanov EV, Li C. Neuroprotective Effects of Trigeminal Nerve Stimulation in Severe Traumatic Brain Injury. Sci Rep 2017; 7:6792. [PMID: 28754973 PMCID: PMC5533766 DOI: 10.1038/s41598-017-07219-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/23/2017] [Indexed: 12/25/2022] Open
Abstract
Following traumatic brain injury (TBI), ischemia and hypoxia play a major role in further worsening of the damage, a process referred to as 'secondary injury'. Protecting neurons from causative factors of secondary injury has been the guiding principle of modern TBI management. Stimulation of trigeminal nerve induces pressor response and improves cerebral blood flow (CBF) by activating the rostral ventrolateral medulla. Moreover, it causes cerebrovasodilation through the trigemino-cerebrovascular system and trigemino-parasympathetic reflex. These effects are capable of increasing cerebral perfusion, making trigeminal nerve stimulation (TNS) a promising strategy for TBI management. Here, we investigated the use of electrical TNS for improving CBF and brain oxygen tension (PbrO2), with the goal of decreasing secondary injury. Severe TBI was produced using controlled cortical impact (CCI) in a rat model, and TNS treatment was delivered for the first hour after CCI. In comparison to TBI group, TBI animals with TNS treatment demonstrated significantly increased systemic blood pressure, CBF and PbrO2 at the hyperacute phase of TBI. Furthermore, rats in TNS-treatment group showed significantly reduced brain edema, blood-brain barrier disruption, lesion volume, and brain cortical levels of TNF-α and IL-6. These data provide strong early evidence that TNS could be an effective neuroprotective strategy.
Collapse
Affiliation(s)
- Amrit Chiluwal
- Northwell Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Raj K Narayan
- Northwell Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Hempstead, NY, USA
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Neal Mehan
- Northwell Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Chad E Bouton
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Eugene V Golanov
- Department of Neurosurgery, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Chunyan Li
- Northwell Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Hempstead, NY, USA.
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
16
|
Site Specificity of Changes in Cortical Oxyhaemoglobin Concentration Induced by Water Immersion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28685451 DOI: 10.1007/978-3-319-55231-6_32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Our previous studies have shown that water immersion (WI) changes sensorimotor processing and cortical excitability in the sensorimotor regions of the brain. The present study examined the site specificity of the brain activation during WI using functional near infrared spectroscopy (fNIRS). Cortical oxyhaemoglobin (O2Hb) levels in the anterior and posterior parts of the supplementary motor area (pre-SMA and SMA), primary motor cortex (M1), primary somatosensory cortex (S1), and posterior parietal cortex (PPC) were recorded using fNIRS (OMM-3000; Shimadzu Co.) before, during, and after WI in nine healthy participants. The cortical O2Hb levels in SMA, M1, S1, and PPC significantly increased during the WI and increased gradually along with the filling of the WI tank. These changes were not seen in the pre-SMA. The results show that WI-induced increases in cortical O2Hb levels are at least somewhat site specific: there was little brain activation in response to somatosensory input in the pre-SMA, but robust activation in other areas.
Collapse
|
17
|
|
18
|
Sato T, Ishii H. Differences in control of parasympathetic vasodilation between submandibular and sublingual glands in the rat. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1432-8. [DOI: 10.1152/ajpregu.00306.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022]
Abstract
We examined blood flow in the submandibular gland (SMGBF) and sublingual gland (SLGBF) during electrical stimulation of the central cut end of the lingual nerve (LN) in the urethane-anesthetized rats using a laser speckle imaging flow meter. LN stimulation elicited intensity- and frequency-dependent SMGBF and SLGBF increases, and the magnitude of the SMGBF increase was higher than that of the SLGBF increase. The increase in both glands was significantly inhibited by intravenous administration of the autonomic cholinergic ganglion blocker hexamethonium. The antimuscarinic agent atropine markedly inhibited the SMGBF increase and partly inhibited the SLGBF increase. The atropine-resistant SLGBF increase was significantly inhibited by infusion of vasoactive intestinal peptide (VIP) receptor antagonist, although administration of VIP receptor antagonist alone had no effect. The recovery time to the basal blood flow level was shorter after LN stimulation than after administration of VIP. However, the recovery time after LN stimulation was significantly delayed by administration of atropine in a dose-dependent manner to the same level as after administration of VIP. Our results indicate that 1) LN stimulation elicits both a parasympathetic SMGBF increase mainly evoked by cholinergic fibers and a parasympathetic SLGBF increase evoked by cholinergic and noncholinergic fibers, and 2) VIP-ergic mechanisms are involved in the noncholinergic SLGBF increase and are activated when muscarinic mechanisms are deactivated.
Collapse
Affiliation(s)
- Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|