1
|
Constant T, Dobson FS, Giroud S, Habold C. Safe Periods and Safe Activities: Two Phenological Responses to Mortality. Ecol Evol 2025; 15:e70718. [PMID: 39901893 PMCID: PMC11788320 DOI: 10.1002/ece3.70718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025] Open
Abstract
Phenology is often thought to evolve mainly in response to food availability, yet recent studies have focused on predation. Predation may explain apparent mismatches between phenology and resources. One type of phenological response to predation involves shifting phenology from a period of high to low predation (i.e., a safe-period strategy). This strategy presupposes variation in predation over time due to environmental factors such as the number or diversity of predators. Predation varies not only over time but also among different activities like reproduction and dormancy. Alternative activities involve alternative behavioral or physiological states, and different locations where they take place influencing predation risk. Phenological responses to predation may involve shifting from a high risk activity to a safer one, resulting in increased survival (i.e., a «safe-activity» strategy). This strategy may theoretically evolve under environmental conditions associated with constant predation over time, but assumes variation in predation among activities. Safe-period and safe-activity strategies are not mutually exclusive, but assume different conditions for their evolution. On the basis of a literature review, our goal was to: (1) propose a classification of phenological responses to predation according to their evolutionary context, including mean population responses and interindividual differences (degree of synchrony); (2) to show how these two strategies may explain the lack of support for the idea that phenology responds primarily to food availability; and (3) to propose several approaches for testing the influence of predation on phenology. Our review highlights the relevance of studying phenology on multiple scales, thereby integrating several interspecific interactions (communities scales) and multiple activities (annual scale), and studying synchronicity and the pace-of-life (inter-individual scale).
Collapse
Affiliation(s)
- Théo Constant
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIENUniversité de StrasbourgStrasbourgFrance
| | - F. Stephen Dobson
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIENUniversité de StrasbourgStrasbourgFrance
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary Medicine ViennaViennaAustria
- Energetic Lab, Department of BiologyNorthern Michigan UniversityMarquetteMichiganUSA
| | - Caroline Habold
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIENUniversité de StrasbourgStrasbourgFrance
| |
Collapse
|
2
|
Lammert TL, Müller J, Ferreira SC, Teubenbacher U, Cornils JS, Stalder G, Painer-Gigler J, Ruf T, Bieber C, Pohlin F. No negative effects of intra-abdominal bio-logger implantation under general anaesthesia on spatial cognition learning in a hibernator the edible dormouse. PLoS One 2024; 19:e0307551. [PMID: 39197002 PMCID: PMC11356448 DOI: 10.1371/journal.pone.0307551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 08/30/2024] Open
Abstract
The effect of hibernation on cognitive capacities of individuals is not fully understood, as studies provide conflicting results. Most studies focus on behavioural observations without taking the physiological state of individuals to account. To mechanistically understand the effect of hibernation on the brain, physiological parameters need to be included. The implantation of bio-loggers can provide insights on i.e. body temperature without further manipulation of the animals. Surgeries and anaesthesia, however, can harm animals' health and cause cognitive dysfunction, potentially biasing data collected through bio-loggers. We investigated the effects of bio-logger implantation surgery on cognitive performance and learning, controlling for animal and study design characteristics. First, juvenile dormice successfully learned to solve a spatial cognition task using a vertical maze. Distance, transitions, velocity, and duration were measured as indicators for performance. After training, bio-loggers were implanted intra-abdominally under general anaesthesia. Animals were re-tested in the maze two weeks after. We found no effect of bio-logger implantation and surgery on performance. This study is the first to show spatial cognition learning in edible dormice and provides a full description of the peri-anaesthetic management and a protocol for bio-logger implantation surgery in dormice. Importantly, measures were taken to mitigate common anaesthetic complications that could lead to post-operative cognitive dysfunction and influence animal behaviour. By pairing physiological measurements through bio-logger implantation with behaviour and cognition measurements, future research will significantly advance the understanding on mechanisms of learning and behaviour.
Collapse
Affiliation(s)
- Tabea Loreen Lammert
- Department of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jan Müller
- Department of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Ursula Teubenbacher
- Department of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jessica Svea Cornils
- Department of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabrielle Stalder
- Department of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johanna Painer-Gigler
- Department of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Ruf
- Department of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Bieber
- Department of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Friederike Pohlin
- Department of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
3
|
Heldmaier G, Braulke L, Flick J, Ruf T. Silencing of ultradian rhythms and metabolic depression during spontaneous daily torpor in Djungarian hamsters. J Comp Physiol B 2024; 194:519-535. [PMID: 38972930 DOI: 10.1007/s00360-024-01573-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Ultradian rhythms of metabolism, body temperature and activity are attenuated or disappear completely during torpor in Djungarian hamsters, for all three ultradian periodicities (URsmall, URmedium and URlarge). URsmall and URmedium disappear during entrance into torpor, whereas URlarge disappear later or continue with a low amplitude. This suggests a tight functional link between torpor and the expression of ultradian rhythms, i.e. torpor is achieved by suppression of metabolic rate as well as silencing of ultradian rhythms. Spontaneous torpor is often initiated after an ultradian burst of activity and metabolic rate, beginning with a period of motionless rest and accompanied by a decrease of metabolic rate and body temperature. To extend previous findings on the potential role of the adrenergic system on torpor induction we analysed the influence of the ß3-adrenergic agonist Mirabegron on torpor in Djungarian hamsters, as compared to the influence of the ß-adrenergic antagonist Propranolol. Hamsters were implanted with 10 day release pellets of Mirabegron (0.06 mg day-1) or Propranolol (0.3 mg day-1). Mirabegron transiently supressed and accelerated ultradian rhythms but had no effect on torpor behaviour. Propranolol did not affect torpor behaviour nor the expression of ultradian rhythms with the dosage applied during this study.
Collapse
Affiliation(s)
- Gerhard Heldmaier
- Animal Physiology, Department of Biology, Marburg University, Karl-von-Frisch Str. 8, 35032, Marburg, Germany.
| | - Luzie Braulke
- Animal Physiology, Department of Biology, Marburg University, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Johanna Flick
- Animal Physiology, Department of Biology, Marburg University, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Thomas Ruf
- Institute of Wildlife Ecology, Veterinary University, Vienna, Austria
| |
Collapse
|
4
|
Constant T, Dobson FS, Habold C, Giroud S. Evolutionary trade-offs in dormancy phenology. eLife 2024; 12:RP89644. [PMID: 38669069 PMCID: PMC11052570 DOI: 10.7554/elife.89644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the 'life-history' hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.
Collapse
Affiliation(s)
- Théo Constant
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de StrasbourgStrasbourgFrance
| | - F Stephen Dobson
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de StrasbourgStrasbourgFrance
- Department of Biological Sciences, Auburn UniversityAuburnUnited States
| | - Caroline Habold
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de StrasbourgStrasbourgFrance
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine ViennaViennaAustria
- Energetic Lab, Department of Biology, Northern Michigan UniversityMarquetteUnited States
| |
Collapse
|
5
|
Goh G, Vesterdorf K, Fuller A, Blache D, Maloney SK. Optimal sampling interval for characterisation of the circadian rhythm of body temperature in homeothermic animals using periodogram and cosinor analysis. Ecol Evol 2024; 14:e11243. [PMID: 38601852 PMCID: PMC11004550 DOI: 10.1002/ece3.11243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Core body temperature (T c) is a critical aspect of homeostasis in birds and mammals and is increasingly used as a biomarker of the fitness of an animal to its environment. Periodogram and cosinor analysis can be used to estimate the characteristics of the circadian rhythm of T c from data obtained on loggers that have limited memory capacity and battery life. The sampling interval can be manipulated to maximise the recording period, but the impact of sampling interval on the output of periodogram or cosinor analysis is unknown. Some basic guidelines are available from signal analysis theory, but those guidelines have never been tested on T c data. We obtained data at 1-, 5- or 10-min intervals from nine avian or mammalian species, and re-sampled those data to simulate logging at up to 240-min intervals. The period of the rhythm was first analysed using the Lomb-Scargle periodogram, and the mesor, amplitude, acrophase and adjusted coefficient of determination (R 2) from the original and the re-sampled data were obtained using cosinor analysis. Sampling intervals longer than 60 min did not affect the average mesor, amplitude, acrophase or adjusted R 2, but did impact the estimation of the period of the rhythm. In most species, the period was not detectable when intervals longer than 120 min were used. In all individual profiles, a 30-min sampling interval modified the values of the mesor and amplitude by less than 0.1°C, and the adjusted R 2 by less than 0.1. At a 30-min interval, the acrophase was accurate to within 15 min for all species except mice. The adjusted R 2 increased as sampling frequency decreased. In most cases, a 30-min sampling interval provides a reliable estimate of the circadian T c rhythm using periodogram and cosinor analysis. Our findings will help biologists to select sampling intervals to fit their research goals.
Collapse
Affiliation(s)
- Grace Goh
- School of Human SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Kristine Vesterdorf
- School of Human SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Dominique Blache
- School of Agriculture and EnvironmentThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Shane K. Maloney
- School of Human SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Brain Function Research Group, School of Physiology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
6
|
Nowack J, Stawski C, Geiser F, Levesque DL. Rare and Opportunistic Use of Torpor in Mammals-An Echo from the Past? Integr Comp Biol 2023; 63:1049-1059. [PMID: 37328423 PMCID: PMC10714912 DOI: 10.1093/icb/icad067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Torpor was traditionally seen as a winter survival mechanism employed by animals living in cold and highly seasonal habitats. Although we now know that torpor is also used by tropical and subtropical species, and in response to a variety of triggers, torpor is still largely viewed as a highly controlled, seasonal mechanism shown by Northern hemisphere species. To scrutinize this view, we report data from a macroanalysis in which we characterized the type and seasonality of torpor use from mammal species currently known to use torpor. Our findings suggest that predictable, seasonal torpor patterns reported for Northern temperate and polar species are highly derived forms of torpor expression, whereas the more opportunistic and variable forms of torpor that we see in tropical and subtropical species are likely closer to the patterns expressed by ancestral mammals. Our data emphasize that the torpor patterns observed in the tropics and subtropics should be considered the norm and not the exception.
Collapse
Affiliation(s)
- Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Clare Stawski
- School of Science, Technology and Engineering, University of the Sunshine Coast (USC), Maroochydore DC, QLD 4558, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | | |
Collapse
|
7
|
Galindo-Lalana C, Hoelzl F, Zahn S, Habold C, Cornils JS, Giroud S, Smith S. Seasonal variation in telomerase activity and telomere dynamics in a hibernating rodent, the garden dormouse ( Eliomys quercinus). Front Physiol 2023; 14:1298505. [PMID: 38074328 PMCID: PMC10698472 DOI: 10.3389/fphys.2023.1298505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 07/04/2024] Open
Abstract
Telomere dynamics in hibernating species are known to reflect seasonal changes in somatic maintenance. Throughout hibernation, the periodic states of rewarming, known as inter-bout euthermia or arousals, are associated with high metabolic costs including shortening of telomeres. In the active season, if high energetic resources are available, telomere length can be restored in preparation for the upcoming winter. The mechanism for telomere elongation has not been clearly demonstrated, although the action of the ribonucleoprotein complex, telomerase, has been implicated in many species. Here we tested for levels of telomerase activity in the garden dormouse (Eliomys quercinus) at different seasonal time points throughout the year and across ages from liver tissues of male juveniles to adults. We found that telomerase is active at high levels across seasons (during torpor and inter-bout euthermia, plus in the active season) but that there was a substantial decrease in activity in the month prior to hibernation. Telomerase levels were consistent across age groups and were independent of feeding regime and time of birth (early or late born). The changes in activity levels that we detected were broadly associated with changes in telomere lengths measured in the same tissues. We hypothesise that i) telomerase is the mechanism used by garden dormice for maintenance of telomeres and that ii) activity is kept at high levels throughout the year until pre-hibernation when resources are diverted to increasing fat reserves for overwintering. We found no evidence for a decrease in telomerase activity with age or a final increase in telomere length which has been detected in other hibernating rodents.
Collapse
Affiliation(s)
- Carlos Galindo-Lalana
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Franz Hoelzl
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Sandrine Zahn
- University of Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Jessica S. Cornils
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Energetics Lab, Department of Biology, Northern Michigan University, Marquette, MI, United States
| | - Steve Smith
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
8
|
Geiser F, Ruf T. Long-term survival, temperature, and torpor patterns. Sci Rep 2023; 13:6673. [PMID: 37095170 PMCID: PMC10126141 DOI: 10.1038/s41598-023-33646-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Mammalian and avian torpor is highly effective in reducing energy expenditure. However, the extent of energy savings achieved and thus long-term survival appear to differ between species capable of multiday hibernation and species restricted to daily heterothermy, which could, however, be due to thermal effects. We tested how long-term survival on stored body fat (i.e. time to lean body mass), crucial for overcoming adverse periods, is related to the pattern of torpor expressed under different ambient temperatures (Ta: 7 °C typical of hibernation, 15 and 22 °C typical of daily torpor) in the small marsupial hibernator the pygmy-possum (Cercartetus nanus). Possums expressed torpor at all Tas and survived without food for 310 days on average at Ta 7 °C, 195 days at Ta 15 °C, and 127 days at Ta 22 °C. At Ta 7 and 15 °C, torpor bout duration (TBD) increased from < 1-3 to ~ 5-16 days over 2 months, whereas at Ta 22 °C, TBD remained at < 1 to ~ 2 days. At all Tas daily energy use was substantially lower and TBD and survival times of possums much longer (3-12 months) than in daily heterotherms (~ 10 days). Such pronounced differences in torpor patterns and survival times even under similar thermal conditions provide strong support for the concept that torpor in hibernators and daily heterotherms are physiologically distinct and have evolved for different ecological purposes.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, 2351, Australia
| | - Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160, Vienna, Austria.
| |
Collapse
|
9
|
Energy expenditure and body composition in a hibernator, the alpine marmot. J Comp Physiol B 2023; 193:135-143. [PMID: 36335482 PMCID: PMC9852207 DOI: 10.1007/s00360-022-01466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Visceral organs and tissues of 89 free-living alpine marmots (Marmota marmota) shot during a population control program in Switzerland, were collected. Between emergence from hibernation in April to July, the gastrointestinal tract (stomach to colon) gained 51% of mass and the liver mass increased by 24%. At the same time, the basal metabolic rate (BMR), determined with a portable oxygen analyzer, increased by 18%. The organ masses of the digestive system (stomach, small intestine, caecum, large intestine) were all significantly correlated with BMR. Interestingly, the mass of abdominal white adipose tissue (WAT) and of the remaining carcass (mainly skin and bones) were also significantly correlated with BMR. These results indicate that the gastrointestinal tract and organs involved in digestive function are metabolically expensive. They also show that it is costly to maintain even tissues with low metabolic rate such as WAT, especially if they are large. Heart and kidneys and especially brain and lungs did not explain a large proportion of the variance in BMR. Marmots increased the uptake of fat prior to hibernation, both by selective feeding and enhanced gastrointestinal capacity. Large fat reserves enable marmots to hibernate without food intake and to reproduce in spring, but at the cost of an elevated BMR. We predict that climate changes that disturb energy accumulation in summer, increase energy expenditure in winter, or delay the emergence from hibernation in spring, such as the occurrence of storms with increasing frequency, will increase mortality in alpine marmots.
Collapse
|
10
|
Pronounced differences in heart rate and metabolism distinguish daily torpor and short-term hibernation in two bat species. Sci Rep 2022; 12:21721. [PMID: 36522368 PMCID: PMC9755216 DOI: 10.1038/s41598-022-25590-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Torpor, and its differential expression, is essential to the survival of many mammals and birds. Physiological characteristics of torpor appear to vary between those species that express strict daily heterothermy and those capable of multiday hibernation, but comparisons are complicated by the temperature-dependence of variables. Previous reviews have compared these different torpor strategies by measuring the depth and duration of torpor in multiple species. However, direct comparison of multiple physiological parameters under similar thermal conditions are lacking. Here, we quantified three physiological variables; body temperature, metabolic rate (MR) and heart rate (HR) of two small heterothermic bats (daily heterotherm Syconycteris australis, and hibernator Nyctophilus gouldi) under comparable thermal conditions and torpor bout durations. When normothermic and resting both MR and HR were similar for the two species. However, during torpor the minimum HR was more than fivefold higher, and minimum MR was 6.5-fold higher for the daily heterotherm than for the hibernator at the same subcutaneous Tb (16 ± 0.5 °C). The data show that the degree of heterothermy defined using Tb is not necessarily a precise proxy for physiological capacity during torpor in these bats and is unlikely to reveal accurate energy budgets. Our study provides evidence supporting a distinction between daily torpor in a daily heterotherm and short term torpor in a hibernator, at least within the Chiroptera with regard to these physiological variables. This exists even when individuals display the same degree of Tb reduction, which has clear implications for the modelling of their energy expenditure.
Collapse
|
11
|
Pađen L, Alves SP, Bessa RJB, Almeida AM, Bujanić M, Konjević D. Fatty Acid Composition of M. Biceps Femoris of Edible Dormouse ( Glis glis L.). Animals (Basel) 2022; 12:ani12233284. [PMID: 36496805 PMCID: PMC9735602 DOI: 10.3390/ani12233284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
This study aimed to investigate the fatty acid (FA) composition of edible dormouse m. biceps femoris in both sexes. More than 20 FA were identified in the muscle, with the 18:1cis-9 (oleic acid) being the most abundant in both sexes, comprising more than 50% of total FA in muscle. The most dominated FA were monounsaturated (MUFA), followed by saturated FA (SFA) and polyunsaturated FA (PUFA), reaching 54.8%, 25.43% and 19.8% of total FA, respectively. Sums of PUFA and n-3 PUFA tended (p > 0.05) to be higher in males than in females. There were no significant differences between sexes on the FA composition. Nevertheless, the 18:2n-6 tended to differ between sexes (p = 0.063). Several long-chain PUFA (LC-PUFA) were detected in dormouse muscle, with the 20:4 n-6 (arachidonic acid, AA) and the 22:6 n-3 (docosahexaenoic acid, DHA) being the most abundant in both sexes. The relatively high stearoyl-CoA desaturase (SCD) indexes and the large concentration of 18:1cis-9 in dormouse muscle tissues might point to a low mobilization of the SCD products. Furthermore, finding the unusual FA 20:3 ∆5,∆11,∆14, suggests feeding on leaf and wood lipids of Coniferophytes. We demonstrated sexual size monomorphism in edible dormouse. The literature regarding the composition of dormouse meat is scarce and no studies reported the FA composition of muscle, thus, this work can contribute to increasing the knowledge on edible dormouse physiology and nutritional traits.
Collapse
Affiliation(s)
- Lana Pađen
- Department of Physiology and Radiobiology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-994687333
| | - Susana P. Alves
- CIISA/FMV–Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Rui J. B. Bessa
- CIISA/FMV–Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André M. Almeida
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Miljenko Bujanić
- Department of Veterinary Economics and Epidemiology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dean Konjević
- Department of Veterinary Economics and Epidemiology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Ruf T, Bieber C. Why hibernate? Predator avoidance in the edible dormouse. MAMMAL RES 2022; 68:1-11. [PMID: 36624745 PMCID: PMC9816287 DOI: 10.1007/s13364-022-00652-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
We address the question of ultimate selective advantages of hibernation. Biologists generally seem to accept the notion that multiday torpor is primarily a response to adverse environmental conditions, namely cold climate and low food abundance. We closely examine hibernation, and its summer equivalent estivation, in the edible dormouse, Glis glis. We conclude that in this species, hibernation is not primarily driven by poor conditions. Dormice enter torpor with fat reserves in years that are unfavourable for reproduction but provide ample food supply for animals to sustain themselves and even gain body energy reserves. While staying in hibernacula below ground, hibernators have much higher chances of survival than during the active season. We think that dormice enter prolonged torpor predominantly to avoid predation, mainly nocturnal owls. Because estivation in summer is immediately followed by hibernation, this strategy requires a good body condition in terms of fat reserves. As dormice age, they encounter fewer occasions to reproduce when calorie-rich seeds are available late in the year, and phase advance the hibernation season. By early emergence from hibernation, the best territories can be occupied and the number of mates maximised. However, this advantage comes at the cost of increased predation pressure that is maximal in spring. We argue the predator avoidance is generally one of the primary reasons for hibernation, as increased perceived predation pressure leads to an enhanced torpor use. The edible dormouse may be just an example where this behaviour becomes most obvious, on the population level and across large areas.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
13
|
Ruf T, Giroud S, Geiser F. Hypothesis and Theory: A Two-Process Model of Torpor-Arousal Regulation in Hibernators. Front Physiol 2022; 13:901270. [PMID: 35812322 PMCID: PMC9266152 DOI: 10.3389/fphys.2022.901270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hibernating mammals drastically lower their metabolic rate (MR) and body temperature (Tb) for up to several weeks, but regularly rewarm and stay euthermic for brief periods. It has been hypothesized that the necessity for rewarming is due to the accumulation or depletion of metabolites, or the accrual of cellular damage that can be eliminated only in the euthermic state. Recent evidence for significant inverse relationships between the duration of torpor bouts (TBD) and MR in torpor strongly supports this hypothesis. We developed a new mathematical model that simulates hibernation patterns. The model involves an hourglass process H (Hibernation) representing the depletion/accumulation of a crucial enzyme/metabolite, and a threshold process Hthr. Arousal, modelled as a logistic process, is initiated once the exponentially declining process H reaches Hthr. We show that this model can predict several phenomena observed in hibernating mammals, namely the linear relationship between TMR and TBD, effects of ambient temperature on TBD, the modulation of torpor depth and duration within the hibernation season, (if process Hthr undergoes seasonal changes). The model does not need but allows for circadian cycles in the threshold T, which lead to arousals occurring predominantly at certain circadian phases, another phenomenon that has been observed in certain hibernators. It does not however, require circadian rhythms in Tb or MR during torpor. We argue that a two-process regulation of torpor-arousal cycles has several adaptive advantages, such as an easy adjustment of TBD to environmental conditions as well as to energy reserves and, for species that continue to forage, entrainment to the light-dark cycle.
Collapse
Affiliation(s)
- Thomas Ruf
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
- *Correspondence: Thomas Ruf,
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
14
|
Alston JM, Dillon ME, Keinath DA, Abernethy IM, Goheen JR. Daily torpor reduces the energetic consequences of microhabitat selection for a widespread bat. Ecology 2022; 103:e3677. [PMID: 35262926 PMCID: PMC9286574 DOI: 10.1002/ecy.3677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
Homeothermy requires increased metabolic rates as temperatures decline below the thermoneutral zone, so homeotherms typically select microhabitats within or near their thermoneutral zones during periods of inactivity. However, many mammals and birds are heterotherms that relax internal controls on body temperature and go into torpor when maintaining a high, stable body temperature, which is energetically costly. Such heterotherms should be less tied to microhabitats near their thermoneutral zones and, because heterotherms spend more time in torpor and expend less energy at colder temperatures, heterotherms may even select microhabitats in which temperatures are well below their thermoneutral zones. We studied how temperature and daily torpor influence the selection of microhabitats (i.e., diurnal roosts) by a heterothermic bat (Myotis thysanodes). We (1) quantified the relationship between ambient temperature and daily duration of torpor, (2) simulated daily energy expenditure over a range of microhabitat temperatures, and (3) quantified the influence of microhabitat temperature on microhabitat selection. In addition, warm microhabitats substantially reduced the energy expenditure of simulated homeothermic bats, and heterothermic bats modulated their use of daily torpor to maintain a constant level of energy expenditure across microhabitats of different temperatures. Daily torpor expanded the range of energetically economical microhabitats, such that microhabitat selection was independent of microhabitat temperature. Our work adds to a growing literature documenting the functions of torpor beyond its historical conceptualization as a last-resort measure to save energy during periods of extended or acute energetic stress.
Collapse
Affiliation(s)
- Jesse M. Alston
- Program in Ecology, Department of Zoology and PhysiologyUniversity of WyomingLaramieWyomingUSA
- Wyoming Natural Diversity DatabaseUniversity of WyomingLaramieWyomingUSA
- Center for Advanced Systems Understanding (CASUS)GörlitzGermany
| | - Michael E. Dillon
- Program in Ecology, Department of Zoology and PhysiologyUniversity of WyomingLaramieWyomingUSA
| | - Douglas A. Keinath
- Wyoming Ecological Services Field OfficeUnited States Fish and Wildlife ServiceCheyenneWyomingUSA
| | - Ian M. Abernethy
- Wyoming Natural Diversity DatabaseUniversity of WyomingLaramieWyomingUSA
| | - Jacob R. Goheen
- Program in Ecology, Department of Zoology and PhysiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
15
|
Ruf T, Gasch K, Stalder G, Gerritsmann H, Giroud S. An hourglass mechanism controls torpor bout length in hibernating garden dormice. J Exp Biol 2021; 224:jeb243456. [PMID: 34762135 PMCID: PMC8714077 DOI: 10.1242/jeb.243456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
Hibernating mammals drastically lower their rate of oxygen consumption and body temperature (Tb) for several weeks, but regularly rewarm and stay euthermic for brief periods (<30 h). It has been hypothesized that these periodic arousals are driven by the development of a metabolic imbalance during torpor; that is, the accumulation or the depletion of metabolites or the accrual of cellular damage that can be eliminated only in the euthermic state. We obtained oxygen consumption (as a proxy of metabolic rate) and Tb at 7 min intervals over entire torpor-arousal cycles in the garden dormouse (Eliomys quercinus). Torpor bout duration was highly dependent on mean oxygen consumption during the torpor bout. Oxygen consumption during torpor, in turn, was elevated by Tb, which fluctuated only slightly in dormice kept at ∼3-8°C. This corresponds to a well-known effect of higher Tb on shortening torpor bout lengths in hibernators. Arousal duration was independent from prior torpor length, but arousal mean oxygen consumption increased with prior torpor Tb. These results, particularly the effect of torpor oxygen consumption on torpor bout length, point to an hourglass mechanism of torpor control, i.e. the correction of a metabolic imbalance during arousal. This conclusion is in line with previous comparative studies providing evidence for significant interspecific inverse relationships between the duration of torpor bouts and metabolism in torpor. Thus, a simple hourglass mechanism is sufficient to explain torpor/arousal cycles, without the need to involve non-temperature-compensated circadian rhythms.
Collapse
|
16
|
Goldberg AR, Conway CJ. Hibernation behavior of a federally threatened ground squirrel: climate change and habitat selection implications. J Mammal 2021. [DOI: 10.1093/jmammal/gyab021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Hibernation is an adaptation to survive periods of stress, from food limitation or harsh thermal conditions. A key question in contemporary ecology is whether rare, range-restricted species can change their behavior in response to climate change (i.e., through behavioral plasticity). The northern Idaho ground squirrel, Urocitellus brunneus (A. H. Howell, 1928), is a federally threatened species that hibernates for approximately 8 months per year within the bounds of its small range in central Idaho, USA. Changes in temperature, snow accumulation, and summer precipitation, all brought about as a result of climate change, may reduce survival or fecundity of northern Idaho ground squirrels if they cannot adapt to these climate changes. Hibernating species can respond to climate-change-induced thermal challenges in two ways: change their hibernation physiology and behavior (i.e., emergence date or number of torpor bouts) or alter their environment (i.e., change hibernacula depth or location). We explored a suite of intrinsic and extrinsic factors to document the extent to which they influenced hibernation behavior of northern Idaho ground squirrels. Emergence date was positively associated with snowpack and negatively associated with mean winter temperature. Mean minimum skin temperature was negatively associated with canopy closure and slope of a squirrel’s hibernaculum. Duration of the heterothermal period, number of euthermic bouts, and total time spent euthermic were positively associated with body mass. Immergence date and duration of the longest torpor bout were negatively associated with body mass. Warmer temperatures and less snow accumulation in the winter—caused by climate change—likely will cause altered emergence dates. Our results suggest that any future climate-induced changes in snowfall, ambient temperature, food availability, or habitat likely will impact survival of this rare ground squirrel, because such changes will cause changes in hibernation behavior, percent mass loss during hibernation, and duration of the active season when small mammals are more susceptible to predation.
Collapse
Affiliation(s)
- Amanda R Goldberg
- Idaho Cooperative Fish and Wildlife Research Unit, Department of Fish & Wildlife Sciences, University of Idaho, 875 Perimeter Drive, MS 1141, Moscow, ID 83844, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, 875 Perimeter Drive, MS 1141, Moscow, ID 83844, USA
| |
Collapse
|
17
|
Pretzlaff I, Radchuk V, Turner JM, Dausmann KH. Flexibility in thermal physiology and behaviour allows body mass maintenance in hibernating hazel dormice. J Zool (1987) 2021. [DOI: 10.1111/jzo.12862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- I. Pretzlaff
- Institute for Zoology University of Hamburg Hamburg Germany
| | - V. Radchuk
- Department of Ecological Dynamics Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin Germany
| | - J. M. Turner
- Institute for Land, Water and Society Charles Sturt University Albury NSW Australia
| | - K. H. Dausmann
- Institute for Zoology University of Hamburg Hamburg Germany
| |
Collapse
|
18
|
Oro D, Freixas L. Flickering body temperature anticipates criticality in hibernation dynamics. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201571. [PMID: 33614089 PMCID: PMC7890501 DOI: 10.1098/rsos.201571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 05/25/2023]
Abstract
Hibernation has been selected for increasing survival in harsh climatic environments. Seasonal variability in temperature may push the body temperatures of hibernating animals across boundaries of alternative states between euthermic temperature and torpor temperature, typical of either hibernation or summer dormancy. Nowadays, wearable electronics present a promising avenue to assess the occurrence of criticality in physiological systems, such as body temperature fluctuating between attractors of activity and hibernation. For this purpose, we deployed temperature loggers on two hibernating edible dormice for an entire year and under Mediterranean climate conditions. Highly stochastic body temperatures with sudden switches over time allowed us to assess the reliability of statistical leading indicators to anticipate tipping points when approaching a critical transition. Hibernation dynamics showed flickering, a phenomenon occurring when a system rapidly moves back and forth between two alternative attractors preceding the upcoming major regime shift. Flickering of body temperature increased when the system approached bifurcations, which were also anticipated by several metric- and model-based statistical indicators. Nevertheless, some indicators did not show a pattern in their response, which suggests that their performance varies with the dynamics of the biological system studied. Gradual changes in air temperature drove transient between states of hibernation and activity, and also drove hysteresis. For hibernating animals, hysteresis may increase resilience when ending hibernation earlier than the optimal time, which may occur in regions where temperatures are sharply rising, especially during winter. Temporal changes in early indicators of critical transitions in hibernation dynamics may help to understand the effects of climate on evolutionary life histories and the plasticity of hibernating organisms to cope with shortened hibernation due to global warming.
Collapse
Affiliation(s)
- Daniel Oro
- Theoretical and Computational Ecology Laboratory, CEAB Center for Advanced Studies (CSIC), Acces Cala Sant Francesc 14, 17300 Blanes, Spain
| | - Lídia Freixas
- Granollers Natural Sciences Museum, Francesc Macià 51, 08402 Granollers, Spain
| |
Collapse
|
19
|
Wilsterman K, Ballinger MA, Williams CM. A unifying, eco‐physiological framework for animal dormancy. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathryn Wilsterman
- Biological Sciences University of Montana Missoula MT USA
- Integrative Biology University of California Berkeley CA USA
| | | | | |
Collapse
|
20
|
Constant T, Giroud S, Viblanc VA, Tissier ML, Bergeron P, Dobson FS, Habold C. Integrating Mortality Risk and the Adaptiveness of Hibernation. Front Physiol 2020; 11:706. [PMID: 32754044 PMCID: PMC7366871 DOI: 10.3389/fphys.2020.00706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
Low mortality rate is often associated with slow life history, and so far, has mainly been assessed through examinations of specific adaptations and lifestyles that limit mortality risk. However, the organization of activity time budgets also needs to be considered, since some activities and the time afforded for performing them may expose animals to higher mortality risks such as increased predation and/or increased metabolic stress. We examined the extent of activity time budgets contribution to explaining variation in life history traits in mammals. We specifically focused on hibernating species because of their marked seasonal cycle of activity/inactivity associated with very different mortality risks. Hibernation is considered a seasonal adaptation to prolonged periods of food shortage and cold. This inactivity period may also reduce both extrinsic and intrinsic mortality risks, by decreasing exposure to predators and drastically reducing metabolic rate. In turn, reduction in mortality may explain why hibernators have slower life history traits than non-hibernators of the same size. Using phylogenetically controlled models, we tested the hypothesis that longevity was positively correlated with the hibernation season duration (the time spent between immergence and emergence from the hibernaculum or den) across 82 different mammalian species. We found that longevity increased significantly with hibernation season duration, an effect that was particularly strong in small hibernators (<1.5 kg) especially for bats. These results confirm that hibernation not only allows mammals to survive periods of energy scarcity, but further suggest that activity time budgets may be selected to reduce mortality risks according to life history pace.
Collapse
Affiliation(s)
- Théo Constant
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de Strasbourg, Strasbourg, France
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vincent A. Viblanc
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de Strasbourg, Strasbourg, France
| | - Mathilde L. Tissier
- Department of Biological Sciences, Bishop’s University, Sherbrooke, QC, Canada
| | - Patrick Bergeron
- Department of Biological Sciences, Bishop’s University, Sherbrooke, QC, Canada
| | - F. Stephen Dobson
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de Strasbourg, Strasbourg, France
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Caroline Habold
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Geiser F. Seasonal Expression of Avian and Mammalian Daily Torpor and Hibernation: Not a Simple Summer-Winter Affair †. Front Physiol 2020; 11:436. [PMID: 32508673 PMCID: PMC7251182 DOI: 10.3389/fphys.2020.00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Daily torpor and hibernation (multiday torpor) are the most efficient means for energy conservation in endothermic birds and mammals and are used by many small species to deal with a number of challenges. These include seasonal adverse environmental conditions and low food/water availability, periods of high energetic demands, but also reduced foraging options because of high predation pressure. Because such challenges differ among regions, habitats and food consumed by animals, the seasonal expression of torpor also varies, but the seasonality of torpor is often not as clear-cut as is commonly assumed and differs between hibernators and daily heterotherms expressing daily torpor exclusively. Hibernation is found in mammals from all three subclasses from the arctic to the tropics, but is known for only one bird. Several hibernators can hibernate for an entire year or express torpor throughout the year (8% of species) and more hibernate from late summer to spring (14%). The most typical hibernation season is the cold season from fall to spring (48%), whereas hibernation is rarely restricted to winter (6%). In hibernators, torpor expression changes significantly with season, with strong seasonality mainly found in the sciurid and cricetid rodents, but seasonality is less pronounced in the marsupials, bats and dormice. Daily torpor is diverse in both mammals and birds, typically is not as seasonal as hibernation and torpor expression does not change significantly with season. Torpor in spring/summer has several selective advantages including: energy and water conservation, facilitation of reproduction or growth during development with limited resources, or minimisation of foraging and thus exposure to predators. When torpor is expressed in spring/summer it is usually not as deep and long as in winter, because of higher ambient temperatures, but also due to seasonal functional plasticity. Unlike many other species, subtropical nectarivorous blossom-bats and desert spiny mice use more frequent and pronounced torpor in summer than in winter, which is related to seasonal availability of nectar or water. Thus, seasonal use of torpor is complex and differs among species and habitats.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology CO2, University of New England, Armidale, NSW, Australia
| |
Collapse
|
22
|
Ruf T, Bieber C. Physiological, Behavioral, and Life-History Adaptations to Environmental Fluctuations in the Edible Dormouse. Front Physiol 2020; 11:423. [PMID: 32431626 PMCID: PMC7214925 DOI: 10.3389/fphys.2020.00423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/07/2020] [Indexed: 11/22/2022] Open
Abstract
The edible dormouse (Glis glis, formerly Myoxus glis) is a small arboreal mammal inhabiting deciduous forests in Europe. This rodent shows behavioral and physiological adaptations to three types of environmental fluctuations: (i) predictable seasonal variation in climate and food resources (ii) unpredictable year-to-year fluctuation in seed-production by trees and (iii) day-to-day variation in ambient temperature and precipitation. They cope with seasonally fluctuating conditions by seasonal fattening and hibernation. Dormice have adjusted to tree-mast fluctuations, i.e., pulsed resources, by sensing future seed availability in spring, and restricting reproduction to years with at least some seed production by beech and oak trees, which are a crucial food-resource for fast-growing juveniles in fall. Finally, dormice respond to short-term drops in ambient temperature by increased use of daily torpor as well as by huddling in groups of up to 24 conspecifics. These responses to environmental fluctuations strongly interact with each other: Dormice are much more prone to using daily torpor and huddling in non-reproductive years, because active gonads can counteract torpor and energy requirements for reproduction may prevent the sharing of food resources associated with huddling. Accordingly, foraging activity in fall is much more intense in reproductive mast years. Also, depending on their energy reserves, dormice may retreat to underground burrows in the summers of non-reproductive years, causing an extension of the hibernation season to up to 11.4 months. In addition to these interactions, responses to environmental fluctuations are modulated by the progression of life-history stages. With increasing age and diminishing chances of future reproduction, females reproduce with increasing frequency even under suboptimal environmental conditions. Simultaneously, older dormice shorten the hibernation season and phase-advance the emergence from hibernation in spring, apparently to occupy good breeding territories early, despite increased predation risk above ground. All of the above adaptions, i.e., huddling, torpor, hibernation, and reproduction skipping do not merely optimize energy-budgets but also help to balance individual predation risk against reproductive success, which adds another layer of complexity to the ability to make flexible adjustments in this species.
Collapse
Affiliation(s)
- Thomas Ruf
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Bieber
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
23
|
Ruf T, Bieber C. Use of social thermoregulation fluctuates with mast seeding and reproduction in a pulsed resource consumer. Oecologia 2020; 192:919-928. [PMID: 32166391 PMCID: PMC7165186 DOI: 10.1007/s00442-020-04627-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/22/2020] [Indexed: 11/06/2022]
Abstract
Edible dormice (Glis glis) can remain entirely solitary but frequently share sleeping sites with conspecifics in groups of up to 16 adults and yearlings. Here, we analysed grouping behaviour of 4564 marked individuals, captured in a 13-year study in nest boxes in a deciduous forest. We aimed to clarify (i) whether social thermoregulation is the primary cause for group formation and (ii) which factors affect group size and composition. Dormice temporarily formed both mixed and single-sex groups in response to acute cold ambient temperatures, especially those individuals with small body mass. Thus, thermoregulatory huddling appears to be the driving force for group formation in this species. Huddling was avoided-except for conditions of severe cold load-in years of full mast seeding, which is associated with reproduction and high foraging activity. Almost all females remained solitary during reproduction and lactation. Hence, entire populations of dormice switched between predominantly solitary lives in reproductive years to social behaviour in non-reproductive years. Non-social behaviour pointed to costs of huddling in terms of competition for local food resources even when food is generally abundant. The impact of competition was mitigated by a sex ratio that was biased towards males, which avoids sharing of food resources with related females that have extremely high energy demands during lactation. Importantly, dormice preferentially huddled in male-biased groups with litter mates from previous years. The fraction of related individuals increased with group size. Hence, group composition partly offsets the costs of shared food resources via indirect fitness benefits.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| |
Collapse
|
24
|
Nowack J, Levesque DL, Reher S, Dausmann KH. Variable Climates Lead to Varying Phenotypes: “Weird” Mammalian Torpor and Lessons From Non-Holarctic Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
25
|
Adamík P, Poledník L, Poledníková K, Romportl D. Mapping an elusive arboreal rodent: Combining nocturnal acoustic surveys and citizen science data extends the known distribution of the edible dormouse (Glis glis) in the Czech Republic. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Nakipova OV, Averin AS, Kosarsky LS, Ignatiev DA. The Force-Frequency Dependence in the Heart Papillary Muscle of Ground Squirrel as a Reflection of Changes in the Functional State of Animals during the Annual Cycle. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
|
28
|
Geiser F, Stawski C, Doty AC, Cooper CE, Nowack J. A burning question: what are the risks and benefits of mammalian torpor during and after fires? CONSERVATION PHYSIOLOGY 2018; 6:coy057. [PMID: 30323932 PMCID: PMC6181253 DOI: 10.1093/conphys/coy057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/11/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Although wildfires are increasing globally, available information on how mammals respond behaviourally and physiologically to fires is scant. Despite a large number of ecological studies, often examining animal diversity and abundance before and after fires, the reasons as to why some species perform better than others remain obscure. We examine how especially small mammals, which generally have high rates of energy expenditure and food requirements, deal with fires and post-fire conditions. We evaluate whether mammalian torpor, characterised by substantial reductions in body temperature, metabolic rate and water loss, plays a functional role in survival of mammals impacted by fires. Importantly, torpor permits small mammals to reduce their activity and foraging, and to survive on limited food. Torpid small mammals (marsupials and bats) can respond to smoke and arouse from torpor, which provides them with the possibility to evade direct exposure to fire, although their response is often slowed when ambient temperature is low. Post-fire conditions increase expression of torpor with a concomitant decrease in activity for free-ranging echidnas and small forest-dwelling marsupials, in response to reduced cover and reduced availability of terrestrial insects. Presence of charcoal and ash increases torpor use by captive small marsupials beyond food restriction alone, likely in anticipation of detrimental post-fire conditions. Interestingly, although volant bats use torpor on every day after fires, they respond by decreasing torpor duration, and increasing activity, perhaps because of the decrease in clutter and increase in foraging opportunities due to an increase in aerial insects. Our summary shows that torpor is an important tool for post-fire survival and, although the physiological and behavioural responses of small mammals to fire are complex, they seem to reflect energetic requirements and mode of foraging. We make recommendations on the conditions during management burns that are least likely to impact heterothermic mammals.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna C Doty
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Christine E Cooper
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia
| | - Julia Nowack
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool, UK
| |
Collapse
|
29
|
Bieber C, Turbill C, Ruf T. Effects of aging on timing of hibernation and reproduction. Sci Rep 2018; 8:13881. [PMID: 30224823 PMCID: PMC6141465 DOI: 10.1038/s41598-018-32311-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 01/17/2023] Open
Abstract
Small hibernators are long-lived for their size because seasonal dormancy greatly reduces predation risk. Thus, within a year, hibernators switch between states of contrasting mortality risk (active season versus hibernation), making them interesting species for testing the predictions of life-history theory. Accordingly, we hypothesized that, with advancing age and hence diminishing reproductive potential, hibernators should increasingly accept the higher predation risk associated with activity to increase the likelihood of current reproductive success. For edible dormice (Glis glis) we show that age strongly affects hibernation/activity patterns, and that this occurs via two pathways: (i) with increasing age, dormice are more likely to reproduce, which delays the onset of hibernation, and (ii) age directly advances emergence from hibernation in spring. We conclude that hibernation has to be viewed not merely as an energy saving strategy under harsh climatic conditions, but as an age-affected life-history trait that is flexibly used to maximize fitness.
Collapse
Affiliation(s)
- Claudia Bieber
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Christopher Turbill
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| |
Collapse
|
30
|
Boratyński JS, Szafrańska PA. Does Basal Metabolism Set the Limit for Metabolic Downregulation during Torpor? Physiol Biochem Zool 2018; 91:1057-1067. [PMID: 30141728 DOI: 10.1086/699917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evolution of endothermic thermoregulation is rooted in the processes involving high metabolism, which allows the maintenance of high and stable body temperatures (Tb). In turn, selection for high endothermic metabolism correlates with increased size of metabolically active organs and thus with high basal metabolic rate (BMR). Endothermic animals are characterized by an MR several times that of similar-sized ectotherms. However, many small mammals are temporally heterothermic and are able to temporally decrease Tb and MR by entering daily torpor or hibernation. Both BMR and minimum MR during torpor (TMRmin) likely result from oxidative respiration in mitochondria of the same tissues. It should be expected that these two MRs are positively correlated, suggesting that the evolution of endothermy and higher BMR set the limit for the ability to reduce MR while entering torpor. Using published data for 96 mammal species, we tested the hypothesis that, among heterothermic mammals, the processes leading to the evolution of higher BMR limit the ability to downregulate metabolism during torpor. We found that body mass (mb)-adjusted BMR was positively correlated with mb- and Tb-adjusted TMRmin, in a phylogenetically corrected analysis. Phylogenetic path modeling indicated that the mechanisms underlying the evolutionary increase of BMR in endotherms most likely constrain their ability to reduce MR during torpor. Given that heterothermy is considered an ancestral state in mammals, these results suggest an increase in BMR during the evolution of endothermy in homeothermic animals, which leads to the loss of their ability to enter torpor.
Collapse
|
31
|
Flexibility is the key: metabolic and thermoregulatory behaviour in a small endotherm. J Comp Physiol B 2018; 188:553-563. [DOI: 10.1007/s00360-017-1140-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
|
32
|
Cornils JS, Hoelzl F, Huber N, Zink R, Gerritsmann H, Bieber C, Schwarzenberger F, Ruf T. The insensitive dormouse: reproduction skipping is not caused by chronic stress in Glis glis. J Exp Biol 2018; 221:jeb.183558. [DOI: 10.1242/jeb.183558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022]
Abstract
Entire populations of edible dormice (Glis glis) can skip reproduction in years without mast seeding of deciduous trees (particularly beech or oak seed), because juveniles require high caloric seeds for growth and fattening prior to hibernation. We hypothesized that, in mast failure years, female dormice may be forced to spend larger amounts of time foraging for low-quality food, which should increase their exposure to predators, mainly owls. This may lead to chronic stress, i.e., long-term increased secretion of Glucocorticoids (GC), which can have inhibitory effects on reproductive function in both female and male mammals. We monitored reproduction in free-living female dormice over three years with varying levels of food availability, and performed a supplemental feeding experiment. To measure stress hormone levels, we determined fecal GC metabolite (GCM) concentrations collected during the day, which reflect hormone secretion rates in the previous nocturnal activity phase. We found that year-to-year differences in beech mast significantly affected fecal GCM levels and reproduction. However, contrary to our hypothesis, GCM levels were lowest in a non-mast year without reproduction, and significantly elevated in full-mast and intermediate years, as well as under supplemental feeding. Variation in owl density in our study area had no influence on GCM levels. Consequently, we conclude that down-regulation of gonads and reproduction skipping in mast-failure years in this species is not caused by chronic stress. Thus, in edible dormice, delayed reproduction apparently is profitable in response to the absence of energy-rich food in non-mast years, but not in response to chronic stress.
Collapse
Affiliation(s)
- Jessica S. Cornils
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Franz Hoelzl
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Nikolaus Huber
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Richard Zink
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Hanno Gerritsmann
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Franz Schwarzenberger
- Institute for Medical Biochemistry, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| |
Collapse
|
33
|
Geiser F, Stawski C, Wacker CB, Nowack J. Phoenix from the Ashes: Fire, Torpor, and the Evolution of Mammalian Endothermy. Front Physiol 2017; 8:842. [PMID: 29163191 PMCID: PMC5673639 DOI: 10.3389/fphys.2017.00842] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 12/02/2022] Open
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| | - Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| | - Chris B Wacker
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| | - Julia Nowack
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia.,Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
34
|
Griko YV, Rask JC, Raychev R. Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/space.2016.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuri V. Griko
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| | - Jon C. Rask
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
- KBRwyle, Moffett Field, California
| | - Raycho Raychev
- Space Challenges Program, EnduroSat, Inc., Sofia, Bulgaria
| |
Collapse
|
35
|
Hoelzl F, Cornils JS, Smith S, Moodley Y, Ruf T. Telomere dynamics in free-living edible dormice (Glis glis): the impact of hibernation and food supply. ACTA ACUST UNITED AC 2017; 219:2469-74. [PMID: 27535986 PMCID: PMC5004978 DOI: 10.1242/jeb.140871] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023]
Abstract
We studied the impact of hibernation and food supply on relative telomere length (RTL), an indicator for aging and somatic maintenance, in free-living edible dormice. Small hibernators such as dormice have ∼50% higher maximum longevity than non-hibernators. Increased longevity could theoretically be due to prolonged torpor directly slowing cellular damage and RTL shortening. However, although mitosis is arrested in mammals at low body temperatures, recent evidence points to accelerated RTL shortening during periodic re-warming (arousal) from torpor. Therefore, we hypothesized that these arousals during hibernation should have a negative effect on RTL. Here, we show that RTL was shortened in all animals over the course of ∼1 year, during which dormice hibernated for 7.5–11.4 months. The rate of periodic arousals, rather than the time spent euthermic during the hibernation season, was the best predictor of RTL shortening. This finding points to negative effects on RTL of the transition from low torpor to high euthermic body temperature and metabolic rate during arousals, possibly because of increased oxidative stress. The animals were, however, able to elongate their telomeres during the active season, when food availability was increased by supplemental feeding in a year of low natural food abundance. We conclude that in addition to their energetic costs, periodic arousals also lead to accelerated cellular damage in terms of RTL shortening. Although dormice are able to counteract and even over-compensate for the negative effects of hibernation, restoration of RTL appears to be energetically costly. Highlighted Article: Telomeres in edible dormice shorten over the hibernation season, but these long-lived rodents are able to fully restore telomeres during summer if food supply is sufficient.
Collapse
Affiliation(s)
- Franz Hoelzl
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, Vienna 1160, Austria
| | - Jessica S Cornils
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, Vienna 1160, Austria
| | - Steve Smith
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, Vienna 1160, Austria
| | - Yoshan Moodley
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, Vienna 1160, Austria
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, Vienna 1160, Austria
| |
Collapse
|
36
|
Bieber C, Cornils JS, Hoelzl F, Giroud S, Ruf T. The costs of locomotor activity? Maximum body temperatures and the use of torpor during the active season in edible dormice. J Comp Physiol B 2017; 187:803-814. [PMID: 28321493 PMCID: PMC5486539 DOI: 10.1007/s00360-017-1080-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/14/2016] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
Measuring T b during the active season can provide information about the timing of reproduction and the use of short bouts of torpor and may be used as a proxy for the locomotor activity of animals (i.e., maximum T b). This kind of information is especially important to understand life-history strategies and energetic costs and demands in hibernating mammals. We investigated T b throughout the active season in edible dormice (Glis glis), since they (i) have an expensive arboreal life-style, (ii) are known to show short bouts of torpor, and (iii) are adapted to pulsed resources (mast of beech trees). We show here for the first time that maximum T b's in free-living active dormice (during the night) increase regularly and for up to 8 h above 40 °C, which corresponds to slight hyperthermia, probably due to locomotor activity. The highest weekly mean maximum T b was recorded 1 week prior to hibernation (40.45 ± 0.07 °C). At the beginning of the active season and immediately prior to hibernation, the mean maximum T b's were lower. The time dormice spent at T b above 40 °C varied between sexes, depending on mast conditions. The date of parturition could be determined by a sudden increase in mean T b (plus 0.49 ± 0.04 °C). The occurrence of short torpor bouts (<24 h) was strongly affected by the mast situation with much higher torpor frequencies in mast-failure years. Our data suggest that locomotor activity is strongly affected by environmental conditions, and that sexes respond differently to these changes.
Collapse
Affiliation(s)
- Claudia Bieber
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| | - Jessica S Cornils
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Franz Hoelzl
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Sylvain Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| |
Collapse
|
37
|
More functions of torpor and their roles in a changing world. J Comp Physiol B 2017; 187:889-897. [PMID: 28432393 PMCID: PMC5486538 DOI: 10.1007/s00360-017-1100-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/26/2016] [Accepted: 02/26/2017] [Indexed: 02/06/2023]
Abstract
Increased winter survival by reducing energy expenditure in adult animals is often viewed as the primary function of torpor. However, torpor has many other functions that ultimately increase the survival of heterothermic mammals and birds. In this review, we summarize new findings revealing that animals use torpor to cope with the conditions during and after natural disasters, including fires, storms, and heat waves. Furthermore, we suggest that torpor, which also prolongs longevity and was likely crucial for survival of mammals during the time of the dinosaur extinctions, will be advantageous in a changing world. Climate change is assumed to lead to an increase in the occurrence and intensity of climatic disasters, such as those listed above and also abnormal floods, droughts, and extreme temperatures. The opportunistic use of torpor, found in many heterothermic species, will likely enhance survival of these challenges, because these species can reduce energy and foraging requirements. However, many strictly seasonal hibernators will likely face the negative consequences of the predicted increase in temperature, such as range contraction. Overall, available data suggest that opportunistic heterotherms with their flexible energy requirements have an adaptive advantage over homeotherms in response to unpredictable conditions.
Collapse
|
38
|
Cornils JS, Hoelzl F, Rotter B, Bieber C, Ruf T. Edible dormice ( Glis glis) avoid areas with a high density of their preferred food plant - the European beech. Front Zool 2017; 14:23. [PMID: 28428805 PMCID: PMC5397747 DOI: 10.1186/s12983-017-0206-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/05/2017] [Indexed: 11/20/2022] Open
Abstract
Background Numerous species, especially among rodents, are strongly affected by the availability of pulsed resources. The intermittent production of large seed crops in northern hemisphere tree species (e.g., beech Fagus spec.,oak Quercus spec., pine trees Pinus spec.) are prime examples of these resource pulses. Adult edible dormice are highly dependent on high energy seeds to maximize their reproductive output. For juvenile dormice the energy rich food is important to grow and fatten in a very short time period prior to hibernation. While these erratic, often large-scale synchronized mast events provide overabundant seed availability, a total lack of seed production can be observed in so-called mast failure years. We hypothesized that dormice either switch territories between mast and non-mast years, to maximize energy availability or select habitats in which alternative food sources are also available (e.g., fleshy fruits, cones). To analyze the habitat preferences of edible dormice we performed environmental niche factor analyses (ENFA) for 9 years of capture-recapture data. Results As expected, the animals mainly used areas with high canopy closure and vertical stratification, probably to avoid predation. Surprisingly, we found that dormice avoided areas with high beech tree density, but in contrast preferred areas with a relatively high proportion of coniferous trees. Conifer cones and leaves can be an alternative food source for edible dormice and are less variable in availability. Conclusion Therefore, we conclude that edible dormice try to avoid areas with large fluctuations in food availability to be able to survive years without mast in their territory.
Collapse
Affiliation(s)
- Jessica S Cornils
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
| | - Franz Hoelzl
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
| | - Birgit Rotter
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
| |
Collapse
|
39
|
Semaphorins Are Likely to Be Involved in the Control of Hibernation. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis). Sci Rep 2016; 6:36856. [PMID: 27883035 PMCID: PMC5121655 DOI: 10.1038/srep36856] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
Telomere shortening is thought to be an important biomarker for life history traits such as lifespan and aging, and can be indicative of genome integrity, survival probability and the risk of cancer development. In humans and other animals, telomeres almost always shorten with age, with more rapid telomere attrition in short-lived species. Here, we show that in the edible dormouse (Glis glis) telomere length significantly increases from an age of 6 to an age of 9 years. While this finding could be due to higher survival of individuals with longer telomeres, we also found, using longitudinal measurements, a positive effect of age on the rate of telomere elongation within older individuals. To our knowledge, no previous study has reported such an effect of age on telomere lengthening. We attribute this exceptional pattern to the peculiar life-history of this species, which skips reproduction in years with low food availability. Further, we show that this “sit tight” strategy in the timing of reproduction is associated with an increasing likelihood for an individual to reproduce as it ages. As reproduction could facilitate telomere attrition, this life-history strategy may have led to the evolution of increased somatic maintenance and telomere elongation with increasing age.
Collapse
|
41
|
LaZerte S, Kramer D. Activity of eastern chipmunks (Tamias striatus) during the summer and fall. CAN J ZOOL 2016. [DOI: 10.1139/cjz-2016-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Measuring activity of small mammals in the field is challenging because they are often out of view. We used a novel method, based on temperatures of collar radio transmitters, to quantify the proportion of time eastern chipmunks (Tamias striatus (L., 1758)) spent active, curled up resting, and torpid during the summer and fall of 2 years in southern Quebec. Time active over the 24 h day was lower in a nonmast (8%) than a mast (26%) year. In the mast year, activity varied strongly from a low of 7% during the summer lull to a high of 35% in the fall. Chipmunks that exploited a feeder had higher activity (33%) than chipmunks that did not (19%). Activity was higher during the day, but some activity occurred at night. Daily activity patterns varied strongly among seasonal periods. There was no evidence of torpor during the summer lull. Torpor started much earlier in the nonmast than in the mast year and occurred more at night than during the day. Overall, our study suggests that activity in this food-storing hibernator is positively influenced by food availability and indicates that thermosensitive radiotelemetry is a promising method for recording continuous activity.
Collapse
Affiliation(s)
- S.E. LaZerte
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada
| | - D.L. Kramer
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
42
|
Turner JM, Geiser F. The influence of natural photoperiod on seasonal torpor expression of two opportunistic marsupial hibernators. J Comp Physiol B 2016; 187:375-383. [DOI: 10.1007/s00360-016-1031-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022]
|
43
|
Integrating physiology, behavior, and energetics: Biologging in a free-living arctic hibernator. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:53-62. [PMID: 27139082 DOI: 10.1016/j.cbpa.2016.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022]
Abstract
The use of animal-borne instruments (ABIs), including biologgers and biotransmitters, has played an integral role in advancing our understanding of adjustments made by animals in their physiology and behavior across their annual and daily cycles and in response to weather and environmental change. Here, we review our research employing body temperature (Tb), light, and acceleration biologgers to measure patterns of physiology and behavior of a free-living, semi-fossorial hibernator, the arctic ground squirrel (Urocitellus parryii). We have used these devices to address a variety of physiological, ecological, and evolutionary questions within the fields of hibernation physiology, phenology, behavioral ecology, and chronobiology. We have also combined biologging with other approaches, such as endocrinology and tracking the thermal environment, to provide insights into the physiological mechanisms that underlie fundamental questions in biology including physiological performance trade-offs, timing and functional energetics. Finally, we explore the practical and methodological considerations that need to be addressed in biologging studies of free-living vertebrates and discuss future technological advancements that will increase the power and potential of biologging as a tool for assessing physiological function in dynamic and changing environments.
Collapse
|
44
|
Turbill C, Prior S. Thermal climate‐linked variation in annual survival rate of hibernating rodents: shorter winter dormancy and lower survival in warmer climates. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12620] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christopher Turbill
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith 2751 New South WalesAustralia
| | - Samantha Prior
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith 2751 New South WalesAustralia
| |
Collapse
|
45
|
Trout RC, Brooks S, Morris P. Nest box usage by old edible dormice (Glis glis) in breeding and non-breeding years. FOLIA ZOOLOGICA 2015. [DOI: 10.25225/fozo.v64.i4.a5.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Roger C. Trout
- Rabbitwise-plus Consultancy, Holtside, Batts Corner, Dockenfield, Farnham, Surrey, GU 10 4EX, U.K.
| | - Sarah Brooks
- 12 Greenacre Drive, Wyke, Bradford, West Yorkshire BD12 9DH, U.K
| | - Pat Morris
- West mains, London Road, Ascot Berkshire, SL5 7DG , U.K
| |
Collapse
|