1
|
Lu X, Huang L, Chen J, Ou Y, Wu J, Bodjrenou DM, Hu J, Zhang Y, Farag MA, Guo Z, Xiao J, Zheng B. Marine glycoproteins: a mine of their structures, functions and potential applications. Crit Rev Food Sci Nutr 2023; 64:9191-9209. [PMID: 37165485 DOI: 10.1080/10408398.2023.2209183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many bioactive compounds are reported from marine organisms, which are significantly different from those found in terrestrial organisms regarding their chemical structures and pharmacological activities. Marine glycoproteins (MGs) have aroused increasing attention as a good nutrient source owing to their potential applications in medicine, cosmetics and food. However, there is a lack of a comprehensive study on MGs to help readers understand the current state of research on marine-derived glycoproteins. The current review compiles the recent progress made on the structures and functions of MGs with future perspectives to maximize their value and applications via bibliometric analysis methods for the first time. The current research on MGs appears mostly limited to the laboratory, with no large-scale production of marine glycoproteins developed. The sugar chains are bound to proteins through covalent bonds that can readily be cleaved leading to difficultly in their separation and purification. Health effects attributed to MGs include treatment of inflammatory diseases, as well as anti-oxidant, immune modulation, anti-tumor, hypolipidemic, hypoglycemic, anti-bacterial and anti-freeze activities. This review can not only deepen the understanding of the functions of MGs, but also lay an important foundation for the further development and utilization of marine resources.
Collapse
Affiliation(s)
- Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyao Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaqi Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yujia Ou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingru Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - David Mahoudjro Bodjrenou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Zebin Guo
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo, Ourense, Spain
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Hoogenboom JL, Anderson WG. Investigating nitrogen movement in North Pacific spiny dogfish (Squalus acanthias suckleyi), with focus on UT, Rhp2, and Rhbg mRNA abundance. J Comp Physiol B 2023:10.1007/s00360-023-01487-4. [PMID: 37162540 DOI: 10.1007/s00360-023-01487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
For ureosmotic marine elasmobranchs, the acquisition and retention of nitrogen is critical for the synthesis of urea. To better understand whole-body nitrogen homeostasis, we investigated mechanisms of nitrogen trafficking in North Pacific spiny dogfish (Squalus acanthias suckleyi). We hypothesized that the presence of nitrogen within the spiral valve lumen would affect both the transport of nitrogen and the mRNA abundance of a urea transporter (UT) and two ammonia transport proteins (Rhp2, Rhbg) within the intestinal epithelium. The in vitro preincubation of intestinal tissues in NH4Cl, intended to simulate dietary nitrogen availability, showed that increased ammonia concentrations did not significantly stimulate the net uptake of total urea or total methylamine. We also examined the mRNA abundance of UT, Rhp2, and Rhbg in the gills, kidney, liver, and spiral valve of fasted, fed, excess urea fed, and antibiotic-treated dogfish. After fasting, hepatic UT mRNA abundance was significantly lower, and Rhp2 mRNA in the gills was significantly higher than the other treatments. Feeding significantly increased Rhp2 mRNA levels in the kidney and mid spiral valve region. Both excess urea and antibiotics significantly reduced Rhbg mRNA levels along all three spiral valve regions. The antibiotic treatment also significantly diminished UT mRNA abundance levels in the anterior and mid spiral valve, and Rhbg mRNA levels in the kidney. In our study, no single treatment had significantly greater influence on the overall transcript abundance of the three transport proteins compared to another treatment, demonstrating the dynamic nature of nitrogen balance in these ancient fish.
Collapse
Affiliation(s)
- J Lisa Hoogenboom
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada.
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada
| |
Collapse
|
3
|
Hao M, Zuo Q, Zhang W, Feng Y, Wang L, Yu L, Zhang X, Li J, Huang Z. Toxicological Assessment of Ammonia Exposure on Carassius auratus red var. Living in Landscape Waters. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:814-821. [PMID: 31606772 DOI: 10.1007/s00128-019-02728-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
To understand the toxic mechanism of ammonia and identify effective biomarkers on the oxidative stress for the fish Carassius auratus red var., acute and chronic toxicity tests were conducted. The 96-h LC50 of total ammonia nitrogen (TAN) for C. auratus was 135.4 mg L-1, the corresponding unionized ammonia (NH3) concentration was 1.5 mg L-1. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione-peroxidase (GSH-Px) and glutathione (GSH) showed an increase with a subsequent falling, while the malondialdehyde (MDA) increased during the chronic test. The SOD, MDA, and GSH could be effective biomarkers to evaluate the TAN oxidative stress, the maximum acceptable toxicant concentration (MATC) was 11.3 mg L-1 for TAN. To our knowledge, this is the first study to propose biomarkers to evaluate potential environmental risk and establish a risk threshold for TAN in C. auratus.
Collapse
Affiliation(s)
- Minghui Hao
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Qiting Zuo
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China
- Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou, 450001, China
| | - Wei Zhang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China
- Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou, 450001, China
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, Henan, 467036, China
| | - Yakun Feng
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Li Wang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Luji Yu
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xu Zhang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jing Li
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Zehan Huang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| |
Collapse
|