1
|
Wang Y, Fang F, Liu X. Targeting histamine in metabolic syndrome: Insights and therapeutic potential. Life Sci 2024; 358:123172. [PMID: 39461668 DOI: 10.1016/j.lfs.2024.123172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Metabolic syndrome is a complex disorder defined by a cluster of interconnected factors including obesity, insulin resistance, hypertension, hyperlipidemia and hyperglycemia which increase the risk of cardiovascular disease, non-alcoholic fatty liver disease, type 2 diabetes mellitus and other related diseases. Histamine, as a biogenic amine, participates in various physiological processes. Increasing evidence suggests histamine plays critical roles in Metabolic syndrome as well as its associated diseases by interacting with four histamine receptors. In this review, we summarize the functions and mechanisms of histamine in Metabolic syndrome, indicating histamine as a possible target in treating Metabolic syndrome and its associated diseases.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Fude Fang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Liu
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Guagnoni IN, Armelin VA, da Silva Braga VH, Monteiro DA, Florindo LH. Cardiovascular responses and the role of the neurohumoral cardiac regulation during digestion in the herbivorous lizard Iguana iguana. J Exp Biol 2024; 227:jeb247105. [PMID: 38186316 DOI: 10.1242/jeb.247105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Carnivorous reptiles exhibit an intense metabolic increment during digestion, which is accompanied by several cardiovascular adjustments responsible for meeting the physiological demands of the gastrointestinal system. Postprandial tachycardia, a well-documented phenomenon in these animals, is mediated by the withdrawal of vagal tone associated with the chronotropic effects of non-adrenergic and non-cholinergic (NANC) factors. However, herbivorous reptiles exhibit a modest metabolic increment during digestion and there is no information about postprandial cardiovascular adjustments. Considering the significant impact of feeding characteristics on physiological responses, we investigated cardiovascular and metabolic responses, as well as the neurohumoral mechanisms of cardiac control, in the herbivorous lizard Iguana iguana during digestion. We measured oxygen consumption rate (O2), heart rate (fH), mean arterial blood pressure (MAP), myocardial activity, cardiac autonomic tone, fH/MAP variability and baroreflex efficiency in both fasting and digesting animals before and after parasympathetic blockade with atropine followed by double autonomic blockade with atropine and propranolol. Our results revealed that the peak of O2 in iguanas was reached 24 h after feeding, accompanied by an increase in myocardial activity and a subtle tachycardia mediated exclusively by a reduction in cardiac parasympathetic activity. This represents the first reported case of postprandial tachycardia in digesting reptiles without the involvement of NANC factors. Furthermore, this withdrawal of vagal stimulation during digestion may reduce the regulatory range for short-term fH adjustments, subsequently intensifying the blood pressure variability as a consequence of limiting baroreflex efficiency.
Collapse
Affiliation(s)
- Igor Noll Guagnoni
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
| | - Vinicius Araújo Armelin
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
- Department of Physiology, Institute of Biosciences (IB), University of São Paulo (USP), São Paulo, SP 05508-090, Brazil
| | - Victor Hugo da Silva Braga
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
| | - Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP 13565-905, Brazil
| | - Luiz Henrique Florindo
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
3
|
Ootawa T, Wu S, Sekio R, Smith H, Islam MZ, Nguyen HTT, Uno Y, Shiraishi M, Miyamoto A. Characterization of Vasoreactivity in a Semi-Arboreal Snake, the Tokara Habu ( Protobothrops tokarensis). Animals (Basel) 2023; 13:3629. [PMID: 38066980 PMCID: PMC10705207 DOI: 10.3390/ani13233629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 10/12/2024] Open
Abstract
Vasoreactivity is relatively well documented in terrestrial snakes but has previously been investigated in only one semi-arboreal snake species. Consequently, the extent to which vasoreactivity is common across snake taxa or varies by habitat is unclear. The Tokara habu (Protobothrops tokarensis) is a semi-arboreal snake endemic to only two small adjacent Japanese islands, and hence a useful species for further investigation of vasoreactivity. We evaluated responses to known vasoactive substances in thoracic aortas isolated from Tokara habu. Under resting tension, noradrenaline and angiotensin II induced concentration-dependent contraction, but acetylcholine, serotonin (5-hydroxytriptamine; 5-HT), and isoproterenol induced relaxation followed by contraction. Histamine and rattlesnake bradykinin had no effect. Experiments with receptor-specific antagonists suggest that M1 and M3 receptors are involved in the acetylcholine-induced response; 5-HT1, 5-HT2, and 5-HT7 receptors in the serotonin-induced response; and β1 and β2 adrenoceptors in isoproterenol-induced relaxation. This is the first report on such response patterns in snakes (including serotonin- and isoproterenol-induced relaxation). Nitric oxide may be involved in acetylcholine-induced relaxation but not in the responses to serotonin or isoproterenol. In contrast to the uniform vasoreactivity observed in terrestrial snakes, the vasoreactivity of semi-arboreal snakes may be governed by diverse regulatory mechanisms.
Collapse
Affiliation(s)
- Tomoki Ootawa
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (T.O.); (S.W.); (H.S.)
- Japan Wildlife Research Center, Tokyo 130-8606, Japan
| | - Siyuan Wu
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (T.O.); (S.W.); (H.S.)
| | - Ryoya Sekio
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Henry Smith
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (T.O.); (S.W.); (H.S.)
| | - Md. Zahorul Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ha Thi Thanh Nguyen
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
| | - Yasuhiro Uno
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (T.O.); (S.W.); (H.S.)
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Mitsuya Shiraishi
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (T.O.); (S.W.); (H.S.)
| | - Atsushi Miyamoto
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (T.O.); (S.W.); (H.S.)
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
4
|
Nørgaard S, Joyce W, Jensen MF, Enok S, Skovgaard N, Wang T. Histamine exerts both direct H 2-mediated and indirect catecholaminergic effects on heart rate in pythons. J Comp Physiol B 2021; 191:347-355. [PMID: 33474644 DOI: 10.1007/s00360-020-01338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Abstract
The vertebrate heart is regulated by excitatory adrenergic and inhibitory cholinergic innervations, as well as non-adrenergic non-cholinergic (NANC) factors that may be circulating in the blood or released from the autonomic nerves. As an example of NANC signaling, an increased histaminergic tone, acting through stimulation of H2 receptors, contributes markedly to the rise in heart rate during digestion in pythons. In addition to the direct effects of histamine, it is also known that histamine can reinforce the cholinergic and adrenergic signaling. Thus, to further our understanding of the histaminergic regulation of the cardiovascular response in pythons, we designed a series of in vivo experiments complemented by in vitro experiments on sinoatrial and vascular ring preparations. We demonstrate the tachycardic mechanism of histamine works partly through a direct binding of cardiac H2 receptors and in part through a myocardial histamine-induced catecholamine release, which strengthens the sympathetic adrenergic signaling pathway.
Collapse
Affiliation(s)
- Simon Nørgaard
- Department of Biology, Aarhus University, C.F. Møllers Allé 3, building 1131, 8000, Aarhus C, Denmark
| | - William Joyce
- Department of Biology, Aarhus University, C.F. Møllers Allé 3, building 1131, 8000, Aarhus C, Denmark
| | - Maja Fuhlendorff Jensen
- Department of Biology, Aarhus University, C.F. Møllers Allé 3, building 1131, 8000, Aarhus C, Denmark
| | - Sanne Enok
- Department of Biology, Aarhus University, C.F. Møllers Allé 3, building 1131, 8000, Aarhus C, Denmark
| | - Nini Skovgaard
- Department of Biology, Aarhus University, C.F. Møllers Allé 3, building 1131, 8000, Aarhus C, Denmark
| | - Tobias Wang
- Department of Biology, Aarhus University, C.F. Møllers Allé 3, building 1131, 8000, Aarhus C, Denmark.
| |
Collapse
|
5
|
Campos R, Justo AFO, Jacintho FF, Mónica FZ, Rojas-Moscoso JA, Moreno RA, Napolitano M, Cogo JC, De Nucci G. Pharmacological and transcriptomic characterization of the nitric oxide pathway in aortic rings isolated from the tortoise Chelonoidis carbonaria. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:82-89. [PMID: 31028932 DOI: 10.1016/j.cbpc.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022]
Abstract
In this study the nitric oxide (NO)-soluble guanylate cyclase (sGC) and phosphodiesterase-5 (PDE-5) pathway was characterized in tortoise Chelonoidis carbonaria aorta. Concentration response curves (CCR) to ATP, ADP, AMP, adenosine and histamine were performed in the presence and absence of L-NAME in aorta pre-contracted with ACh (3 μM). CCR to SNP, BAY 41-2272 (sGC stimulator), BAY 60-2770 (sGC activator) and tadalafil (PDE-5 inhibitor) were constructed in the presence and absence of ODQ (10 μM). ATP (pEC50 6.1 ± 0.1), ADP (pEC50 6.0 ± 0.2), AMP (pEC50 6.8 ± 0.1) and histamine (pEC50 6.8 ± 0.12) relaxed Chelonoidis aorta and the addition of L-NAME reduced their efficacy (p < .05). Adenosine effects (pEC50 6.6 ± 0.1) were not changed in the presence of L-NAME. SNP (pEC50 7.5 ± 0.7; Emax 102.2 ± 2.5%), BAY 41-2272 (pEC50 7.3 ± 0.2; Emax 130.3 ± 10.2%), BAY 60-2770 (pEC50 11.4 ± 0.1; Emax 130.3 ± 6.5%) and tadalafil (pEC50 6.7 ± 0.3; Emax 121.3 ± 15.3%) relaxed Chelonoidis aorta. The addition of ODQ reduced the SNP and tadalafil maximum response (p < .05) and promoted 63 fold right shift on BAY 41-2272 curve. In contrast, no alteration was observed on BAY 60-2770 response. Transcriptomic analysis for eNOS and sGC were found in aorta and brain libraries with high homology when compared with human transcripts. The NO-sGC-PDE-5 is functionally present in Chelonoidis aorta with a functional and genomic similarity to mammalian vessels. Unlike most of mammalian vessels, ACh did not cause endothelium-dependent relaxation in Chelonoidis carbonaria aortic rings.
Collapse
Affiliation(s)
- Rafael Campos
- Superior Institute of Biomedical Sciences, Ceará State University (UECE), Fortaleza, Brazil; Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil.
| | | | - Felipe Fernandes Jacintho
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Z Mónica
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Ronilson Agnaldo Moreno
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mauro Napolitano
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - José Carlos Cogo
- Faculty of Biomedical Engineering, Brazil University, Itaquera, Brazil
| | - Gilberto De Nucci
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil; Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
6
|
Joyce W, Axelsson M, Wang T. Contraction of atrial smooth muscle reduces cardiac output in perfused turtle hearts. ACTA ACUST UNITED AC 2019; 222:jeb.199828. [PMID: 30787139 DOI: 10.1242/jeb.199828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/18/2019] [Indexed: 11/20/2022]
Abstract
Unusual undulations in resting tension (tonus waves) were described in isolated atria from freshwater turtles more than a century ago. These tonus waves were soon after married with the histological demonstration of a rich layer of smooth muscle on the luminal side of the atrial wall. Research thereafter waned and the functional significance of this smooth muscle has remained obscure. Here, we provide evidence that contraction of the smooth muscle in the atria may be able to change cardiac output in turtle hearts. In in situ perfused hearts of the red-eared slider turtle (Trachemys scripta elegans), we demonstrated that activation of smooth muscle contraction with histamine (100 nmol kg-1 bolus injected into perfusate) reduced cardiac output by decreasing stroke volume (>50% decrease in both parameters). Conversely, inhibition of smooth muscle contraction with wortmannin (10 µmol l-1 perfusion) approximately doubled baseline stroke volume and cardiac output. We suggest that atrial smooth muscle provides a unique mechanism to control cardiac filling that could be involved in the regulation of stroke volume during diving.
Collapse
Affiliation(s)
- William Joyce
- Department of Bioscience, Section for Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE 405 30 Gothenburg, Sweden
| | - Tobias Wang
- Department of Bioscience, Section for Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
García-Párraga D, Lorenzo T, Wang T, Ortiz JL, Ortega J, Crespo-Picazo JL, Cortijo J, Fahlman A. Deciphering function of the pulmonary arterial sphincters in loggerhead sea turtles ( Caretta caretta). ACTA ACUST UNITED AC 2018; 221:jeb.179820. [PMID: 30348649 DOI: 10.1242/jeb.179820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
To provide new insight into the pathophysiological mechanisms underlying gas emboli (GE) in bycaught loggerhead sea turtles (Caretta caretta), we investigated the vasoactive characteristics of the pulmonary and systemic arteries, and the lung parenchyma (LP). Tissues were opportunistically excised from recently dead animals for in vitro studies of vasoactive responses to four different neurotransmitters: acetylcholine (ACh; parasympathetic), serotonin (5HT), adrenaline (Adr; sympathetic) and histamine. The significant amount of smooth muscle in the LP contracted in response to ACh, Adr and histamine. The intrapulmonary and systemic arteries contracted under both parasympathetic and sympathetic stimulation and when exposed to 5HT. However, proximal extrapulmonary arterial (PEPA) sections contracted in response to ACh and 5HT, whereas Adr caused relaxation. In sea turtles, the relaxation in the pulmonary artery was particularly pronounced at the level of the pulmonary artery sphincter (PASp), where the vessel wall was highly muscular. For comparison, we also studied tissue response in freshwater sliders turtles (Trachemys scripta elegans). Both PEPA and LP from freshwater sliders contracted in response to 5HT, ACh and also Adr. We propose that in sea turtles, the dive response (parasympathetic tone) constricts the PEPA, LP and PASp, causing a pulmonary shunt and limiting gas uptake at depth, which reduces the risk of GE during long and deep dives. Elevated sympathetic tone caused by forced submersion during entanglement with fishing gear increases the pulmonary blood flow causing an increase in N2 uptake, potentially leading to the formation of blood and tissue GE at the surface. These findings provide potential physiological and anatomical explanations on how these animals have evolved a cardiac shunt pattern that regulates gas exchange during deep and prolonged diving.
Collapse
Affiliation(s)
- Daniel García-Párraga
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain
| | - Teresa Lorenzo
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain
| | - Tobias Wang
- Zoophysiology, Department of Biosciences, Aarhus University, 8000 Aarhus C, Denmark
| | - Jose-Luis Ortiz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Joaquín Ortega
- Patología y Sanidad Animal, Departamento PASAPTA, Facultad de Veterinaria, Universidad CEU-Cardenal Herrera, CEU Universities, Moncada, 46018 Valencia, Spain
| | - Jose-Luis Crespo-Picazo
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Andreas Fahlman
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain.,Department of Life Science, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|