1
|
Yan C, Li R, Zhang J, Zhang L, Yang M, Zhang Q, Li H. Association of myocardial iron deficiency based on T2* CMR with the risk of mild left ventricular dysfunction in HIV-1-infected patients. Front Cardiovasc Med 2023; 10:1132893. [PMID: 37123480 PMCID: PMC10130653 DOI: 10.3389/fcvm.2023.1132893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Objectives This study sought to noninvasively determine myocardial iron levels in HIV-1-infected patients using CMR and explore the association between T2* values and mild left ventricular systolic dysfunction (LVSD). Methods This prospective study was conducted from June 2019 to July 2021. HIV-1-infected adults and healthy controls were consecutively enrolled for CMR exam. CMR exam included the assessment of myocardium iron content (T2*), cardiac function (cine), inflammation (T2), and fibrosis (through extracellular volume fraction [ECV] and late gadolinium enhancement [LGE]) measurements. Mild LVSD is defined as a left ventricular ejection fraction (LVEF) between 40% and 49%. Results Of 47 HIV-1-infected patients enrolled, 12 were diagnosed with mild LVSD (HIV-1+/LEVF+) and 35 were diagnosed with preserved LV function (HIV-1+/LEVF-). Compared with healthy controls, HIV-1-infected patients displayed higher T2*, T1, T2, ECV values and lower global circumferential strain (GCS) and global radial strain (GRS) (all P < 0.05). However, between patients with and without mild LVSD, only the T2* values and ECV (all P <0.05) were different. The association between increased T2* values (>26 ms) and mild LVSD remained significant after adjusting for the established univariate predictors (ECV >32.9%, T1 values >1336 ms) of mild LVSD (odds ratio [OR], 10.153; 95% confidence interval [CI] 1.565-65.878, P = 0.015). Conclusions Myocardial T2* values were elevated in HIV-1-infected patients, supporting the notion that ID was associated with mild LVSD. Our findings highlight the potential for ID in HIV-1-infected patients as an auxiliary biomarker to monitor the course of LVSD.
Collapse
Affiliation(s)
- Chengxi Yan
- Department of Radiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruili Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiannan Zhang
- Department of Radiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Zhang
- Department of Radiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minglei Yang
- Department of Algorithm, Artificial Intelligene Innovation Center (AIIC), Midea Group, Beijing, China
| | - Qiujuan Zhang
- Department of Radiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Correspondence: Hongjun Li Qiujuan Zhang
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Correspondence: Hongjun Li Qiujuan Zhang
| |
Collapse
|
3
|
Snel GJH, van den Boomen M, Hernandez LM, Nguyen CT, Sosnovik DE, Velthuis BK, Slart RHJA, Borra RJH, Prakken NHJ. Cardiovascular magnetic resonance native T 2 and T 2* quantitative values for cardiomyopathies and heart transplantations: a systematic review and meta-analysis. J Cardiovasc Magn Reson 2020; 22:34. [PMID: 32393281 PMCID: PMC7212597 DOI: 10.1186/s12968-020-00627-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/16/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The clinical application of cardiovascular magnetic resonance (CMR) T2 and T2* mapping is currently limited as ranges for healthy and cardiac diseases are poorly defined. In this meta-analysis we aimed to determine the weighted mean of T2 and T2* mapping values in patients with myocardial infarction (MI), heart transplantation, non-ischemic cardiomyopathies (NICM) and hypertension, and the standardized mean difference (SMD) of each population with healthy controls. Additionally, the variation of mapping outcomes between studies was investigated. METHODS The PRISMA guidelines were followed after literature searches on PubMed and Embase. Studies reporting CMR T2 or T2* values measured in patients were included. The SMD was calculated using a random effects model and a meta-regression analysis was performed for populations with sufficient published data. RESULTS One hundred fifty-four studies, including 13,804 patient and 4392 control measurements, were included. T2 values were higher in patients with MI, heart transplantation, sarcoidosis, systemic lupus erythematosus, amyloidosis, hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) and myocarditis (SMD of 2.17, 1.05, 0.87, 1.39, 1.62, 1.95, 1.90 and 1.33, respectively, P < 0.01) compared with controls. T2 values in iron overload patients (SMD = - 0.54, P = 0.30) and Anderson-Fabry disease patients (SMD = 0.52, P = 0.17) did both not differ from controls. T2* values were lower in patients with MI and iron overload (SMD of - 1.99 and - 2.39, respectively, P < 0.01) compared with controls. T2* values in HCM patients (SMD = - 0.61, P = 0.22), DCM patients (SMD = - 0.54, P = 0.06) and hypertension patients (SMD = - 1.46, P = 0.10) did not differ from controls. Multiple CMR acquisition and patient demographic factors were assessed as significant covariates, thereby influencing the mapping outcomes and causing variation between studies. CONCLUSIONS The clinical utility of T2 and T2* mapping to distinguish affected myocardium in patients with cardiomyopathies or heart transplantation from healthy myocardium seemed to be confirmed based on this meta-analysis. Nevertheless, variation of mapping values between studies complicates comparison with external values and therefore require local healthy reference values to clinically interpret quantitative values. Furthermore, disease differentiation seems limited, since changes in T2 and T2* values of most cardiomyopathies are similar.
Collapse
Affiliation(s)
- G J H Snel
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - M van den Boomen
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - L M Hernandez
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - C T Nguyen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - D E Sosnovik
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Division of Health Sciences and Technology, Harvard-MIT, 7 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - B K Velthuis
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - R H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, University of Twente, Dienstweg 1, 7522 ND, Enschede, The Netherlands
| | - R J H Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - N H J Prakken
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
4
|
Triadyaksa P, Oudkerk M, Sijens PE. Cardiac T 2 * mapping: Techniques and clinical applications. J Magn Reson Imaging 2019; 52:1340-1351. [PMID: 31837078 PMCID: PMC7687175 DOI: 10.1002/jmri.27023] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiac T2* mapping is a noninvasive MRI method that is used to identify myocardial iron accumulation in several iron storage diseases such as hereditary hemochromatosis, sickle cell disease, and β‐thalassemia major. The method has improved over the years in terms of MR acquisition, focus on relative artifact‐free myocardium regions, and T2* quantification. Several improvement factors involved include blood pool signal suppression, the reproducibility of T2* measurement as affected by scanner hardware, and acquisition software. Regarding the T2* quantification, improvement factors include the applied curve‐fitting method with or without truncation of the signals acquired at longer echo times and whether or not T2* measurement focuses on multiple segmental regions or the midventricular septum only. Although already widely applied in clinical practice, data processing still differs between centers, contributing to measurement outcome variations. State of the art T2* measurement involves pixelwise quantification providing better spatial iron loading information than region of interest‐based quantification. Improvements have been proposed, such as on MR acquisition for free‐breathing mapping, the generation of fast mapping, noise reduction, automatic myocardial contour delineation, and different T2* quantification methods. This review deals with the pro and cons of different methods used to quantify T2* and generate T2* maps. The purpose is to recommend a combination of MR acquisition and T2* mapping quantification techniques for reliable outcomes in measuring and follow‐up of myocardial iron overload. The clinical application of cardiac T2* mapping for iron overload's early detection, monitoring, and treatment is addressed. The prospects of T2* mapping combined with different MR acquisition methods, such as cardiac T1 mapping, are also described. Level of Evidence: 4 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Pandji Triadyaksa
- University of Groningen, Groningen, The Netherlands.,Universitas Diponegoro, Department of Physics, Faculty of Science and Mathematics, Semarang, Indonesia
| | - Matthijs Oudkerk
- University of Groningen, Groningen, The Netherlands.,Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - Paul E Sijens
- University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, Department of Radiology, Groningen, The Netherlands
| |
Collapse
|
5
|
Cardiac MRI T2* in Liver Transplant Candidates: Application and Performance of a Novel Imaging Technique to Identify Patients at Risk for Poor Posttransplant Cardiac Outcomes. Transplant Direct 2018; 4:e363. [PMID: 30046653 PMCID: PMC6056279 DOI: 10.1097/txd.0000000000000803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/28/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background In end-stage liver disease, alterations in iron metabolism can lead to iron overload and development of iron overload cardiomyopathy. In liver transplant candidates, evaluation for cardiac iron overload and dysfunction can help to identify candidates at increased risk for peritransplant morbidity and mortality, though recommendations for pretransplant evaluation of cardiac iron overload are not standardized. Cardiac Magnetic Resonance Imaging T2* (CMRI-T2*) is a validated method to quantify cardiac iron deposition, with normal T2* value of 20 ms or greater. In this study, we sought to identify the incidence and predictors of iron overload by CMRI-T2* and to evaluate the impact of cardiac and iron overload on morbidity and mortality after liver transplantation. Methods In this retrospective single-center cohort study, all liver transplant candidates who underwent a pretransplant CMRI-T2* between January 1, 2008, and June 30, 2016, were included to analyze the association between clinical characteristics and low T2* using logistic regression. Results One hundred seventy-nine liver transplant candidates who received CMRI-T2* were included. Median age was 57 years, 73.2% were male, and 47.6% were white. 49.7% had hepatitis C and 2.8% had hemochromatosis. Median Model for End-Stage Liver Disease score was 25. 65.2% were Child-Pugh C. In multivariable logistic regression, T2* less than 20 ms (n = 35) was associated with Model for End-Stage Liver Disease score of 25 or greater (odds ratio [OR], 3.65; P = 0.007), Child-Pugh C (OR, 3.42; P = 0.03), and echocardiographic systolic ejection fraction less than 65% (OR, 2.24; P = 0.01). Posttransplant heart failure occurred exclusively in recipients with T2* less than 15 ms. Survival was worse in T2* 10 to 14.9 versus T2* of 20 ms or greater (hazard ratio, 3.85; P = 0.003), but not for 15 to 19.9 versus T2* of 20 ms or greater. Conclusions Severity of liver disease and systolic dysfunction is associated with T2* less than 20 ms, though there was no difference in posttransplant outcomes between T2* 15 to 19.9 and T2* 20 ms or greater, suggesting that individuals with T2* of 15 ms or greater may be suitable transplant candidates. CMRI-T2* is an additional diagnostic tool in evaluating transplant candidates at high risk for posttransplant cardiac complications.
Collapse
|