1
|
Ni S, Chen R, Hu K. Experimental murine models of brainstem gliomas. Drug Discov Today 2021; 27:1218-1235. [PMID: 34954326 DOI: 10.1016/j.drudis.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
As an intractable central nervous system (CNS) tumor, brainstem gliomas (BGs) are one of the leading causes of pediatric death by brain tumors. Owing to the risk of surgical resection and the little improvement in survival time after radiotherapy and chemotherapy, there is an urgent need to find reliable model systems to better understand the regional pathogenesis of the brainstem and improve treatment strategies. In this review, we outline the evolution of BG murine models, and discuss both their advantages and limitations in drug discovery.
Collapse
Affiliation(s)
- Shuting Ni
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
D'Alessandris QG, Pacioni S, Stumpo V, Buccarelli M, Lauretti L, Giordano M, Di Bonaventura R, Martini M, Larocca LM, Giannetti S, Montano N, Falchetti ML, Ricci-Vitiani L, Pallini R. Dilation of Brain Veins and Perivascular Infiltration by Glioblastoma Cells in an In Vivo Assay of Early Tumor Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8891045. [PMID: 33748283 PMCID: PMC7960033 DOI: 10.1155/2021/8891045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 01/22/2023]
Abstract
The cranial window (CW) technique provides a simple and low-cost method to assess tumor angiogenesis in the brain. The CW combined with histology using selective markers for tumor and endothelial cells can allow a sensitive monitoring of novel antiangiogenesis therapies in preclinical models. The CW was established in cyclosporine immunosuppressed rats that were stereotactically grafted with fluorescent U87MG glioblastoma cells. One to 3 weeks after grafting, brain vasculature was visualized in vivo and assessed by immunofluorescence microscopy using antibodies against endothelial and smooth-muscle cells and blood brain barrier. At 1-2 weeks after grafting, the CW reliably detected the hypertrophy of venous-venous anastomoses and cortical veins. These structures increased highly significantly their pregrafting diameter. Arterialized veins and hemorrhages were seen by three weeks after grafting. Immunofluorescence microscopy showed significant branching and dilation of microvessels, particularly those surrounded by tumor cells. Mechanistically, these changes lead to loss of vascular resistance, increased venous outflow, and opening of venous-venous anastomoses on the cortical surface. Data from the present study, namely, the hypertrophy of cortical venous-venous anastomoses, microvessel branching, and dilation of the microvessels surrounded by tumor cells, indicate the power of this in vivo model for the sensitive monitoring of early tumor angiogenesis.
Collapse
Affiliation(s)
- Quintino Giorgio D'Alessandris
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Simone Pacioni
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Vittorio Stumpo
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 0061, Italy
| | - Liverana Lauretti
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Martina Giordano
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Rina Di Bonaventura
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Maurizio Martini
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Luigi M. Larocca
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Stefano Giannetti
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Nicola Montano
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Maria Laura Falchetti
- CNR-IBBC, Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche, 00015 Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 0061, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
3
|
Goodwin CR, Xu R, Iyer R, Sankey EW, Liu A, Abu-Bonsrah N, Sarabia-Estrada R, Frazier JL, Sciubba DM, Jallo GI. Local delivery methods of therapeutic agents in the treatment of diffuse intrinsic brainstem gliomas. Clin Neurol Neurosurg 2016; 142:120-127. [PMID: 26849840 DOI: 10.1016/j.clineuro.2016.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Brainstem gliomas comprise 10-20% of all pediatric central nervous system (CNS) tumors and diffuse intrinsic pontine gliomas (DIPGs) account for the majority of these lesions. DIPG is a rapidly progressive disease with almost universally fatal outcomes and a median survival less than 12 months. Current standard-of-care treatment for DIPG includes radiation therapy, but its long-term survival effects are still under debate. Clinical trials investigating the efficacy of systemic administration of various therapeutic agents have been associated with disappointing outcomes. Recent efforts have focused on improvements in chemotherapeutic agents employed and in methods of localized and targeted drug delivery. This review provides an update on current preclinical and clinical studies investigating treatment options for brainstem gliomas.
Collapse
Affiliation(s)
- C Rory Goodwin
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Risheng Xu
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Rajiv Iyer
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Eric W Sankey
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Ann Liu
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Nancy Abu-Bonsrah
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Rachel Sarabia-Estrada
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - James L Frazier
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Daniel M Sciubba
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - George I Jallo
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA.
| |
Collapse
|
4
|
Sewing ACP, Caretti V, Lagerweij T, Schellen P, Jansen MHA, van Vuurden DG, Idema S, Molthoff CFM, Vandertop WP, Kaspers GJL, Noske DP, Hulleman E. Convection enhanced delivery of carmustine to the murine brainstem: a feasibility study. J Neurosci Methods 2014; 238:88-94. [PMID: 25263805 DOI: 10.1016/j.jneumeth.2014.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Systemic delivery of therapeutic agents remains ineffective against diffuse intrinsic pontine glioma (DIPG), possibly due to an intact blood-brain-barrier (BBB) and to dose-limiting toxicity of systemic chemotherapeutic agents. Convection-enhanced delivery (CED) into the brainstem may provide an effective local delivery alternative for DIPG patients. NEW METHOD The aim of this study is to develop a method to perform CED into the murine brainstem and to test this method using the chemotherapeutic agent carmustine (BiCNU). To this end, a newly designed murine CED catheter was tested in vitro and in vivo. After determination of safety and distribution, mice bearing VUMC-DIPG-3 and E98FM-DIPG brainstem tumors were treated with carmustine dissolved in DW 5% or carmustine dissolved in 10% ethanol. RESULTS Our results show that CED into the murine brainstem is feasible and well tolerated by mice with and without brainstem tumors. CED of carmustine dissolved in 5% DW increased median survival of mice with VUMC-DIPG-3 and E98FM-DIPG tumors with 35% and 25% respectively. Dissolving carmustine in 10% ethanol further improved survival to 45% in mice with E98FM-DIPG tumors. COMPARISON WITH EXISTING METHODS Since genetically engineered and primary DIPG models are currently only available in mice, murine CED studies have clear advantages over CED studies in other animals. CONCLUSION CED in the murine brainstem can be performed safely, is well tolerated and can be used to study efficacy of chemotherapeutic agents orthotopically. These results set the foundation for more CED studies in murine DIPG models.
Collapse
Affiliation(s)
- A Charlotte P Sewing
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Viola Caretti
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Tonny Lagerweij
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Pepijn Schellen
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Marc H A Jansen
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Dannis G van Vuurden
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Carla F M Molthoff
- Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, The Netherlands
| | - W Peter Vandertop
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - David P Noske
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Esther Hulleman
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Wang Y, Tian Y, Wan H, Li D, Wu W, Yin L, Jiang J, Wan W, Zhang L. Differences between brainstem gliomas in juvenile and adult rats. Oncol Lett 2013; 6:246-250. [PMID: 23946812 PMCID: PMC3742815 DOI: 10.3892/ol.2013.1319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/16/2013] [Indexed: 11/25/2022] Open
Abstract
Clinical studies have shown that gliomas of the brainstem behave differently in children and adults. The aim of the present study was to compare and analyze the differences between these gliomas in juvenile and adult rats with regard to tumor growth, survival, pathology and magnetic resonance imaging (MRI). A total of 25 juvenile and 25 adult Wistar rats were divided into groups A (15 juvenile rats), B (10 juvenile rats), C (15 adult rats) and D (10 adult rats). The rats of groups A and C (experimental) were injected with glioma cells, while groups B and D (control) were injected with a physiological saline solution. Rat neurological signs, survival time, tumor size, hematoxylin and eosin (HE) staining and immunohistochemical staining for MMP-2, MMP-9 and β-catenin were compared. The survival time of group A was 19.47±2.232 days, whereas that of group C was 21.47±2.232 days (P<0.05). The tumor sizes were 4.55 and 4.62 mm (P>0.05) in groups A and C, respectively. HE and immunohistochemical staining revealed no differences between the groups. The results suggest that the growth patterns and invasiveness of brainstem gliomas may vary in children compared with adults due to the varied biological behaviors of the tumor cells.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
AndersoN RCE, Kennedy B, Yanes CL, Garvin J, Needle M, Canoll P, Feldstein NA, Bruce JN. Convection-enhanced delivery of topotecan into diffuse intrinsic brainstem tumors in children. J Neurosurg Pediatr 2013; 11:289-95. [PMID: 23240851 PMCID: PMC7227321 DOI: 10.3171/2012.10.peds12142] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Convection-enhanced delivery (CED) for the treatment of malignant gliomas is a technique that can deliver chemotherapeutic agents directly into the tumor and the surrounding interstitium through sustained, low-grade positive-pressure infusion. This allows for high local concentrations of drug within the tumor while minimizing systemic levels that often lead to dose-limiting toxicity. Diffuse intrinsic pontine gliomas (DIPGs) are universally fatal childhood tumors for which there is currently no effective treatment. In this report the authors describe CED of the topoisomerase inhibitor topotecan for the treatment of DIPG in 2 children. As part of a pilot feasibility study, the authors treated 2 pediatric patients with DIPG. Stereotactic biopsy with frozen section confirmation of glial tumor was followed by placement of bilateral catheters for CED of topotecan during the same procedure. The first patient underwent CED 210 days after initial diagnosis, after radiation therapy and at the time of tumor recurrence, with a total dose of 0.403 mg in 6.04 ml over 100 hours. Her Karnofsky Performance Status (KPS) score was 60 before CED and 50 posttreatment. Serial MRI initially demonstrated a modest reduction in tumor size and edema, but the tumor progressed and the patient died 49 days after treatment. The second patient was treated 24 days after the initial diagnosis prior to radiation with a total dose of 0.284 mg in 5.30 ml over 100 hours. Her KPS score was 70 before CED and 50 posttreatment. Serial MRI similarly demonstrated an initial modest reduction in tumor size. The patient subsequently underwent fractionated radiation therapy, but the tumor progressed and she died 120 days after treatment. Topotecan delivered by prolonged CED into the brainstem in children with DIPG is technically feasible. In both patients, high infusion rates (> 0.12 ml/hr) and high infusion volumes (> 2.8 ml) resulted in new neurological deficits and reduction in the KPS score, but lower infusion rates (< 0.04 ml/hr) were well tolerated. While serial MRI showed moderate treatment effect, CED did not prolong survival in these 2 patients. More studies are needed to improve patient selection and determine the optimal flow rates for CED of chemotherapeutic agents into DIPG to maximize safety and efficacy. Clinical trial registration no.: NCT00324844.
Collapse
Affiliation(s)
- Richard C. E. AndersoN
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Benjamin Kennedy
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Candix L. Yanes
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - James Garvin
- Departments of Oncology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Michael Needle
- Departments of Oncology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Peter Canoll
- Departments of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Neil A. Feldstein
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Jeffrey N. Bruce
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
7
|
Kim JH, Astary GW, Nobrega TL, Kantorovich S, Carney PR, Mareci TH, Sarntinoranont M. Dynamic contrast-enhanced MRI of Gd-albumin delivery to the rat hippocampus in vivo by convection-enhanced delivery. J Neurosci Methods 2012; 209:62-73. [PMID: 22687936 PMCID: PMC4192715 DOI: 10.1016/j.jneumeth.2012.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/20/2012] [Accepted: 05/22/2012] [Indexed: 01/08/2023]
Abstract
Convection-enhanced delivery (CED) shows promise in treating neurological diseases due to its ability to circumvent the blood-brain barrier (BBB) and deliver therapeutics directly to the parenchyma of the central nervous system (CNS). Such a drug delivery method may be useful in treating CNS disorders involving the hippocampus such as temporal lobe epilepsy and gliomas; however, the influence of anatomical structures on infusate distribution is not fully understood. As a surrogate for therapeutic agents, we used gadolinium-labeled-albumin (Gd-albumin) tagged with Evans Blue dye to observe the time dependence of CED infusate distributions into the rat dorsal and ventral hippocampus in vivo with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). For finer anatomical detail, final distribution volumes (V(d)) of the infusate were observed with high-resolution T(1)-weighted MR imaging and light microscopy of fixed brain sections. Dynamic images demonstrated that Gd-albumin preferentially distributed within the hippocampus along neuroanatomical structures with less fluid resistance and less penetration was observed in dense cell layers. Furthermore, significant leakage into adjacent cerebrospinal fluid (CSF) spaces such as the hippocampal fissure, velum interpositum and midbrain cistern occurred toward the end of infusion. V(d) increased linearly with infusion volume (V(i)) at a mean V(d)/V(i) ratio of 5.51 ± 0.55 for the dorsal hippocampus infusion and 5.30 ± 0.83 for the ventral hippocampus infusion. This study demonstrated the significant effects of tissue structure and CSF space boundaries on infusate distribution during CED.
Collapse
Affiliation(s)
- Jung Hwan Kim
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Garrett W. Astary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Tatiana L. Nobrega
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | | | - Paul R. Carney
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Department of Neuroscience, University of Florida, Gainesville, FL
- Division of Pediatric Neurology, University of Florida, Gainesville, FL
| | - Thomas H. Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
8
|
The effects of temozolomide delivered by prolonged intracerebral microinfusion against the rat brainstem GBM allograft model. Childs Nerv Syst 2012; 28:707-13. [PMID: 22391876 DOI: 10.1007/s00381-012-1732-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Diffuse intrinsic brainstem gliomas are considered to be inoperable. We report our initial experience of temozolomide (TMZ) administration into brainstem by intracerebral (i.c.) microinfusion using a rat brainstem glioblastoma allograft model. METHODS Forty-eight Fischer 344 female rats were used. In a feasibility study, various doses of i.c.-TMZ (1-10 mg) were administered into the brainstem using AlzetTM pumps in order to evaluate survival rates and neurotoxicity. For tumor implantation, rats received an injection of 10(5) 9 L gliosarcoma cells. For local therapy, 5 days after inoculation, a total amount of 1 mg of TMZ or saline was administered into the brainstem at 1 μl/h over 7 days (n = 8/group). For systemic therapy, rats were treated with an orally administered maximum daily dose of 50 mg/kg TMZ for 5 consecutive days. Survival time and neurological deficit were recorded as outcome parameters. RESULTS In the neurotoxicity study, low dose TMZ (1 mg) was feasible to be administered into brainstem over 7 days without neurological deficit. Using high dose TMZ (5-10 mg), marked neurotoxic effect was observed. In the brainstem tumor study, survival was significantly prolonged in low dose i.c.-TMZ group compared to control rats (median survival 23.5 versus 29.5 days; p < 0.01). Systemic therapy with maximal oral-TMZ dose resulted in longer survival time compared to low dose i.c.-TMZ group (median survival 33.5 versus 29.5 days; p < 0.01). CONCLUSIONS i.c.-TMZ is feasible and effective against rat brainstem glioblastoma allograft. However, we could not show superior potential of i.c.-TMZ compared to oral-TMZ administration. Modification of TMZ infusion with systemic therapy warrants future investigations.
Collapse
|
9
|
White E, Bienemann A, Pugh J, Castrique E, Wyatt M, Taylor H, Cox A, McLeod C, Gill S. An evaluation of the safety and feasibility of convection-enhanced delivery of carboplatin into the white matter as a potential treatment for high-grade glioma. J Neurooncol 2012; 108:77-88. [PMID: 22476649 DOI: 10.1007/s11060-012-0833-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/15/2012] [Indexed: 11/26/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and most aggressive form of intrinsic brain tumour. Despite standard treatment involving surgical resection, chemotherapy and radiotherapy this disease remains incurable with the majority of tumours recurring adjacent to the resection cavity. Consequently there is a clear need to improve local tumour control. Convection-enhanced delivery (CED) is a practical technique for administering chemotherapeutics directly into peritumoural brain. In this study, we have tested the hypothesis that carboplatin would be an appropriate chemotherapeutic agent to administer by CED into peritumoural brain to treat GBM. Within this study we have evaluated the relationships between carboplatin concentration, duration of exposure and tumour cell kill in vitro using GBM cell lines and the relationship between carboplatin concentration and clinical and histological evidence of toxicity in vivo. In addition, we have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to evaluate the distribution properties of carboplatin following CED into rat brain and to determine the rate at which carboplatin is cleared from the brain. Finally, we have compared the distribution properties of carboplatin and the MRI contrast agent gadolinium-DTPA in pig brain. The results of these experiments confirm that carboplatin can be widely distributed by CED and that it remains in the brain for at least 24 h after infusion completion. Furthermore, carboplatin provokes a significant GBM cell kill at concentrations that are not toxic to normal brain. Finally, we provide evidence that gadolinium-DTPA coinfusion is a viable technique for visualising carboplatin distribution using T1-weighted MR imaging.
Collapse
Affiliation(s)
- Edward White
- Functional Neurosurgery Group, Department of Neurosurgery, Frenchay Hospital, Bristol, BS16 1LE, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
MRI of experimental gliomas. Methods Mol Biol 2011. [PMID: 21279617 DOI: 10.1007/978-1-61737-992-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Malignant gliomas are the most frequent primary brain tumours and they are associated with a grim prognosis. In order to elucidate the biological properties of these tumours and to assess treatment responses, valid animal models are needed. We have developed a model where human glioma specimens are operated into the brains of immunodeficient animals. Tumour development is followed by MR imaging and proton spectroscopy. In this chapter, operating procedures and the MR techniques are presented.
Collapse
|
11
|
Siu IM, Tyler BM, Chen JX, Eberhart CG, Thomale UW, Olivi A, Jallo GI, Riggins GJ, Gallia GL. Establishment of a human glioblastoma stemlike brainstem rodent tumor model. J Neurosurg Pediatr 2010; 6:92-7. [PMID: 20593994 DOI: 10.3171/2010.3.peds09366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Diffuse brainstem tumors are the most difficult type of pediatric CNS malignancy to treat. These inoperable lesions are treated with radiation alone or in combination with chemotherapy, and the survival rate is less than 10%. It is therefore essential to develop a reliable animal model to screen new therapeutic agents for the treatment of this type of tumor. METHODS A multipotent human glioblastoma stemlike neurosphere line, 060919, was established from a surgically resected glioblastoma specimen; when cells were implanted intracranially into athymic nude mice, they formed invasive, vascular tumors that exhibited the features of glioblastoma. Ten female Fischer 344 rats received an injection of 75,000 F98 rat glioma cells and 10 female athymic nude rats received an injection of 75,000 060919 human glioblastoma stemlike cells in the pontine tegmentum of the brainstem. A control group of 5 female Fischer rats received an injection of saline in the same location as the animals in the tumor groups. Kaplan-Meier curves were generated for survival, and brains were processed postmortem for histopathological investigation. RESULTS Both F98 cells and 060919 cells grew in 100% of the animals injected. Median survival of animals injected with F98 was 15 days, consistent with the authors' previous reports on the establishment of the brainstem tumor model using the F98 rat glioma line. Median survival of animals injected with 060919 was 31 days. Histopathological analysis of the tumors confirmed the presence of brainstem lesions in animals that received brainstem injections of F98 and in animals that received brainstem injections of 060919. The 060919 brainstem tumors histologically resembled glioblastoma. CONCLUSIONS Tumor take and median survival were consistent for animals injected in the brainstem with either the established F98 rat glioma cell line or the 060919 human glioblastoma stemlike neurosphere line. Histopathological features of the 060919 brainstem tumors resembled glioblastoma. Establishment of this human glioblastoma stemlike brainstem animal model will improve the evaluation and identification of more efficacious agents for the treatment of high-grade brainstem tumors.
Collapse
Affiliation(s)
- I-Mei Siu
- Departments of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang W, Barth RF, Wu G, Huo T, Tjarks W, Ciesielski M, Fenstermaker RA, Ross BD, Wikstrand CJ, Riley KJ, Binns PJ. Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors. J Neurooncol 2009; 95:355-365. [PMID: 19588228 PMCID: PMC2830857 DOI: 10.1007/s11060-009-9945-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
In the present study, we have evaluated a boronated dendrimer-epidermal growth factor (BD-EGF) bioconjugate as a molecular targeting agent for boron neutron capture therapy (BNCT) of the human EGFR gene-transfected F98 rat glioma, designated F98(EGFR). EGF was chemically linked to a heavily boronated polyamidoamine dendrimer (BD) by means of the heterobifunctional reagent, mMBS. Biodistribution studies were carried out at 6 h and 24 h following intratumoral (i.t.) injection or intracerebral (i.c.) convection enhanced delivery (CED) of (125)I-labeled or unlabeled BD-EGF (40 microg (10)B/10 microg EGF) to F98 glioma bearing rats. At 24 h. there was 43% more radioactivity in EGFR(+) tumors following CED compared to i.t. injection, and a doubling of the tumor boron concentration (22.3 microg/g vs. 11.7 microg/g). CED of BD-EGF resulted in a 7.2x increase in the volume of distribution within the infused cerebral hemisphere and a 1.9x increase in tumor uptake of BD-EGF compared with i.t. injection. Based on these favorable biodistribution data, BNCT was carried out at the Massachusetts Institute of Technology nuclear reactor 14 days following i.c. tumor implantation and 24 h. after CED of BD-EGF. These animals had a MST of 54.1 +/- 4.7 days compared to 43.0 +/- 2.8 days following i.t. injection. Rats that received BD-EGF by CED in combination with i.v. boronophenylalanine (BPA), which has been used in both experimental and clinical studies, had a MST of 86.0 +/- 28.1 days compared to 39.8 +/- 1.6 days for i.v. BPA alone (P < 0.01), 30.9 +/- 1.4 days for irradiated controls and 25.1 +/- 1.0 days for untreated controls (overall P < 0.0001). These data have demonstrated that the efficacy of BNCT was significantly increased (P < 0.006), following i.c CED of BD-EGF compared to i.t injection, and that the survival data were equivalent to those previously reported by us using the boronated anti-human-EGF mAb, C225 (cetuximab).
Collapse
Affiliation(s)
- Weilian Yang
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210, USA
| | - Rolf F Barth
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210, USA.
| | - Gong Wu
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210, USA
| | - Tianyao Huo
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210, USA
| | - Werner Tjarks
- Colleges of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Michael Ciesielski
- Department of Neurosurgery, Roswell Park Memorial Institute, Buffalo, NY, USA
| | | | - Brain D Ross
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Carol J Wikstrand
- Department of Microbiology, Saba University School of Medicine, Saba, Netherlands Antilles
- Department of Pathology, Duke University, Durham, NC, USA
| | - Kent J Riley
- The Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Radiation Monitoring Devices, Inc, Watertown, MA, 02172, USA
| | - Peter J Binns
- The Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Radiology, Mount Auburn Hospital, Cambridge, MA, USA
| |
Collapse
|