1
|
Hyslop A, Fajardo M. Neuromodulation in pediatric drug-resistant epilepsy. Epilepsy Behav 2025; 165:110332. [PMID: 40015061 DOI: 10.1016/j.yebeh.2025.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
This is a summary of the three commercially available neuromodulation devices for refractory epilepsy, highlighting their use in children. The article offers a high-level review of the proposed mechanisms of vagus nerve stimulation, responsive neurostimulation, and deep brain stimulation, the pivotal trials leading to their approval for use in the United States, as well as their efficacy and associated adverse effects.
Collapse
Affiliation(s)
- Ann Hyslop
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 750 Welch Rd, Palo Alto, CA 94304, United States.
| | - Marytery Fajardo
- Department of Neurology, Nicklaus Children's Health System, 3100 SW 62nd Ave, Miami, FL 33155, United States.
| |
Collapse
|
2
|
Samanta D, Haneef Z, Albert GW, Naik S, Reeders PC, Jain P, Abel TJ, Al-Ramadhani R, Ibrahim GM, Warren AEL. Neuromodulation strategies in developmental and epileptic encephalopathies. Epilepsy Behav 2024; 160:110067. [PMID: 39393142 DOI: 10.1016/j.yebeh.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of childhood-onset epilepsy syndromes characterized by frequent seizures, severe cognitive and behavioral impairments, and poor long-term outcomes. These conditions are typically refractory to currently available medical therapies, prompting recent exploration of neuromodulation treatments such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), which aim to modulate epileptic networks spanning cortical and subcortical regions. These advances have occurred alongside an improved understanding of syndrome-specific and interictal epileptiform discharge/seizure-specific brain networks. By targeting key nodes within these networks, DBS and RNS hold promise for influencing seizures and associated cognitive and behavioral comorbidities. Initial experiences with centromedian (CM) thalamic DBS for Lennox-Gastaut syndrome (LGS) have shown modest efficacy across multiple seizure types. Reports also indicate the application of DBS and RNS across various genetic and structural etiologies commonly associated with DEEs, with mixed success. Although DBS and RNS are increasingly used in LGS and other DEEs, their mixed efficacy highlights a knowledge gap in understanding why some patients with LGS do not respond and which neuromodulation approach is most effective for other DEEs. To address these issues, this review first discusses recent neuroimaging studies showing similarities and differences in the epileptic brain networks underlying various DEEs, revealing the common involvement of the thalamus and the default-mode network (DMN) across multiple DEEs. We then examine thalamic DBS for LGS to illustrate how such network insights may be used to optimize neuromodulation. Although network-based neuromodulation is still in its infancy, the LGS model may serve as a framework for other DEEs, where optimal treatment necessitates consideration of the underlying epileptic networks. Lastly, the review suggests future research directions, including individualized connectivity assessment and biomarker identification through collaborative efforts, which may enhance the therapeutic potential of neuromodulation for individuals living with DEEs.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Departmen of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruba Al-Ramadhani
- Division of Child Neurology, University of Pittsburgh, Department of Pediatrics, Pittsburgh, PA, USA
| | - George M Ibrahim
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aaron E L Warren
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Abstract
Intracranial neuromodulation is an evolving therapy for patients with drug-resistant epilepsy (DRE). Deep brain stimulation (DBS) is now available as a therapy for patients with DRE and focal-onset seizures in select health care systems; however, there remains a substantial need of efficacy data before DBS can be more widely adopted into routine clinical practice. This review and commentary focuses on a particular shifting paradigm: DBS as a therapy for children with generalized-onset seizures.
Collapse
Affiliation(s)
- Rory J Piper
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurosurgery, Great Ormond Street Hospital, London, UK.
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Martin M Tisdall
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| |
Collapse
|
5
|
Mithani K, Breitbart S, Fasano A, Gorodetsky C, Ibrahim GM. Deep brain stimulation for status dystonicus in a toddler with SCN2A-related disorder. Childs Nerv Syst 2023; 39:3033-3035. [PMID: 37642686 DOI: 10.1007/s00381-023-06136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Affiliation(s)
- Karim Mithani
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada.
| | - Sara Breitbart
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Alfonso Fasano
- Division of Neurology, Toronto Western Hospital, Toronto, ON, Canada
| | | | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
6
|
McEvoy SD, Limbrick DD, Raskin JS. Neurosurgical management of non-spastic movement disorders. Childs Nerv Syst 2023; 39:2887-2898. [PMID: 37522933 PMCID: PMC10613137 DOI: 10.1007/s00381-023-06100-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Non-spastic movement disorders in children are common, although true epidemiologic data is difficult to ascertain. Children are more likely than adults to have hyperkinetic movement disorders defined as tics, dystonia, chorea/athetosis, or tremor. These conditions manifest from acquired or heredodegenerative etiologies and often severely limit function despite medical and surgical management paradigms. Neurosurgical management for these conditions is highlighted. METHODS We performed a focused review of the literature by searching PubMed on 16 May 2023 using key terms related to our review. No temporal filter was applied, but only English articles were considered. We searched for the terms (("Pallidotomy"[Mesh]) OR "Rhizotomy"[Mesh]) OR "Deep Brain Stimulation"[Mesh], dystonia, children, adolescent, pediatric, globus pallidus, in combination. All articles were reviewed for inclusion in the final reference list. RESULTS Our search terms returned 37 articles from 2004 to 2023. Articles covering deep brain stimulation were the most common (n = 34) followed by pallidotomy (n = 3); there were no articles on rhizotomy. DISCUSSION Non-spastic movement disorders are common in children and difficult to treat. Most of these patients are referred to neurosurgery for the management of dystonia, with modern neurosurgical management including pallidotomy, rhizotomy, and deep brain stimulation. Historically, pallidotomy has been effective and may still be preferred in subpopulations presenting either in status dystonicus or with high risk for hardware complications. Superiority of DBS over pallidotomy for secondary dystonia has not been determined. Rhizotomy is an underutilized surgical tool and more study characterizing efficacy and risk profile is indicated.
Collapse
Affiliation(s)
- Sean D McEvoy
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, Brookings, MO, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, Brookings, MO, USA
| | - Jeffrey Steven Raskin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| |
Collapse
|
7
|
Vogt LM, Yan H, Santyr B, Breitbart S, Anderson M, Germann J, Lizarraga KJ, Hewitt AL, Fasano A, Ibrahim GM, Gorodetsky C. Deep Brain Stimulation for Refractory Status Dystonicus in Children: Multicenter Case Series and Systematic Review. Ann Neurol 2023. [PMID: 37714824 DOI: 10.1002/ana.26799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE We sought to better understand the workflow, outcomes, and complications of deep brain stimulation (DBS) for pediatric status dystonicus (SD). We present a systematic review, alongside a multicenter case series of pediatric patients with SD treated with DBS. METHODS We collected individual data regarding treatment, stimulation parameters, and dystonia severity for a multicenter case series (n = 8) and all previously published cases (n = 77). Data for case series were used to create probabilistic voxelwise maps of stimulated tissue associated with dystonia improvement. RESULTS In our institutional series, DBS was implanted a mean of 25 days after SD onset. Programming began a mean of 1.6 days after surgery. All 8 patients in our case series and 73 of 74 reported patients in the systematic review had resolution of their SD with DBS, most within 2 to 4 weeks of surgery. Mean follow-up for patients in the case series was 16 months. DBS target for all patients in the case series and 68 of 77 in our systematic review was the globus pallidus pars interna (GPi). In our case series, stimulation of the posterior-ventrolateral GPi was associated with improved dystonia. Mean dystonia improvement was 32% and 51% in our institutional series and systematic review, respectively. Mortality was 4% in the review, which is lower than reported for treatment with pharmacotherapy alone (10-12.5%). INTERPRETATION DBS is a feasible intervention with potential to reverse refractory pediatric SD and improve survival. More work is needed to increase awareness of DBS in this setting, so that it can be implemented in a timely manner. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Lindsey M Vogt
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brendan Santyr
- Krembil Brain Institute, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
| | - Sara Breitbart
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melanie Anderson
- Library Services, University Health Network, Toronto, Ontario, Canada
| | - Jürgen Germann
- Krembil Brain Institute, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
| | - Karlo J Lizarraga
- Motor Physiology and Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Angela L Hewitt
- Motor Physiology and Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
- Division of Child Neurology, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alfonso Fasano
- Krembil Brain Institute, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Kostick-Quenet K, Kalwani L, Torgerson L, Muñoz K, Sanchez C, Storch EA, Blumenthal-Barby J, Lázaro-Muñoz G. Deep Brain Stimulation for Pediatric Dystonia: Clinicians' Perspectives on the Most Pressing Ethical Challenges. Stereotact Funct Neurosurg 2023; 101:301-313. [PMID: 37844562 PMCID: PMC10586720 DOI: 10.1159/000530694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/30/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Pediatric deep brain stimulation (pDBS) is commonly used to manage treatment-resistant primary dystonias with favorable results and more frequently used for secondary dystonia to improve quality of life. There has been little systematic empirical neuroethics research to identify ethical challenges and potential solutions to ensure responsible use of DBS in pediatric populations. METHODS Clinicians (n = 29) who care for minors with treatment-resistant dystonia were interviewed for their perspectives on the most pressing ethical issues in pDBS. RESULTS Using thematic content analysis to explore salient themes, clinicians identified four pressing concerns: (1) uncertainty about risks and benefits of pDBS (22/29; 72%) that poses a challenge to informed decision-making; (2) ethically navigating decision-making roles (15/29; 52%), including how best to integrate perspectives from diverse stakeholders (patient, caregiver, clinician) and how to manage surrogate decisions on behalf of pediatric patients with limited capacity to make autonomous decisions; (3) information scarcity effects on informed consent and decision quality (15/29; 52%) in the context of patient and caregivers' expectations for treatment; and (4) narrow regulatory status and access (7/29; 24%) such as the lack of FDA-approved indications that contribute to decision-making uncertainty and liability and potentially limit access to DBS among patients who may benefit from it. CONCLUSION These results suggest that clinicians are primarily concerned about ethical limitations of making difficult decisions in the absence of informational, regulatory, and financial supports. We discuss two solutions already underway, including supported decision-making to address uncertainty and further data sharing to enhance clinical knowledge and discovery.
Collapse
Affiliation(s)
- Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Lavina Kalwani
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Katrina Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Clarissa Sanchez
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Eric A. Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical School, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Bergeron D, Iorio-Morin C, Bonizzato M, Lajoie G, Orr Gaucher N, Racine É, Weil AG. Use of Invasive Brain-Computer Interfaces in Pediatric Neurosurgery: Technical and Ethical Considerations. J Child Neurol 2023; 38:223-238. [PMID: 37116888 PMCID: PMC10226009 DOI: 10.1177/08830738231167736] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/11/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
Invasive brain-computer interfaces hold promise to alleviate disabilities in individuals with neurologic injury, with fully implantable brain-computer interface systems expected to reach the clinic in the upcoming decade. Children with severe neurologic disabilities, like quadriplegic cerebral palsy or cervical spine trauma, could benefit from this technology. However, they have been excluded from clinical trials of intracortical brain-computer interface to date. In this manuscript, we discuss the ethical considerations related to the use of invasive brain-computer interface in children with severe neurologic disabilities. We first review the technical hardware and software considerations for the application of intracortical brain-computer interface in children. We then discuss ethical issues related to motor brain-computer interface use in pediatric neurosurgery. Finally, based on the input of a multidisciplinary panel of experts in fields related to brain-computer interface (functional and restorative neurosurgery, pediatric neurosurgery, mathematics and artificial intelligence research, neuroengineering, pediatric ethics, and pragmatic ethics), we then formulate initial recommendations regarding the clinical use of invasive brain-computer interfaces in children.
Collapse
Affiliation(s)
- David Bergeron
- Division of Neurosurgery, Université de Montréal, Montreal, Québec, Canada
| | | | - Marco Bonizzato
- Electrical Engineering Department, Polytechnique Montréal, Montreal, Québec, Canada
- Neuroscience Department and Centre
interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Lajoie
- Mathematics and Statistics Department, Université de Montréal, Montreal, Québec, Canada
- Mila - Québec AI Institute, Montréal,
Québec, Canada
| | - Nathalie Orr Gaucher
- Department of Pediatric Emergency
Medicine, CHU Sainte-Justine, Montréal, Québec, Canada
- Bureau de l’Éthique clinique, Faculté
de médecine de l’Université de Montréal, Montreal, Québec, Canada
| | - Éric Racine
- Pragmatic Research Unit, Institute de
Recherche Clinique de Montréal (IRCM), Montreal, Québec, Canada
- Department of Medicine and Department
of Social and Preventative Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Alexander G. Weil
- Division of Neurosurgery, Department
of Surgery, Centre Hospitalier Universitaire Sainte-Justine (CHUSJ), Département de
Pédiatrie, Université de Montréal, Montreal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
- Brain and Development Research Axis,
CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| |
Collapse
|
10
|
Zhou J, Li W, Wen X, Zeng D, Lin J, Chen S, Zang N, Deng Y, Xie X, Ren L, Liu E. Establishing a patient registry study database of dust mite allergic asthma in children: design, methodology and preliminary exploration. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:993. [PMID: 34277793 PMCID: PMC8267296 DOI: 10.21037/atm-21-2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022]
Abstract
Background Asthma is a heterogeneous disease with different phenotypes, endotypes and responses to treatment. Dust mite allergic asthma (DMAA) is the most common type in children. Compared with randomized control trials, a patient registry study (PRS) can reflect the real physical condition and clinical diagnosis more comprehensively. Methods Children who visited the asthma clinic of the Children’s Hospital of Chongqing Medical University between August 2018 and August 2020, and met the inclusion criteria and also agreed to participate, were enrolled in the registry study. Clinical information, laboratory tests and peripheral blood samples were collected after informed consent was given by guardians. Results To date, 208 children have been enrolled in the patient registry database of DMAA. They are mainly male, with >50% having a history of allergic rhinitis, cesarean section, positive family history and passive smoking. Eosinophils and total immunoglobulin E levels were all significantly higher than normal. According to results for the childhood asthma control test (c-ACT) and ratio of forced expiratory volume in 1 s to predicted value after inhaled corticosteroid treatment, the uncontrolled group had higher hemoglobin (Hb) levels than the control group. The group exhibiting abnormal pulmonary function was older, and had longer disease duration, higher fractional exhaled nitric oxide and Hb than the group in which pulmonary function was restored. Conclusions We have preliminarily established a registered study database of children with DMAA. By cluster analysis and using blood samples, we can further study the different pathophysiological mechanisms in order to provide more individualized and targeted treatments for all children.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Weiguo Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiang Wen
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dan Zeng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jilei Lin
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shiyi Chen
- Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Pediatric Research Institute Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Luo Ren
- Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Pediatric Research Institute Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|