1
|
Protective Effect of Oxygen and Isoflurane in Rodent Model of Intestinal Ischemia-Reperfusion Injury. Int J Mol Sci 2023; 24:ijms24032587. [PMID: 36768910 PMCID: PMC9917127 DOI: 10.3390/ijms24032587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Animal research in intestinal ischemia-reperfusion injury (IRI) is mainly performed in rodent models. Previously, intraperitoneal (I.P.) injections with ketamine-xylazine mixtures were used. Nowadays, volatile anesthetics (isoflurane) are more common. However, the impact of the anesthetic method on intestinal IRI has not been investigated. We aim to analyze the different anesthetic methods and their influence on the extent of intestinal IRI in a rat model. Male Sprague-Dawley rats were used to investigate the effect of I.P. anesthesia on 60 min of intestinal ischemia and 60 min of reperfusion in comparison to hyperoxygenation (100% O2) and volatile isoflurane anesthesia. In comparison to I.P. anesthesia with room air (21% O2), supplying 100% O2 improved 7-day survival by cardiovascular stabilization, reducing lactic acidosis and preventing vascular leakage. However, this had no effect on the intestinal epithelial damage, permeability, and inflammatory response observed after intestinal IRI. In contrast to I.P. + 100% O2, isoflurane anesthesia reduced intestinal IRI by preventing ongoing low-flow reperfusion hypotension, limiting intestinal epithelial damage and permeability, and by having anti-inflammatory effects. When translating the aforementioned results of this study to clinical situations, such as intestinal ischemia or transplantation, the potential protective effects of hyperoxygenation and volatile anesthetics require further research.
Collapse
|
2
|
Liraglutide attenuates intestinal ischemia/reperfusion injury via NF-κB and PI3K/Akt pathways in mice. Life Sci 2022; 309:121045. [DOI: 10.1016/j.lfs.2022.121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
3
|
Keschenau PR, Ribbe S, Tamm M, Hanssen SJ, Tolba R, Jacobs MJ, Kalder J. Extracorporeal circulation increases proliferation in the intestinal mucosa in a large animal model. J Vasc Surg 2015; 64:1121-33. [PMID: 26190050 DOI: 10.1016/j.jvs.2015.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/29/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Extracorporeal circulation induces ischemia/reperfusion injury in the small intestinal wall. One reason for this damage is a perfusion shift from the muscular toward the mucosal layer. This study investigated the effect of this perfusion shift on the small-intestinal apoptosis and proliferation. METHODS Twenty-eight pigs were randomly assigned to the following cohorts and underwent a thoracolaparotomy and a 1 hour main procedure: cohort I: control; cohort II: thoracic aortic cross-clamping (TAC) without perfusion; cohort III: TAC and distal aortic perfusion (DAP); cohort IV: TAC, DAP, and selective visceral perfusion. The main procedure was followed by 2 hours of reperfusion in all cohorts. Tissue samples were taken during the experiment, stained, and analyzed for apoptosis and proliferation (caspase-3, annexin-V, terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling, and proliferating cell nuclear antigen). Six animals died unexpectedly during the experiment and were excluded from the analysis. RESULTS Extensive tissue damage and necrosis was only found in cohort II after the main procedure. In the mucosa, the proliferation was increased in cohort III at the end of the experiment (P = .0157 cohort I vs II). In contrast, the annexin-V/proliferating cell nuclear antigen ratio was significantly higher in cohorts II and IV than in cohorts I and II at the end of the experiment (P = .0034). Furthermore, the caspase-3/annexin-V ratio was increased in all cohorts at the end of the experiment (P = .0015). CONCLUSIONS Mucosal proliferation is the early repair mechanism of the limited small intestinal ischemia/reperfusion injury after DAP. Furthermore, the extensive surgical trauma shifted the mucosal apoptosis into an advanced state.
Collapse
Affiliation(s)
- Paula Rosalie Keschenau
- European Vascular Center Aachen-Maastricht, Department of Vascular Surgery, Rheinisch-Westfälische Technische Hochschule University Hospital Aachen, Aachen, Germany
| | - Stefanie Ribbe
- European Vascular Center Aachen-Maastricht, Department of Vascular Surgery, Rheinisch-Westfälische Technische Hochschule University Hospital Aachen, Aachen, Germany
| | - Miriam Tamm
- Department of Medical Statistics, Rheinisch-Westfälische Technische Hochschule University Hospital Aachen, Aachen, Germany
| | - Sebastiaan J Hanssen
- European Vascular Center Aachen-Maastricht, Department of Surgery, Maastricht University Hospital, Maastricht, The Netherlands
| | - René Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Rheinisch-Westfälische Technische Hochschule University Hospital Aachen, Aachen, Germany
| | - Michael J Jacobs
- European Vascular Center Aachen-Maastricht, Department of Vascular Surgery, Rheinisch-Westfälische Technische Hochschule University Hospital Aachen, Aachen, Germany; European Vascular Center Aachen-Maastricht, Department of Surgery, Maastricht University Hospital, Maastricht, The Netherlands.
| | - Johannes Kalder
- European Vascular Center Aachen-Maastricht, Department of Vascular Surgery, Rheinisch-Westfälische Technische Hochschule University Hospital Aachen, Aachen, Germany
| |
Collapse
|
4
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
5
|
Abstract
We evaluated the effects of hyperoxia on pulmonary inflammatory changes in sepsis induced by cecal ligation and puncture (CLP) in rats. Seven groups were studied: sham-operated rats breathing air for 20 or 48 h; CLP breathing air for 20 or 48 h; and CLP + 100% oxygen for 20 h, or 70% oxygen for 48 h, or 100% oxygen intermittently (6 h/d) for 48 h. Video microscopy was used to monitor lung macromolecular leak, microvascular flow velocity, and shear rates, and lung morphometry was used for leukocyte infiltration and solid tissue area. Cell counts, tumor necrosis factor α, and nitrites were determined in peripheral blood and lung lavage fluid. Expression of adhesion molecules in blood leukocytes was evaluated by flow cytometry. Cecal ligation and puncture induced inflammation manifested in leukopenia, left shift, thrombocytopenia, increased expression of L selectin and CD11, increased serum and lavage fluid tumor necrosis factor α and leukocytes, and increased lung tissue area, macromolecular leak, and sequestration of leukocytes. Inhalation of 100% oxygen for 20 h increased nitrites (P < 0.01) and decreased leukocyte count in lavage fluid (P < 0.05) and attenuated lung macromolecular leak and changes in solid tissue area (P < 0.01). Inhalation of 70% oxygen (48 h) attenuated expression of adhesion molecules (P < 0.001) but failed to attenuate markers of lung inflammation. In contrast, intermittent 100% oxygen exerted favorable effects on markers of inflammation, attenuated leukocyte expression of L selectin and CD11 (P < 0.01), decreased pulmonary sequestration of leukocytes (P < 0.001), and ameliorated changes in macromolecular leak (P < 0.01) and lung solid tissue area (P < 0.05). Our data support the beneficial effects of safe subtoxic regimens of normobaric hyperoxia on the systemic and pulmonary inflammatory response following CLP.
Collapse
|
6
|
Selectins and Associated Adhesion Proteins in Inflammatory disorders. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121831 DOI: 10.1007/978-3-7091-1065-2_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is defined as the normal response of living tissue to injury or infection. It is important to emphasize two components of this definition. First, that inflammation is a normal response and, as such, is expected to occur when tissue is damaged. Infact, if injured tissue does not exhibit signs of inflammation this would be considered abnormal and wounds and infections would never heal without inflammation. Secondly, inflammation occurs in living tissue, hence there is need for an adequate blood supply to the tissues in order to exhibit an inflammatory response. The inflammatory response may be triggered by mechanical injury, chemical toxins, and invasion by microorganisms, and hypersensitivity reactions. Three major events occur during the inflammatory response: the blood supply to the affected area is increased substantially, capillary permeability is increased, and leucocytes migrate from the capillary vessels into the surrounding interstitial spaces to the site of inflammation or injury. The inflammatory response represents a complex biological and biochemical process involving cells of the immune system and a plethora of biological mediators. Cell-to-cell communication molecules such as cytokines play an extremely important role in mediating the process of inflammation. Inflammation and platelet activation are critical phenomena in the setting of acute coronary syndromes. An extensive exposition of this complex phenomenon is beyond the scope of this article (Rankin 2004).
Collapse
|
7
|
Köhler HF, Delucca IMS, Sbragia Neto L. Antioxidantes enterais em lesões de isquemia e reperfusão em ratos. Rev Col Bras Cir 2011; 38:422-8. [DOI: 10.1590/s0100-69912011000600010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/04/2011] [Indexed: 11/22/2022] Open
Abstract
OBJETIVO: Avaliar o papel do pré-tratamento com antioxidantes dietéticos em um modelo experimental de lesão intestinal de isquemia-reperfusão (I/R) em ratos. MÉTODOS: Noventa ratos Wistar adultos machos foram utilizados. Um segmento intestinal foi isolado baseado em seu pedículo vascular. Uma biópsia controle foi realizada e o pedículo foi seccionado e anastomosado novamente, garantindo um tempo de isquemia de 60 minutos, seguido por reperfusão. Biópsias sequenciais foram realizadas ao término do período isquêmico e a cada 15 minutos, durante a reperfusão. O tratamento consistiu de solução salina ou vitamina C ou vitamina E ou a associação destas. Avaliações quantitativa e qualitativa das biópsias foram realizadas. RESULTADOS: Os grupos tratados com vitamina E isolada ou associada com vitamina C apresentaram uma atenuação estatisticamente significativa da lesão de isquemia-reperfusão, com diminuição da perda de altura dos vilos e menor infiltração neutrofílica ao final do estudo quando comparados ao grupo controle e vitamina C exclusiva. CONCLUSÃO: Neste modelo experimental de isquemia-reperfusão, o pré-tratamento com vitamina E atenuou a lesão de I/R no intestino delgado, demonstrado pela diminuição da perda de altura dos vilos e pela atenuação da infiltração neutrofílica.
Collapse
|
8
|
Thoracic epidural bupivacaine attenuates inflammatory response, intestinal lipid peroxidation, oxidative injury, and mucosal apoptosis induced by mesenteric ischemia/reperfusion. Anesth Analg 2011; 113:1226-32. [PMID: 21865496 DOI: 10.1213/ane.0b013e31822b8984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND We conducted this study to evaluate the effects of thoracic epidural anesthesia (TEA) on inflammatory response, lipid peroxidation, and oxidative stress in a rat model of mesenteric ischemia/reperfusion (I/R). METHOD Rats were divided into 4 groups: sham group (n=6; sham laparotomy), control group (n=6; I/R), bupivacaine group (n=6; mesenteric I/R and 20 μL/h 0.5% bupivacaine), and saline group (n=6, mesenteric I/R and 20 μL/h 0.9% saline). I/R injury was established by occluding the superior mesenteric artery for 1 hour followed by 12 hours reperfusion. Blood gas, tumor necrosis factor-α, interleukin-6, interleukin-1β, glutathione peroxidise, superoxide dismutase, catalese, myeloperoxidase concentrations, immunohistochemical examinations (intracellular adhesion molecule-1), apoptosis determination, and wet/dry ratio of intestinal edema were determined. RESULTS Bupivacaine significantly decreased the cytokine, malondialdehyde, and myeloperoxidase levels and increased the antioxidant enzyme levels. Wet/dry ratio comparison showed a significant decrease in the bupivacaine (2.88±0.17) group in comparison with control (5.45±0.67) and saline (5.87±0.17) groups. The intestinal injury score was significantly decreased in rats in the epidural bupivacaine (2 [1-2]) infusion group in comparison with rats in the control (3 [2-3]) and saline (3 [2-4]) groups. Bupivacaine (63%) caused a significant decrease in the percentage of apoptotic cells in comparison with control (85%) only. ICAM-1 levels in the bupivacaine (27.4±7.1) group decreased in comparison with control (12.3±7.4) and saline (24.9±3.2) groups. CONCLUSION This study demonstrated that epidural bupivacaine attenuates the mesenteric I/R-related inflammatory response and intestinal damage.
Collapse
|
9
|
Liu W, Khatibi N, Sridharan A, Zhang JH. Application of medical gases in the field of neurobiology. Med Gas Res 2011; 1:13. [PMID: 22146102 PMCID: PMC3231869 DOI: 10.1186/2045-9912-1-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/27/2011] [Indexed: 12/11/2022] Open
Abstract
Medical gases are pharmaceutical molecules which offer solutions to a wide array of medical needs. This can range from use in burn and stroke victims to hypoxia therapy in children. More specifically however, gases such as oxygen, helium, xenon, and hydrogen have recently come under increased exploration for their potential theraputic use with various brain disease states including hypoxia-ischemia, cerebral hemorrhages, and traumatic brain injuries. As a result, this article will review the various advances in medical gas research and discuss the potential therapeutic applications and mechanisms with regards to the field of neurobiology.
Collapse
Affiliation(s)
- Wenwu Liu
- Department of Anesthesiology, Loma Linda Medical Center, Loma Linda, California, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
The current practice of mechanical ventilation comprises the use of the least inspiratory O2 fraction associated with an arterial O2 tension of 55 to 80 mm Hg or an arterial hemoglobin O2 saturation of 88% to 95%. Early goal-directed therapy for septic shock, however, attempts to balance O2 delivery and demand by optimizing cardiac function and hemoglobin concentration, without making use of hyperoxia. Clearly, it has been well-established for more than a century that long-term exposure to pure O2 results in pulmonary and, under hyperbaric conditions, central nervous O2 toxicity. Nevertheless, several arguments support the use of ventilation with 100% O2 as a supportive measure during the first 12 to 24 hrs of septic shock. In contrast to patients without lung disease undergoing anesthesia, ventilation with 100% O2 does not worsen intrapulmonary shunt under conditions of hyperinflammation, particularly when low tidal volume-high positive end-expiratory pressure ventilation is used. In healthy volunteers and experimental animals, exposure to hyperoxia may cause pulmonary inflammation, enhanced oxidative stress, and tissue apoptosis. This, however, requires long-term exposure or injurious tidal volumes. In contrast, within the timeframe of a perioperative administration, direct O2 toxicity only plays a negligible role. Pure O2 ventilation induces peripheral vasoconstriction and thus may counteract shock-induced hypotension and reduce vasopressor requirements. Furthermore, in experimental animals, a redistribution of cardiac output toward the kidney and the hepato-splanchnic organs was observed. Hyperoxia not only reverses the anesthesia-related impairment of the host defense but also is an antibiotic. In fact, perioperative hyperoxia significantly reduced wound infections, and this effect was directly related to the tissue O2 tension. Therefore, we advocate mechanical ventilation with 100% O2 during the first 12 to 24 hrs of septic shock. However, controlled clinical trials are mandatory to test the safety and efficacy of this approach.
Collapse
|
11
|
|
12
|
Guzmán-De La Garza FJ, Cámara-Lemarroy CR, Ballesteros-Elizondo RG, Alarcón-Galván G, Cordero-Pérez P, Fernández-Garza NE. Ketamine reduces intestinal injury and inflammatory cell infiltration after ischemia/reperfusion in rats. Surg Today 2010; 40:1055-62. [DOI: 10.1007/s00595-009-4177-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 08/26/2009] [Indexed: 12/17/2022]
|
13
|
Abstract
Oxygen is one of the most commonly used therapeutic agents. Injudicious use of oxygen at high partial pressures (hyperoxia) for unproven indications, its known toxic potential, and the acknowledged roles of reactive oxygen species in tissue injury led to skepticism regarding its use. A large body of data indicates that hyperoxia exerts an extensive profile of physiologic and pharmacologic effects that improve tissue oxygenation, exert anti-inflammatory and antibacterial effects, and augment tissue repair mechanisms. These data set the rationale for the use of hyperoxia in a list of clinical conditions characterized by tissue hypoxia, infection, and consequential impaired tissue repair. Data on regional hemodynamic effects of hyperoxia and recent compelling evidence on its anti-inflammatory actions incited a surge of interest in the potential therapeutic effects of hyperoxia in myocardial revascularization and protection, in traumatic and nontraumatic ischemicanoxic brain insults, and in prevention of surgical site infections and in alleviation of septic and nonseptic local and systemic inflammatory responses. Although the margin of safety between effective and potentially toxic doses of oxygen is relatively narrow, the ability to carefully control its dose, meticulous adherence to currently accepted therapeutic protocols, and individually tailored treatment regimens make it a cost-effective safe drug.
Collapse
Affiliation(s)
- Haim Bitterman
- Department of Internal Medicine, Carmel Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
14
|
Xue F, Wang G, Pang Z, Liu C, Liang T. Protective Effect of Glutathione Against Liver Warm Ischemia-Reperfusion Injury in Rats is Associated with Regulation of P-Selectin and Neutrophil Infiltration. Anat Rec (Hoboken) 2008; 291:1016-22. [DOI: 10.1002/ar.20725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Moon Y, Kim J, Lee YM. Presumptive Role of Neutrophilic Oxidative Stress in Oxygen-induced Acute Lung Injury in Rats. Tuberc Respir Dis (Seoul) 2008. [DOI: 10.4046/trd.2008.65.6.464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yongsuck Moon
- Department of Anatomy, Catholic University of Daegu, School of Medicine, Daegu, Korea
| | - Jihye Kim
- Department of Physiology, Catholic University of Daegu, School of Medicine, Daegu, Korea
| | - Young Man Lee
- Department of Physiology, Catholic University of Daegu, School of Medicine, Daegu, Korea
| |
Collapse
|