1
|
Kurkin DV, Bakupin DA, Morkovin EI, Krysanov IS, Makarova EV, Tsaplina AP, Klabukova DL, Ivanova OV, Gorbunova YV, Dzhavakhyan MA, Zvereva VI, Kolosov YA, Aleshnikova KY. Thalidomide: History of Research and Perspectives for Its Medical Use (Review). Pharm Chem J 2024; 58:1001-1010. [DOI: 10.1007/s11094-024-03236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 01/04/2025]
|
2
|
Tao Y, Xu X, Shen R, Miao X, He S. Roles of ubiquitin‑specific protease 13 in normal physiology and tumors (Review). Oncol Lett 2024; 27:58. [PMID: 38192665 PMCID: PMC10773187 DOI: 10.3892/ol.2023.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Ubiquitin-specific protease 13 (USP13) is one of the most important deubiquitinases involved in various diseases. As deubiquitinases are components of the deubiquitination process, a significant post-translational modification, they are potential treatment targets for different diseases. With recent technological developments, the structure of USP13 and its pathological and physiological functions have been investigated. However, USP13 expression and function differ in various diseases, especially in tumors, and the associated mechanisms are complex and remain to be fully investigated. The present review summarized the recent discoveries and the current understanding of the USP13 function in tumors.
Collapse
Affiliation(s)
- Yun Tao
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xiaohong Xu
- Department of Hematological Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Rong Shen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
3
|
Ciaccio R, De Rosa P, Aloisi S, Viggiano M, Cimadom L, Zadran SK, Perini G, Milazzo G. Targeting Oncogenic Transcriptional Networks in Neuroblastoma: From N-Myc to Epigenetic Drugs. Int J Mol Sci 2021; 22:12883. [PMID: 34884690 PMCID: PMC8657550 DOI: 10.3390/ijms222312883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NB) is one of the most frequently occurring neurogenic extracranial solid cancers in childhood and infancy. Over the years, many pieces of evidence suggested that NB development is controlled by gene expression dysregulation. These unleashed programs that outline NB cancer cells make them highly dependent on specific tuning of gene expression, which can act co-operatively to define the differentiation state, cell identity, and specialized functions. The peculiar regulation is mainly caused by genetic and epigenetic alterations, resulting in the dependency on a small set of key master transcriptional regulators as the convergence point of multiple signalling pathways. In this review, we provide a comprehensive blueprint of transcriptional regulation bearing NB initiation and progression, unveiling the complexity of novel oncogenic and tumour suppressive regulatory networks of this pathology. Furthermore, we underline the significance of multi-target therapies against these hallmarks, showing how novel approaches, together with chemotherapy, surgery, or radiotherapy, can have substantial antineoplastic effects, disrupting a wide variety of tumorigenic pathways through combinations of different treatments.
Collapse
|
4
|
Ouyang J, Sun L, Pan J, Zeng Z, Zeng C, Zeng F, Tian M, Wu S. A Targeted Nanosystem for Detection of Inflammatory Diseases via Fluorescent/Optoacoustic Imaging and Therapy via Modulating Nrf2/NF-κB Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102598. [PMID: 34523220 DOI: 10.1002/smll.202102598] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/06/2021] [Indexed: 05/05/2023]
Abstract
Inflammatory diseases are sometimes devastating and notoriously difficult to treat. Precisely modulating inflammatory signaling pathways is a promising approach for treating inflammatory diseases. Herein, a multifunctional nanosystem is developed for active targeting, activatable imaging and on-demand therapy against inflammatory diseases through modulating inflammatory pathways. A chromophore-drug dyad (QBS-FIS) is synthesized by linking a chromophore and a Nrf2 (nuclear factor E2-related factor) activator fisetin through boronate bond which serves as fluorescence quencher and ROS (reactive oxygen species)-responsive linker. QBS-FIS molecules form nanoparticles in water and are coated with macrophage cell membrane to ensure active targeting toward inflammation site. To further improve therapeutic efficacy, a NF-kB (nuclear-factor kappa-light-chain-enhancer of activated B cells) inhibitor thalidomide is co-encapsulated to afford the nanosystem (QBS-FIS&Thd@MM). Upon administration into mice, the nanosystem migrates to inflammatory site and pathological ROS therein cleaves the boronate bonds, thereby activating the chromophore for imaging liver/kidney inflammatory diseases for disease diagnosis and recovery evaluation via fluorescence and optoacoustic imaging as well as releasing the active drugs for treating acute liver inflammation through activating Nrf2 pathway and inhibiting NF-kB pathway. The 3D multispectral optoacoustic tomography imaging is applied to precisely locate the inflammatory foci in a spatiotemporal manner.
Collapse
Affiliation(s)
- Juan Ouyang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Jiayue Pan
- Medical Center, Zhejiang University, Hangzhou, 310009, China
| | - Zhuo Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Cheng Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Mei Tian
- Medical Center, Zhejiang University, Hangzhou, 310009, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| |
Collapse
|
5
|
Du L, Zhang L, Li L, Li X, Yan J, Wang X, Fu X, Sun Z, Zhang X, Li Z, Wu J, Yu H, Chang Y, Zhou Z, Nan F, Wu X, Tian L, Zhang M. Effective Treatment with PD-1 Antibody, Chidamide, Etoposide, and Thalidomide (PCET) for Relapsed/Refractory Natural Killer/T-Cell Lymphoma: A Report of Three Cases. Onco Targets Ther 2020; 13:7189-7197. [PMID: 32801749 PMCID: PMC7394590 DOI: 10.2147/ott.s262039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Extranodal natural killer (NK)/T-cell lymphoma, nasal type (ENKTL) is a specific subtype of peripheral T cell lymphoma (PTCL) with a poor prognosis. To date, there exist no standard therapeutic regimens for relapsed/refractory (R/R) ENKTL. More potent treatment strategies are urgently needed to improve the survival of these patients with R/R ENKTL. Herein, we present three R/R ENKTL patients who failed prior therapies (L-asparaginase containing chemotherapy, radiotherapy or biological-cell therapy, etc.) benefited from the combination regimen comprised of anti-programmed-death-1 (PD-1) antibody toripalimab, chidamide, etoposide, and thalidomide. They received the treatment regimen continuously until the disease progression occurs. As of data collection, two patients achieved complete remission (CR) after 4, 6 cycles of treatment, respectively, and another patient was evaluated as partial remission (PR) after 2 cycles. Treatment-related adverse events (AEs) mainly presented grade 2~3 leukocytopenia and anemia, which were controllable. It follows that PD-1 antibody, chidamide, etoposide, and thalidomide (PCET) regimen may be a promising choice for patients with R/R ENKTL and warrants further investigation.
Collapse
Affiliation(s)
- Lijun Du
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Lei Zhang
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Ling Li
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Xin Li
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Jiaqin Yan
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Xinhua Wang
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Xiaorui Fu
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Zhenchang Sun
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Xudong Zhang
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Zhaoming Li
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Jingjing Wu
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Hui Yu
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Yu Chang
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Zhiyuan Zhou
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Feifei Nan
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Xiaolong Wu
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Li Tian
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Mingzhi Zhang
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
6
|
Tang KW, Lin ZC, Wang PW, Alalaiwe A, Tseng CH, Fang JY. Facile skin targeting of a thalidomide analog containing benzyl chloride moiety alleviates experimental psoriasis via the suppression of MAPK/NF-κB/AP-1 phosphorylation in keratinocytes. J Dermatol Sci 2020; 99:90-99. [PMID: 32622642 DOI: 10.1016/j.jdermsci.2020.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Thalidomide can be a TNF-α inhibitor for treating skin inflammation. This drug exhibits a strong toxicity that limits its application. OBJECTIVE We synthesized a thalidomide analog containing the benzyl chloride group (2-[1-(3-chlorobenzyl)-2,6-dioxopiperidin-3-yl]isoindoline-1,3-dione, CDI) to examine anti-inflammatory activity against psoriasis. METHODS The evaluation was conducted by the experimental platforms of in vitro TNF-α- or imiquimod (IMQ)-stimulated HaCaT cells and in vivo IMQ-induced psoriasiform plaque. RESULTS Using the in vitro keratinocyte model, we demonstrated a greater inhibition of IL-1β, IL-6, and IL-24 by CDI than by thalidomide. No significant cytotoxicity was observed at 100 μM. CDI delivered facilely into the skin with a cutaneous targeting ability 228-fold greater than thalidomide. CDI caused a negligible irritation on healthy mouse skin. We showed that topically applied CDI reduced IMQ-induced red scaly lesions, hyperplasia, microabscesses, and cytokine expression in the mouse model. The skin-barrier function measured by transepidermal water loss (TEWL) could be partially recovered from 50.6-36.3 g/m2/h by CDI. The mechanistic study showed that CDI suppressed cytokine production by inhibiting the phosphorylation of NF-κB and AP-1 via MAPK pathways. CONCLUSION CDI would be beneficial for the development of a therapeutic agent against psoriasis.
Collapse
Affiliation(s)
- Kai-Wei Tang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zih-Chan Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Pillaiyar T, Meenakshisundaram S, Manickam M, Sankaranarayanan M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. Eur J Med Chem 2020; 195:112275. [PMID: 32283298 PMCID: PMC7156148 DOI: 10.1016/j.ejmech.2020.112275] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Drug repurposing is a strategy consisting of finding new indications for already known marketed drugs used in various clinical settings or highly characterized compounds despite they can be failed drugs. Recently, it emerges as an alternative approach for the rapid identification and development of new pharmaceuticals for various rare and complex diseases for which lack the effective drug treatments. The success rate of drugs repurposing approach accounts for approximately 30% of new FDA approved drugs and vaccines in recent years. This review focuses on the status of drugs repurposing approach for various diseases including skin diseases, infective, inflammatory, cancer, and neurodegenerative diseases. Efforts have been made to provide structural features and mode of actions of drugs.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| | | | - Manoj Manickam
- Department of Chemistry, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India
| | - Murugesan Sankaranarayanan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| |
Collapse
|