1
|
Yang G, Qian B, He L, Zhang C, Wang J, Qian X, Wang Y. Application prospects of ferroptosis in colorectal cancer. Cancer Cell Int 2025; 25:59. [PMID: 39984914 PMCID: PMC11846473 DOI: 10.1186/s12935-025-03641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025] Open
Abstract
Colorectal cancer (CRC) is a serious threat to human health with the third morbidity and the second cancer-related mortality worldwide. It is urgent to explore more effective strategy for CRC because of the acquired treatment resistance from the non-surgical conventional therapies, including radiation, chemotherapy, targeted therapy and immunotherapy. Ferroptosis is a novel form of programmed cell death characterized by iron-dependent lipid peroxidation species (ROS) accumulation and has been identified as a promising target for cancer treatment, especially for those with treatment resistance. In this review, we mainly summarize the recent studies on the influence and regulation of ferroptosis by which (including gut microbiota) modulating the metabolism of iron, amino acid and lipid. Thus this analysis may provide potential targets for inducing CRC ferroptosis and shed lights on the future application of ferroptosis in CRC.
Collapse
Affiliation(s)
- Gen Yang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Boning Qian
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liya He
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chi Zhang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jianqiang Wang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xinlai Qian
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Xinxiang, Henan, China.
| | - Yongxia Wang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Xinxiang, Henan, China.
| |
Collapse
|
2
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Mehanna MG, El-Halawany AM, Al-Abd AM, Alqurashi MM, Bukhari HA, Kazmi I, Al-Qahtani SD, Bawadood AS, Anwar F, Al-Abbasi FA. 6-Shogaol improves sorafenib efficacy in colorectal cancer cells by modulating its cellular accumulation and metabolism. Pathol Res Pract 2024; 262:155520. [PMID: 39217771 DOI: 10.1016/j.prp.2024.155520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Carcinoma of the colon and rectum, also known as colorectal cancer, ranks as the third most frequently diagnosed malignancy globally. Sorafenib exhibits broad-spectrum antitumor activity against Raf, VEGF, and PDGF pathways in hepatocellular, thyroid, and renal cancers, but faces resistance in colorectal malignancies. 6-Shogaol, a prominent natural compound found in Zingiberaceae, exhibits antioxidant, anti-inflammatory, anticancer, and antiemetic properties. We investigated the influence of 6-shogaol on sorafenib's cytotoxic profile against colorectal cancer cell lines (HT-29, HCT-116, CaCo-2, and LS174T) through its effects on cellular accumulation and metabolism. Cytotoxicity was assessed using the sulpharodamine B assay, caspase-3 and c-PARP cleavage, cell cycle distribution analysis, and P-gp efflux activity. 6-Shogoal showed considerable cytotoxicity with decreased IC50 in colorectal cancer cell lines. Combining sorafenib and 6-shogaol increased c-PARP and pro-caspase-3 concentrations in HCT-116 cells compared to sorafenib alone. In combination, pro-caspase-3 concentrations were decreased in CaCo-2 cells compared to alone. Sorafenib combinations with 6-shogaol showed a significant drop in cell cycle distribution from 16.96±1.10 % to 9.16±1.85 %, respectively. At 100 µM, sorafenib and 6-shogaol showed potent and significant activity with intra-cellular rhodamine concentration on P-gp efflux activity in CRC cell lines. In conclusion, 6-shogaol substantially improved the cytotoxic profile of sorafenib by affecting its cellular uptake and metabolism. Future research should focus on dosage optimization and formulation and evaluate the efficacy and safety of the combination in animal models with colorectal cancer.
Collapse
Affiliation(s)
- Mohamed G Mehanna
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ali M El-Halawany
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo 11562, Egypt.
| | - Ahmed M Al-Abd
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - May M Alqurashi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hussam A Bukhari
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Salwa D Al-Qahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.
| | - Azizah Salim Bawadood
- Basic Medical Sciences Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
Li Y, Bi Y, Li W, Piao Y, Piao J, Wang T, Ren X. Research progress on ferroptosis in colorectal cancer. Front Immunol 2024; 15:1462505. [PMID: 39359721 PMCID: PMC11444962 DOI: 10.3389/fimmu.2024.1462505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Ferroptosis is a new form of cell death that differs from traditional forms of death. It is ferroptosis-dependent lipid peroxidation death. Colorectal cancer(CRC) is the most common tumor in the gastrointestinal tract with a long occultation period and a poor five-year prognosis. Exploring effective systemic treatments for CRC remains a great challenge worldwide. Numerous studies have demonstrated that ferroptosis can participate in the biological malignant process of various tumor, including CRC, so understanding the role and regulatory mechanisms of ferroptosis in CRC plays a crucial role in the treatment of CRC. In this paper, we reviews the mechanisms of ferroptosis in CRC, the associated regulatory factors and their interactions with various immune cells in the immune microenvironment. In addition, targeting ferroptosis has emerged as an encouraging strategy for CRC treatment. Finally, to inform subsequent research and clinical diagnosis and treatment, we review therapeutic approaches to CRC radiotherapy, immunotherapy, and herbal therapy targeting ferroptosis.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Yao Bi
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Wenjing Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Anesthesia, Yanbian University Hospital, Yanji, China
| | - Yingshi Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Junjie Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Tong Wang
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| | - Xiangshan Ren
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
6
|
Lu H, Feng X, Zhang J. Early detection of cardiorespiratory complications and training monitoring using wearable ECG sensors and CNN. BMC Med Inform Decis Mak 2024; 24:194. [PMID: 39014361 PMCID: PMC11250964 DOI: 10.1186/s12911-024-02599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
This research study demonstrates an efficient scheme for early detection of cardiorespiratory complications in pandemics by Utilizing Wearable Electrocardiogram (ECG) sensors for pattern generation and Convolution Neural Networks (CNN) for decision analytics. In health-related outbreaks, timely and early diagnosis of such complications is conclusive in reducing mortality rates and alleviating the burden on healthcare facilities. Existing methods rely on clinical assessments, medical history reviews, and hospital-based monitoring, which are valuable but have limitations in terms of accessibility, scalability, and timeliness, particularly during pandemics. The proposed scheme commences by deploying wearable ECG sensors on the patient's body. These sensors collect data by continuously monitoring the cardiac activity and respiratory patterns of the patient. The collected raw data is then transmitted securely in a wireless manner to a centralized server and stored in a database. Subsequently, the stored data is assessed using a preprocessing process which extracts relevant and important features like heart rate variability and respiratory rate. The preprocessed data is then used as input into the CNN model for the classification of normal and abnormal cardiorespiratory patterns. To achieve high accuracy in abnormality detection the CNN model is trained on labeled data with optimized parameters. The performance of the proposed scheme is evaluated and gauged using different scenarios, which shows a robust performance in detecting abnormal cardiorespiratory patterns with a sensitivity of 95% and specificity of 92%. Prominent observations, which highlight the potential for early interventions include subtle changes in heart rate variability and preceding respiratory distress. These findings show the significance of wearable ECG technology in improving pandemic management strategies and informing public health policies, which enhances preparedness and resilience in the face of emerging health threats.
Collapse
Affiliation(s)
- HongYuan Lu
- Sport Coaching College, Beijing Sport University, Beijing, 100084, China.
| | - XinMiao Feng
- Sport Coaching College, Beijing Sport University, Beijing, 100084, China
| | - Jing Zhang
- Department of Cardiology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, 310012, China
| |
Collapse
|
7
|
Zhou J, Song W, Liu Y, Yuan X. An efficient computational framework for gastrointestinal disorder prediction using attention-based transfer learning. PeerJ Comput Sci 2024; 10:e2059. [PMID: 38855223 PMCID: PMC11157572 DOI: 10.7717/peerj-cs.2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024]
Abstract
Diagnosing gastrointestinal (GI) disorders, which affect parts of the digestive system such as the stomach and intestines, can be difficult even for experienced gastroenterologists due to the variety of ways these conditions present. Early diagnosis is critical for successful treatment, but the review process is time-consuming and labor-intensive. Computer-aided diagnostic (CAD) methods provide a solution by automating diagnosis, saving time, reducing workload, and lowering the likelihood of missing critical signs. In recent years, machine learning and deep learning approaches have been used to develop many CAD systems to address this issue. However, existing systems need to be improved for better safety and reliability on larger datasets before they can be used in medical diagnostics. In our study, we developed an effective CAD system for classifying eight types of GI images by combining transfer learning with an attention mechanism. Our experimental results show that ConvNeXt is an effective pre-trained network for feature extraction, and ConvNeXt+Attention (our proposed method) is a robust CAD system that outperforms other cutting-edge approaches. Our proposed method had an area under the receiver operating characteristic curve of 0.9997 and an area under the precision-recall curve of 0.9973, indicating excellent performance. The conclusion regarding the effectiveness of the system was also supported by the values of other evaluation metrics.
Collapse
Affiliation(s)
- Jiajie Zhou
- Huai’an First People’s Hospital, Nanjing Medical University, Jiangsu, China
| | - Wei Song
- Huai’an First People’s Hospital, Nanjing Medical University, Jiangsu, China
| | - Yeliu Liu
- Huai’an First People’s Hospital, Nanjing Medical University, Jiangsu, China
| | - Xiaoming Yuan
- Huai’an First People’s Hospital, Nanjing Medical University, Jiangsu, China
| |
Collapse
|
8
|
Zhang Y, Xie J. Targeting ferroptosis regulators by natural products in colorectal cancer. Front Pharmacol 2024; 15:1374722. [PMID: 38860170 PMCID: PMC11163120 DOI: 10.3389/fphar.2024.1374722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer (CRC) poses a significant global health challenge, ranking as the third most diagnosed cancer and the second leading cause of cancer-related deaths. Despite advancements in treatment, challenges such as delayed diagnosis, multidrug resistance, and limited therapeutic effectiveness persist, emphasizing the need for innovative approaches. This review explores the potential of natural products, nutraceuticals, and phytochemicals for targeting ferroptosis-related regulators as a novel strategy in CRC. Ferroptosis, a form of regulated cell death characterized by iron-dependent lethal lipid peroxide accumulation, holds substantial importance in CRC progression and therapy resistance. Natural products, known for their diverse bioactive effects and favorable safety profiles, emerge as promising candidates to induce ferroptosis in CRC cells. Exploring amino acid, iron, lipid metabolism regulators, and oxidative stress regulators reveals promising avenues for inducing cell death in CRC. This comprehensive review provides insights into the multifaceted effects of natural products on proteins integral to ferroptosis regulation, including GPX4, SLC7A11, ACSL4, NCOA4, and HO-1. By elucidating the intricate mechanisms through which natural products modulate these proteins, this review lays the foundation for a promising therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| |
Collapse
|
9
|
Abida, Imran M, Eltaib L, Ali A, Alanazi RAS, Singla N, Asdaq SMB, Al-Hajeili M, Alhakami FA, Al-Abdulhadi S, Abdulkhaliq AA, Rabaan AA. LncRNAs: Emerging biomarkers and therapeutic targets in rectal cancer. Pathol Res Pract 2024; 257:155294. [PMID: 38603843 DOI: 10.1016/j.prp.2024.155294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
According to findings, long non-coding RNAs (lncRNAs) have an important function in the onset and growth of various cancers, including rectal cancer (RC). RC offers unique issues in terms of diagnosis, treatment, and results, needing a full understanding of the cellular mechanisms that cause it to develop. This thorough study digs into the various functions that lncRNAs perform in RC, giving views into their multiple roles as well as possible therapeutic consequences. The function of lncRNAs in RC cell proliferation, apoptosis, migratory and infiltrating capacities, epithelial-mesenchymal shift, and therapy tolerance are discussed. Various lncRNA regulatory roles are investigated in depth, yielding information on their effect on essential cell functions such as angiogenesis, death, immunity, and growth. Systemic lncRNAs are currently acknowledged as potential indications for the initial stages of identification of cancer, with the ability to diagnose as well as forecast. Besides adding to their diagnostic utility, lncRNAs offer therapeutic opportunities as actors, contributing to the expanding landscape of cancer research. Moreover, the investigation looks into the assessment and predictive utility of lncRNAs as RC markers. The article also offers insight into lncRNAs as chemoresistance and drug resistance facilitators in the setting of RC.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Akbar Ali
- Department of Pharmacy Practice, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | | | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | | | - Marwan Al-Hajeili
- Department of Medicine, King Abdulaziz University, Jeddah 23624, Saudi Arabia
| | - Fatemah Abdulaziz Alhakami
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Riyadh 11942, Saudi Arabia; Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The house of Expertise, Prince Sattam bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Altaf A Abdulkhaliq
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
10
|
Bhat AA, Kukreti N, Afzal M, Goyal A, Thapa R, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Singh SK, Dua K, Gupta G. Ferroptosis and circular RNAs: new horizons in cancer therapy. EXCLI JOURNAL 2024; 23:570-599. [PMID: 38887390 PMCID: PMC11180955 DOI: 10.17179/excli2024-7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
Cancer poses intricate challenges to treatment due to its complexity and diversity. Ferroptosis and circular RNAs (circRNAs) are emerging as innovative therapeutic avenues amid the evolving landscape of cancer therapy. Extensive investigations into circRNAs reveal their diverse roles, ranging from molecular regulators to pivotal influencers of ferroptosis in cancer cell lines. The results underscore the significance of circRNAs in modulating molecular pathways that impact crucial aspects of cancer development, including cell survival, proliferation, and metastasis. A detailed analysis delineates these pathways, shedding light on the molecular mechanisms through which circRNAs influence ferroptosis. Building upon recent experimental findings, the study evaluates the therapeutic potential of targeting circRNAs to induce ferroptosis. By identifying specific circRNAs associated with the etiology of cancer, this analysis paves the way for the development of targeted therapeutics that exploit vulnerabilities in cancer cells. This review consolidates the existing understanding of ferroptosis and circRNAs, emphasizing their role in cancer therapy and providing impetus for ongoing research in this dynamic field. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| |
Collapse
|
11
|
Kamil Zaidan H, Jasim Al-Khafaji HH, Al-Dolaimy F, Abed Hussein S, Otbah Farqad R, Thabit D, Talib Kareem A, Ramadan MF, Hamood SA, Alawadi AH, Alsaalamy A. Exploring the Therapeutic Potential of Lawsone and Nanoparticles in Cancer and Infectious Disease Management. Chem Biodivers 2024; 21:e202301777. [PMID: 38373183 DOI: 10.1002/cbdv.202301777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/21/2024]
Abstract
Lawsone, a naturally occurring compound found in henna, has been used in traditional medicine for centuries due to its diverse biological activities. In recent years, its nanoparticle-based structure has gained attention in cancer and infectious disease research. This review explores the therapeutic potential of lawsone and its nanoparticles in the context of cancer and infectious diseases. Lawsone exhibits promising anticancer properties by inducing apoptosis and inhibiting cell proliferation, while its nanoparticle formulations enhance targeted delivery and efficacy. Moreover, lawsone demonstrates significant antimicrobial effects against various pathogens. The unique physicochemical properties of lawsone nanoparticles enable efficient cellular uptake and targeted delivery. Potential applications in combination therapy and personalized medicine open new avenues for cancer and infectious disease treatment. While clinical trials are needed to validate their safety and efficacy, lawsone-based nanoparticles offer hope in addressing unmet medical needs and revolutionizing therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Shaymaa Abed Hussein
- Department of Medical Engineering, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Daha Thabit
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Ashwaq Talib Kareem
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Sarah A Hamood
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
12
|
Di L, Lv Z, Zhang H, Li H. A New Co(II)-coordination Polymer: Fluorescence Performances, Loaded with Paclitaxel-hydrogel on Breast Cancer and Molecular Docking Study. J Fluoresc 2024:10.1007/s10895-024-03670-4. [PMID: 38517647 DOI: 10.1007/s10895-024-03670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
In the current context of the increasing incidence of breast cancer, we aim to develop an efficient drug carrier for breast cancer by constructing an innovative complex consisting of a metal-organic framework (MOF) and a hydrogel. The aim of this initiative is to provide new ideas and tools for breast cancer treatment strategies through scientific research, so as to address the current challenges in breast cancer treatment. In the present study, by employment of a new Co(II)-based coordination polymer with the chemical formula of [Co(H2O)(CH3OH)L]n (1) (H2L = 5-(1 H-tetrazol-5-yl)nicotinic acid) was solvothermally synthesized by reaction of Co(NO3)2·6H2O a mixed solvent of MeOH and water. The characteristics of ligand-based absorption and emission, as unveiled by ultraviolet and fluorescence spectroscopy tests, offer insights into the distinctive electronic transitions and structural features originating from the ligand in compound 1. Using natural polysaccharide hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) as raw materials, HA/CMCS hydrogels were successfully prepared by chemical method and their internal morphology was studied by scanning electron microscopy. Using paclitaxel as a drug model, we further designed and synthesized a novel metal gel particle-loaded paclitaxel drug and evaluated its inhibitory effect on breast cancer cells. Finally, the hypothesized interactions between the complex and the receptor have been confirmed through molecular docking simulation, and multiple polar interactions have been verified, which further proves the potential anti-cancer capability and excellent bioactivity. Based on this, this composite material prepared from a novel Co(II)-coordinated polymer with paclitaxel hydrogel could provide a useful pathway for the identification and treatment of breast cancer.
Collapse
Affiliation(s)
- Lijun Di
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China
| | - Zhihong Lv
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China
| | - Haiping Zhang
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China
| | - Hui Li
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China.
| |
Collapse
|
13
|
Saadh MJ, Abdulsahib WK, Mustafa AN, Zabibah RS, Adhab ZH, Rakhimov N, Alsaikhan F. Recent advances in natural nanoclay for diagnosis and therapy of cancer: A review. Colloids Surf B Biointerfaces 2024; 235:113768. [PMID: 38325142 DOI: 10.1016/j.colsurfb.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Cancer is still one of the deadliest diseases, and diagnosing and treating it effectively remains difficult. As a result, advancements in earlier detection and better therapies are urgently needed. Conventional chemotherapy induces chemoresistance, has non-specific toxicity, and has a meager efficacy. Natural materials like nanosized clay mineral formations of various shapes (platy, tubular, spherical, and fibrous) with tunable physicochemical, morphological, and structural features serve as potential templates for these. As multifunctional biocompatible nanocarriers with numerous applications in cancer research, diagnosis, and therapy, their submicron size, individual morphology, high specific surface area, enhanced adsorption ability, cation exchange capacity, and multilayered organization of 0.7-1 nm thick single sheets have attracted significant interest. Kaolinite, halloysite, montmorillonite, laponite, bentonite, sepiolite, palygorskite, and allophane are the most typical nanoclay minerals explored for cancer. These multilayered minerals can function as nanocarriers to effectively carry a variety of anticancer medications to the tumor site and improve their stability, dispersibility, sustained release, and transport. Proteins and DNA/RNA can be transported using nanoclays with positive and negative surfaces. The platform for phototherapeutic agents can be nanoclays. Clays with bio-functionality have been developed using various surface engineering techniques, which could help treat cancer. The promise of nanoclays as distinctive crystalline materials with applications in cancer research, diagnostics, and therapy are examined in this review.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Nodir Rakhimov
- Department of Oncology, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| |
Collapse
|
14
|
Langenfeld SJ, Davis BR, Vogel JD, Davids JS, Temple LKF, Cologne KG, Hendren S, Hunt S, Garcia Aguilar J, Feingold DL, Lightner AL, Paquette IM. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Rectal Cancer 2023 Supplement. Dis Colon Rectum 2024; 67:18-31. [PMID: 37647138 DOI: 10.1097/dcr.0000000000003057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Sean J Langenfeld
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bradley R Davis
- Department of Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Jon D Vogel
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Larissa K F Temple
- Colorectal Surgery Division, Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Kyle G Cologne
- Department of Surgery, Division of Colorectal Surgery, University of Southern California, Los Angeles, California
| | - Samantha Hendren
- Division of Colon and Rectal Surgery, Department of Surgery, University of Michigan, Michigan Medicine, Ann Arbor, Michigan
| | - Steven Hunt
- Department of Surgery, Section of Colon and Rectal Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Julio Garcia Aguilar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel L Feingold
- Department of Surgery, Rutgers University, New Brunswick, New Jersey
| | - Amy L Lightner
- Department of Colon and Rectal Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Ian M Paquette
- Department of Surgery, Division of Colon and Rectal Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
15
|
Zhang Z, Wang Z, Fan H, Li J, Ding J, Zhou G, Yuan C. The Indispensable Roles of GMDS and GMDS-AS1 in the Advancement of Cancer: Fucosylation, Signal Pathway and Molecular Pathogenesis. Mini Rev Med Chem 2024; 24:1712-1722. [PMID: 38591197 DOI: 10.2174/0113895575285276240324080234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Fucosylation is facilitated by converting GDP-mannose to GDP-4-keto-6-deoxymannose, which GDP-mannose 4,6-dehydratase, a crucial enzyme in the route, carries out. One of the most prevalent glycosylation alterations linked to cancer has reportedly been identified as fucosylation. There is mounting evidence that GMDS is intimately linked to the onset and spread of cancer. Furthermore, the significance of long-chain non-coding RNAs in the development and metastasis of cancer is becoming more well-recognized, and the regulatory mechanism of lncRNAs has emerged as a prominent area of study in the biological sciences. GMDS-AS1, an antisense RNA of GMDS, was discovered to have the potential to be an oncogene. We have acquired and analyzed relevant data to understand better how GMDS-AS1 and its lncRNA work physiologically and in tumorigenesis and progression. Additionally, we have looked into the possible effects of these molecules on cancer treatment approaches and patient outcomes. The physiological roles and putative processes of GMDS and lncRNA GMDS-AS1 throughout the development and progression of tumors have been assembled and examined. We also examined how these chemicals might affect patient prognosis and cancer therapy approaches. GMDS and GMDS-AS1 were determined to be research subjects by searching and gathering pertinent studies using the PubMed system. The analysis of these research articles demonstrated the close relationship between GMDS and GMDS-AS1 and tumorigenesis and the factors that influence them. GMDS plays a vital role in regulating fucosylation. The related antisense gene GMDS-AS1 affects the biological behaviors of cancer cells through multiple pathways, including the key processes of proliferation, migration, invasion, and apoptosis, providing potential biomarkers and therapeutic targets for cancer treatment and prognosis assessment.
Collapse
Affiliation(s)
- Ziyan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| | - Zhuowei Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| | - Hong Fan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| | - Jiayi Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| | - Jiaqi Ding
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| |
Collapse
|
16
|
Pan P, Li J, Wang B, Tan X, Yin H, Han Y, Wang H, Shi X, Li X, Xie C, Chen L, Chen L, Bai Y, Li Z, Tian G. Molecular characterization of colorectal adenoma and colorectal cancer via integrated genomic transcriptomic analysis. Front Oncol 2023; 13:1067849. [PMID: 37546388 PMCID: PMC10401844 DOI: 10.3389/fonc.2023.1067849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Colorectal adenoma can develop into colorectal cancer. Determining the risk of tumorigenesis in colorectal adenoma would be critical for avoiding the development of colorectal cancer; however, genomic features that could help predict the risk of tumorigenesis remain uncertain. Methods In this work, DNA and RNA parallel capture sequencing data covering 519 genes from colorectal adenoma and colorectal cancer samples were collected. The somatic mutation profiles were obtained from DNA sequencing data, and the expression profiles were obtained from RNA sequencing data. Results Despite some similarities between the adenoma samples and the cancer samples, different mutation frequencies, co-occurrences, and mutually exclusive patterns were detected in the mutation profiles of patients with colorectal adenoma and colorectal cancer. Differentially expressed genes were also detected between the two patient groups using RNA sequencing. Finally, two random forest classification models were built, one based on mutation profiles and one based on expression profiles. The models distinguished adenoma and cancer samples with accuracy levels of 81.48% and 100.00%, respectively, showing the potential of the 519-gene panel for monitoring adenoma patients in clinical practice. Conclusion This study revealed molecular characteristics and correlations between colorectal adenoma and colorectal cancer, and it demonstrated that the 519-gene panel may be used for early monitoring of the progression of colorectal adenoma to cancer.
Collapse
Affiliation(s)
- Peng Pan
- Department of Gastroenterology, Shanghai Changhai Hospital, Shanghai, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Bo Wang
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Xiaoyan Tan
- Department of Gastroenterology, Maoming People's Hospital, Maoming, China
| | - Hekun Yin
- Department of Gastroenterology, Jiangmen Central Hospital, Jiangmen, China
| | - Yingmin Han
- Department of Bioinformatics, Boke Biotech Co., Ltd., Wuxi, China
| | - Haobin Wang
- Department of Bioinformatics, Boke Biotech Co., Ltd., Wuxi, China
| | - Xiaoli Shi
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Xiaoshuang Li
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Cuinan Xie
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Longfei Chen
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Lanyou Chen
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Yu Bai
- Department of Gastroenterology, Shanghai Changhai Hospital, Shanghai, China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Shanghai, China
| | - Geng Tian
- Department of Bioinformatics, Boke Biotech Co., Ltd., Wuxi, China
| |
Collapse
|
17
|
Wang X, Zheng Z, Chen M, Lin J, Lu X, Huang Y, Huang S, Chi P. Morphology of the anterior mesorectum: a new predictor for local recurrence in patients with rectal cancer. Chin Med J (Engl) 2022; 135:2453-2460. [PMID: 35861423 PMCID: PMC9945311 DOI: 10.1097/cm9.0000000000002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pre-operative assessment with high-resolution magnetic resonance imaging (MRI) is useful for assessing the risk of local recurrence (LR) and survival in rectal cancer. However, few studies have explored the clinical importance of the morphology of the anterior mesorectum, especially in patients with anterior cancer. Hence, the study aimed to investigate the impact of the morphology of the anterior mesorectum on LR in patients with primary rectal cancer. METHODS A retrospective study was performed on 176 patients who underwent neoadjuvant treatment and curative-intent surgery. Patients were divided into two groups according to the morphology of the anterior mesorectum on sagittal MRI: (1) linear type: the anterior mesorectum was thin and linear; and (2) triangular type: the anterior mesorectum was thick and had a unique triangular shape. Clinicopathological and LR data were compared between patients with linear type anterior mesorectal morphology and patients with triangular type anterior mesorectal morphology. RESULTS Morphometric analysis showed that 90 (51.1%) patients had linear type anterior mesorectal morphology, while 86 (48.9%) had triangular type anterior mesorectal morphology. Compared to triangular type anterior mesorectal morphology, linear type anterior mesorectal morphology was more common in females and was associated with a higher risk of circumferential resection margin involvement measured by MRI (35.6% [32/90] vs . 16.3% [14/86], P = 0.004) and a higher 5-year LR rate (12.2% vs . 3.5%, P = 0.030). In addition, the combination of linear type anterior mesorectal morphology and anterior tumors was confirmed as an independent risk factor for LR (odds ratio = 4.283, P = 0.014). CONCLUSIONS The classification established in this study was a simple way to describe morphological characteristics of the anterior mesorectum. The combination of linear type anterior mesorectal morphology and anterior tumors was an independent risk factor for LR and may act as a tool to assist with LR risk stratification and treatment selection.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Zhifang Zheng
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Min Chen
- Department of Gynaecology and Obstetrics, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jing Lin
- Integrated Information Section, Fujian Children's Hospital, Fuzhou, Fujian 350001, China
| | - Xingrong Lu
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Ying Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Shenghui Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
18
|
[Progress of Neoadjuvant Immunotherapy for Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:524-533. [PMID: 35899452 PMCID: PMC9346153 DOI: 10.3779/j.issn.1009-3419.2022.101.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neoadjuvant immunotherapy, including neoadjuvant single- or dual-drug immunotherapy or combined immunotherapy with chemotherapy or radiotherapy, has witnessed a rapid development in non-small cell lung cancer. Clinical trials exhibited the encouraging pathological responses and certain clinical benefits in selected patients, with tolerable toxicity. Nivolumab with chemotherapy has been approved by Food and Drug Administration (FDA) as the first immunotherapy-based treatment for non-small cell lung cancer in the neoadjuvant treatment setting. There is the need for further evaluation of long-term efficacy, side effects or surgical issues for neoadjuvant immunotherapy in non-small cell lung cancer.
.
Collapse
|
19
|
Yu M, Wang DC, Li S, Huang LY, Wei J. Does a long interval between neoadjuvant chemoradiotherapy and surgery benefit the clinical outcomes of locally advanced rectal cancer? A systematic review and meta analyses. Int J Colorectal Dis 2022; 37:855-868. [PMID: 35279746 DOI: 10.1007/s00384-022-04122-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE The study aims to systematically evaluate the clinical efficacy after 8 weeks (long interval, LI) between neoadjuvant chemoradiotherapy and surgery for locally advanced rectal cancer. METHODS The PubMed database, EMBASE database, and the Cochrane Library (deadline: September 25, 2021) were searched to select clinical studies that compared two intervals between neoadjuvant chemoradiotherapy and surgery for locally advanced rectal cancer: after 8 weeks (long interval, LI) and within 8 weeks (short interval, SI). The included studies were screened and evaluated according to the inclusion and exclusion criteria, and meta-analysis was performed by RevMan 5.3 software. RESULTS Eighteen studies were included, with 9070 cases in the LI group and 14,207 cases in the SI group. The analysis results showed that the pathologic complete response (PCR) rate in the LI group was higher than that in the SI group (P < 0.00001). There was no significant difference in the R0 resection rate (P = 0.85), anal preservation rate (P = 0.89), morbidity rate (P = 0.60), anastomotic leakage rate (P = 0.06), operation time (P = 0.58), local recurrence rate (P = 0.56), distant metastasis rate (P = 0.32), or overall survival (OS) rate (P = 0.17) between the two groups. CONCLUSION A longer interval between neoadjuvant chemoradiotherapy and surgery can improve the PCR rate; however, it has no significant impact on the clinical efficacy or long-term prognosis. Due to some limitations in the number and quality of the studies, these findings still need to be further verified by multicenter, large-sample high-quality RCTs in the future.
Collapse
Affiliation(s)
- Miao Yu
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China
| | - Deng-Chao Wang
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, China.
| | - Sheng Li
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China
| | - Li-Yan Huang
- Department of Pathology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jian Wei
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| |
Collapse
|
20
|
Wang L, Wu X, Xu W, Gao L, Wang X, Li T. Combined Detection of RUNX3 and EZH2 in Evaluating Efficacy of Neoadjuvant Therapy and Prognostic Value of Middle and Low Locally Advanced Rectal Cancer. Front Oncol 2022; 12:713335. [PMID: 35280723 PMCID: PMC8907660 DOI: 10.3389/fonc.2022.713335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Objective This article investigated whether Runt-Related Transcription Factor 3 (RUNX3) and enhancer of zeste homolog 2 (EZH2) can be used to evaluate the clinical efficacy of neoadjuvant therapy and prognosis of locally advanced rectal cancer (LARC). Methods Eighty LARC patients admitted to the Tianjin Medical University Cancer Institute/Hospital and First Affiliated Hospital of Hebei North University from Jan 2015 to Jan 2016 were enrolled. The patients were followed up for 60 months through hospital visits. All patients received neoadjuvant chemoradiotherapy (long range radiotherapy + oral capecitabine) + total mesorecta excision (TME) surgery. The clinical efficacy of the treatments was evaluated through endoscopic, radiography, and tumor regression grade (TRG). In addition, expression level of RUNX3 and EZH2 was quantified via immunohistochemistry. The association of RUNX3 and EZH2 with clinicopathological characteristics of advanced tumors and efficacy of neoadjuvant therapy was explored. Logistic regression analysis was performed to identify predictors of efficacy of neoadjuvant chemoradiotherapy. Survival curve was used to evaluate the impact of RUNX3 and EZH2 on the prognosis of LARC patients. Results A total of 80 patients diagnosed with LARC were enrolled in the study. Expression of RUNX3 was elevated in 25 (31.25%) patients, whereas expression of EZH2 was upregulated in 44 (55.00%) patients. Analysis of tumor regression identified 10 cases with TRG grade 0 (pathologic complete response, PCR), 24 cases with TRG grade 1, 35 cases with TRG grade 2, and 11 cases with TRG grade 3. Furthermore, 38 cases had significant down-staging, and 42 cases showed no significant down-staging as revealed by endoscopy and imaging. Patients with high expression of RUNX3 showed better tumor regression response and down-staging compared with those with low expression of RUNX3 (P < 0.001, P < 0.001). Moreover, patients with low EZH2 expression achieved TRG grade 0 and 1 response and down-staging effect compared with those with high expression of EZH2 (P < 0.001, P < 0.001). Logistic regression analysis showed that high expression of RUNX3, low expression of EZH2, and clinical N (cN) stage were good predictors of tumor regression response and down-staging. The 5-year disease free survival (DFS) and overall survival (OS) were 48.75 (39/80) and 58.75% (47/80), respectively. The 5-year DFS and OS of patients with high RUNX3 expression were significantly higher than low RUNX3 expression, whereas the 5-year DFS and OS of patients with high EZH2 expression were significantly lower than low EZH2 expression (P < 0.001). Univariate survival analysis showed that RUNX3 expression, EZH2 expression, cN, clinical T (cT), pathological T (pT) and pathological N (pN) were significantly correlated with the 5-year DFS and 5-year OS. Multivariate survival analysis showed that EZH2 expression and PN were good predictors of 5-year DFS and 5-year OS, whereas RUNX3 was a good predictor of 5-year DFS but not 5-year OS. Conclusions Expression level of RUNX3 and EZH2 accurately predicts clinical efficacy of neoadjuvant chemoradiotherapy and the prognosis of LARC patients, suggesting that RUNX3 and EZH2 can be used as pivotal clinical predictors for LARC.
Collapse
Affiliation(s)
- Likun Wang
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xueliang Wu
- Department of Gastrointestinal Surgery, Tianjin Medical University Nankai Hospital, Tianjin, China.,Department of General Surgery, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lei Gao
- Department of Ultrasound, Tianjin Medical University Nankai Hospital, Tianjin, China
| | - Ximo Wang
- Department of Gastrointestinal Surgery, Tianjin Medical University Nankai Hospital, Tianjin, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Optimized tools and timing of response reassessment after neoadjuvant chemoradiation in rectal cancer. Int J Colorectal Dis 2022; 37:2321-2333. [PMID: 36243807 PMCID: PMC9569175 DOI: 10.1007/s00384-022-04268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Reassessment tools of response to long-course neoadjuvant chemoradiation treatment (nCRT) in patients with locally advanced rectal cancer (LARC) are important in predicting complete response (CR) and thus deciding whether a wait-and-watch strategy can be implemented in these patients. Choosing which routine reassessment tools are optimal and when to use them is still unclear and will be researched in the study. METHODS Altogether, 250 patients with LARC who received nCRT from 2013 to 2021 and were followed up were retrospectively reviewed. Common reassessment tools of response included digital rectal examination (DRE), clinical examination and symptoms, endoscopy, biopsy, magnetic resonance imaging (MRI), and blood biomarkers. RESULTS Overall, 27.20% (68/250) patients had a complete response and 72.80% (182/250) did not. The combination of MRI, endoscopy, and biopsy showed the best performance in terms of accuracy of 74% and area under the curve (AUC, 0.714, 95% CI 0.546-0.882). Reassessing through DRE and presence of symptoms failed to improve the efficacy of response reassessment. After 100 days, biopsy as an assessment tool would obtain a substantial rise in accuracy from 51.28 to 100% (p = 0.003). CONCLUSION The combination of MRI, endoscopy, and biopsy is suitable as the reassessment tool of response for applying a wait-and-watch strategy after long-course nCRT in patients with LARC. The accuracy of biopsy as reassessment tools would be improved if they were used over 100 days after nCRT in patients with rectal cancer.
Collapse
|