1
|
Han Y, Liu S, Shi S, Shu Y, Lu C, Gu X. Screening of Genes Associated with Immune Infiltration of Discoid Lupus Erythematosus Based on Weighted Gene Co-expression Network Analysis. Biochem Genet 2025; 63:465-482. [PMID: 38451400 DOI: 10.1007/s10528-023-10603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2023] [Indexed: 03/08/2024]
Abstract
Discoid lupus erythematosus (DLE) is a disorder of the immune system commonly seen in women of childbearing age. The pathophysiology and aetiology are still poorly understood, and no cure is presently available. Therefore, there is an urgent need to explore the underlying molecular mechanisms, as well as search for new therapeutic targets. Gene expression data from skin biopsies samples of DLE patients and healthy controls were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) between DLE and healthy control samples were identified by differential expression analysis. Samples were analysed using CIBERSORT to examine the proportion of immune infiltration. Weighted gene co-expression network analysis was used to screen for the module most relevant to immune infiltration. Candidate genes were uploaded to the TRRUST database to obtain the potential transcription factors regulating these genes. Protein-protein interaction (PPI) analysis was performed to obtain the hub genes most associated with immune infiltration among the candidate genes. A total of 273 DEGs were identified between the DLE and healthy control samples. The results of immunoinfiltration analysis showed that the abundances of resting memory CD4 T cells, activated memory CD4 T cells and M1 macrophages were significantly higher, while those of resting infiltration of plasma cells, regulatory T cells and dendritic cells were lower in DLE samples than in healthy control samples. Correlation analysis showed that ISG15, TRIM22, XAF1, IFIT2, OAS2, OAS3, OAS1, IFI44, IFI6, BST2, IFIT1 and MX2 were negatively correlated with the abundances of plasma cells, T-cell regulatory cells and resting dendritic cells and positively correlated with activated memory CD4 T cells and M1 macrophages. Our study shows that these hub genes may regulate DLE via immune-related pathways mediated by the infiltration of these immune cells.
Collapse
Affiliation(s)
- Yuru Han
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd. Pudong New District, Shanghai, 201318, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd. Pudong New District, Shanghai, 201318, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuo Shi
- China COMAC Shanghai Aircraft Design and Research Institute, Shanghai, China
| | - Yongyong Shu
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd. Pudong New District, Shanghai, 201318, China.
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd. Pudong New District, Shanghai, 201318, China.
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Chu L, Qian L, Chen Y, Duan S, Ding M, Sun W, Meng W, Zhu J, Wang Q, Hao H, Wang C, Cui S. HERC5-catalyzed ISGylation potentiates cGAS-mediated innate immunity. Cell Rep 2024; 43:113870. [PMID: 38421872 DOI: 10.1016/j.celrep.2024.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) is essential to elicit type I interferon cascade response; thus, the activity of cGAS must be strictly regulated to boost the antiviral innate immunity. Here, we report that cGAS is responsible for the DNA-induced ISG15 conjugation system. The E3 HERC5 catalyzes the ISGylation of cytoplasmic cGAS at lysine 21, 187, 219, and 458, whereas Ubl carboxy-terminal hydrolase 18 removes the ISGylation of cGAS. The interaction of cGAS and HERC5 depends on the cGAS C-terminal domain and the RRC1-4 and RRC1-5 domains of HERC5. Mechanically, HERC5-catalyzed ISGylation promotes DNA-induced cGAS oligomerization and enhances cGAS enzymatic activity. Deficiency of ISGylation attenuates the downstream inflammatory gene expression induced by the cGAS-STING axis and the antiviral ability in mouse and human cells. Mice deficient in Isg15 or Herc6 are more vulnerable to herpes simplex virus 1 infection. Collectively, our study shows a positive feedback regulation of the cGAS-mediated innate immune pathway by ISGylation.
Collapse
Affiliation(s)
- Lei Chu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Li Qian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Yu Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Shengnan Duan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Ming Ding
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Wu Sun
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.
| | - Shufang Cui
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.
| |
Collapse
|
3
|
Alajoleen RM, Oakland DN, Estaleen R, Shakeri A, Lu R, Appiah M, Sun S, Neumann J, Kawauchi S, Cecere TE, McMillan RP, Reilly CM, Luo XM. Tlr5 deficiency exacerbates lupus-like disease in the MRL/ lpr mouse model. Front Immunol 2024; 15:1359534. [PMID: 38352866 PMCID: PMC10862078 DOI: 10.3389/fimmu.2024.1359534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Leaky gut has been linked to autoimmune disorders including lupus. We previously reported upregulation of anti-flagellin antibodies in the blood of lupus patients and lupus-prone mice, which led to our hypothesis that a leaky gut drives lupus through bacterial flagellin-mediated activation of toll-like receptor 5 (TLR5). Methods We created MRL/lpr mice with global Tlr5 deletion through CRISPR/Cas9 and investigated lupus-like disease in these mice. Result Contrary to our hypothesis that the deletion of Tlr5 would attenuate lupus, our results showed exacerbation of lupus with Tlr5 deficiency in female MRL/lpr mice. Remarkably higher levels of proteinuria were observed in Tlr5 -/- MRL/lpr mice suggesting aggravated glomerulonephritis. Histopathological analysis confirmed this result, and Tlr5 deletion significantly increased the deposition of IgG and complement C3 in the glomeruli. In addition, Tlr5 deficiency significantly increased renal infiltration of Th17 and activated cDC1 cells. Splenomegaly and lymphadenopathy were also aggravated in Tlr5-/- MRL/lpr mice suggesting impact on lymphoproliferation. In the spleen, significant decreased frequencies of regulatory lymphocytes and increased germinal centers were observed with Tlr5 deletion. Notably, Tlr5 deficiency did not change host metabolism or the existing leaky gut; however, it significantly reshaped the fecal microbiota. Conclusion Global deletion of Tlr5 exacerbates lupus-like disease in MRL/lpr mice. Future studies will elucidate the underlying mechanisms by which Tlr5 deficiency modulates host-microbiota interactions to exacerbate lupus.
Collapse
Affiliation(s)
- Razan M. Alajoleen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - David N. Oakland
- Graduate Program of Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Rana Estaleen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Aida Shakeri
- Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michael Appiah
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sha Sun
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Jonathan Neumann
- Transgenic Mouse Facility, University of California, Irvine, Irvine, CA, United States
| | - Shimako Kawauchi
- Transgenic Mouse Facility, University of California, Irvine, Irvine, CA, United States
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ryan P. McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Christopher M. Reilly
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
4
|
Cui Y, Zhang H, Wang Z, Gong B, Al-Ward H, Deng Y, Fan O, Wang J, Zhu W, Sun YE. Exploring the shared molecular mechanisms between systemic lupus erythematosus and primary Sjögren's syndrome based on integrated bioinformatics and single-cell RNA-seq analysis. Front Immunol 2023; 14:1212330. [PMID: 37614232 PMCID: PMC10442653 DOI: 10.3389/fimmu.2023.1212330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) are common systemic autoimmune diseases that share a wide range of clinical manifestations and serological features. This study investigates genes, signaling pathways, and transcription factors (TFs) shared between SLE and pSS. Methods Gene expression profiles of SLE and pSS were obtained from the Gene Expression Omnibus (GEO). Weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis were conducted to identify shared genes related to SLE and pSS. Overlapping genes were then subject to Gene Ontology (GO) and protein-protein interaction (PPI) network analyses. Cytoscape plugins cytoHubba and iRegulon were subsequently used to screen shared hub genes and predict TFs. In addition, gene set variation analysis (GSVA) and CIBERSORTx were used to calculate the correlations between hub genes and immune cells as well as related pathways. To confirm these results, hub genes and TFs were verified in microarray and single-cell RNA sequencing (scRNA-seq) datasets. Results Following WGCNA and limma analysis, 152 shared genes were identified. These genes were involved in interferon (IFN) response and cytokine-mediated signaling pathway. Moreover, we screened six shared genes, namely IFI44L, ISG15, IFIT1, USP18, RSAD2 and ITGB2, out of which three genes, namely IFI44L, ISG15 and ITGB2 were found to be highly expressed in both microarray and scRNA-seq datasets. IFN response and ITGB2 signaling pathway were identified as potentially relevant pathways. In addition, STAT1 and IRF7 were identified as common TFs in both diseases. Conclusion This study revealed IFI44L, ISG15 and ITGB2 as the shared genes and identified STAT1 and IRF7 as the common TFs of SLE and pSS. Notably, the IFN response and ITGB2 signaling pathway played vital roles in both diseases. Our study revealed common pathogenetic characteristics of SLE and pSS. The particular roles of these pivotal genes and mutually overlapping pathways may provide a basis for further mechanistic research.
Collapse
Affiliation(s)
- Yanling Cui
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huina Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bangdong Gong
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai, China
| | - Hisham Al-Ward
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaxuan Deng
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orion Fan
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junbang Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenmin Zhu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Wang Y, Ma C, Ma Z, Yang M, Pu J, Ma X, Wu X, Peng L, Huo Z, Dang J. Identification and Clinical Correlation Analysis of IFI44 in Systemic Lupus Erythematosus Combined with Bioinformatics and Immune Infiltration Analysis. J Inflamm Res 2023; 16:3219-3231. [PMID: 37547125 PMCID: PMC10404056 DOI: 10.2147/jir.s419880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can cause systemic damage to multiple organs. This study aims to analyze the value and function of IFI44 in the diagnosis and pathology of SLE by bioinformatics and immune infiltration analysis. Patients and Methods GSE49454 and GSE65391 of SLE were obtained from the GEO dataset, and R software was employed to identify DEGs and investigate their functions. The PPI network was utilized to identify hub genes associated with SLE. CIBERSORT was used to assess differences in immune cell infiltration in SLE patients and controls. ROC curve analysis was performed to evaluate the diagnostic value of IFI44 in SLE. The expression of IFI44 in PBMCs was detected by RT-qPCR, and the correlation between IFI44 expression and SLE-related clinical indicators was analyzed. Results A total of 65 DEGs were identified from the GSE49454 and GSE65391 databases. Through PPI analysis, IFI44 and RSAD2 were identified as significantly aberrantly expressed in SLE patients. SLE patients and controls showed a significant difference in the proportion of immune cell infiltration. IFI44 expression was positively correlated with activated DCs, monocytes, PCs, neutrophils, and activated memory CD4+T cells, while negatively correlated with M0 and CD8+T cells. The expression of IFI44 was significantly higher in SLE patients (P<0.01), especially in male patients (P=0.0376). ROC curve analysis demonstrated that IFI44 had a high diagnostic value for SLE. Correlation analysis indicated that IFI44 expression was correlated with levels of RBC, HGB, HCT, IgA, ESR, UPRO, C3, C4, and ENA in SLE patients. Conclusion IFI44 may play a role in the pathogenesis of SLE by influencing the immune microenvironment of SLE patients, and thus has the potential to serve as a diagnostic marker and therapeutic target for SLE.
Collapse
Affiliation(s)
- Yuan Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Chengfeng Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zhanbing Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Mengyi Yang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Jing Pu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Xiuhui Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Xi Wu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Liang Peng
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zhenghao Huo
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Jie Dang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| |
Collapse
|
6
|
Al Ali F, Marr AK, Tatari-Calderone Z, Alfaki M, Toufiq M, Roelands J, Syed Ahamed Kabeer B, Bedognetti D, Marr N, Garand M, Rinchai D, Chaussabel D. Organizing training workshops on gene literature retrieval, profiling, and visualization for early career researchers. F1000Res 2023; 10:275. [PMID: 37448622 PMCID: PMC10336363 DOI: 10.12688/f1000research.36395.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 07/15/2023] Open
Abstract
Early-career researchers must acquire the skills necessary to effectively search and extract information from biomedical literature. This ability is for instance crucial for evaluating the novelty of experimental results, and assessing potential publishing opportunities. Given the rapidly growing volume of publications in the field of biomedical research, new systematic approaches need to be devised and adopted for the retrieval and curation of literature relevant to a specific theme. In this context, we present a hands-on training curriculum aimed at retrieval, profiling, and visualization of literature associated with a given topic. The curriculum was implemented in a workshop in January 2021. Here we provide supporting material and step-by-step implementation guidelines with the ISG15 gene literature serving as an illustrative use case. Workshop participants can learn several skills, including: 1) building and troubleshoot PubMed queries in order to retrieve the literature associated with a gene of interest; 2) identifying key concepts relevant to given themes (such as cell types, diseases, and biological processes); 3) measuring the prevalence of these concepts in the gene literature; 4) extracting key information from relevant articles, and 5) developing a background section or summary on the basis of this information. Finally, trainees can learn to consolidate the structured information captured through this process for presentation via an interactive web application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Davide Bedognetti
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, 16126, Italy
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | | | | |
Collapse
|
7
|
Rodríguez-Carrio J, Burska A, Conaghan PG, Dik WA, Biesen R, Eloranta ML, Cavalli G, Visser M, Boumpas DT, Bertsias G, Wahren-Herlenius M, Rehwinkel J, Frémond ML, Crow MK, Ronnblom L, Vital E, Versnel M. Association between type I interferon pathway activation and clinical outcomes in rheumatic and musculoskeletal diseases: a systematic literature review informing EULAR points to consider. RMD Open 2023; 9:e002864. [PMID: 36882218 PMCID: PMC10008483 DOI: 10.1136/rmdopen-2022-002864] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-I) contribute to a broad range of rheumatic and musculoskeletal diseases (RMDs). Compelling evidence suggests that the measurement of IFN-I pathway activation may have clinical value. Although several IFN-I pathway assays have been proposed, the exact clinical applications are unclear. We summarise the evidence on the potential clinical utility of assays measuring IFN-I pathway activation. METHODS A systematic literature review was conducted across three databases to evaluate the use of IFN-I assays in diagnosis and monitor disease activity, prognosis, response to treatment and responsiveness to change in several RMDs. RESULTS Of 366 screened, 276 studies were selected that reported the use of assays reflecting IFN-I pathway activation for disease diagnosis (n=188), assessment of disease activity (n=122), prognosis (n=20), response to treatment (n=23) and assay responsiveness (n=59). Immunoassays, quantitative PCR (qPCR) and microarrays were reported most frequently, while systemic lupus erythematosus (SLE), rheumatoid arthritis, myositis, systemic sclerosis and primary Sjögren's syndrome were the most studied RMDs. The literature demonstrated significant heterogeneity in techniques, analytical conditions, risk of bias and application in diseases. Inadequate study designs and technical heterogeneity were the main limitations. IFN-I pathway activation was associated with disease activity and flare occurrence in SLE, but their incremental value was uncertain. IFN-I pathway activation may predict response to IFN-I targeting therapies and may predict response to different treatments. CONCLUSIONS Evidence indicates potential clinical value of assays measuring IFN-I pathway activation in several RMDs, but assay harmonisation and clinical validation are urged. This review informs the EULAR points to consider for the measurement and reporting of IFN-I pathway assays.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Willem A Dik
- Laboratory Medical Immunology, department of Immunology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Robert Biesen
- Department of Rheumatology, Charité University Medicine Berlin, Berlin, Germany
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Marianne Visser
- EULAR, PARE Patient Research Partners, Amsterdam, The Netherlands
| | - Dimitrios T Boumpas
- Department of Internal Medicine, University of Crete, Medical School, Heraklion, Greece
| | - George Bertsias
- Department of Rheumatology-Clinical Immunology, University of Crete, Medical School, Heraklion, Greece
| | - Marie Wahren-Herlenius
- Karolinska Institutet, Division of Rheumatology, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Norway
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Marie-Louise Frémond
- Université de Paris Cité, Hôpital Necker-Enfants Malades, Immuno-Hématologie et Rhumatologie pédiatriques, Paris, France
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medical College, Mary Kirkland Center for Lupus Research, New York, USA
| | - Lars Ronnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Ed Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Marjan Versnel
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
8
|
Chen K, Wu T, Wang D, Li R, Shen X, Zhao T, Ozato K, Li R. Transcriptomics and quantitative proteomics reveal changes after second stimulation of bone marrow-derived macrophages from lupus-prone MRL/lpr mice. Front Immunol 2022; 13:1004232. [PMID: 36341359 PMCID: PMC9627492 DOI: 10.3389/fimmu.2022.1004232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immune memory can cause the occurrence and exacerbation of autoimmune diseases, and it is as well as being strongly associated with the pathogenesis of systemic lupus erythematosus (SLE), however, the specific mechanism remains to be further studied. We learned that IFN-γ stimulation generated innate immune memory in bone marrow-derived macrophages (BMDMs) and activated memory interferon-stimulated genes (ISGs). This research used IFN-γ and lipopolysaccharide (LPS) to treat BMDMs with lupus-prone MRL/lpr mice and showed that particular memory ISGs were substantially elevated in prestimulated macrophages. In order to identify the differentially expressed genes (DEGs), researchers turned to RNA-seq. GO and KEGG analysis showed that up-regulated DEGs were enriched in defense and innate immune responses, and were related to the expression of pattern recognition receptors (PRRs)-related pathways in macrophages. TMT-based proteome analysis revealed differentially expressed proteins (DEPs) up-regulated in BMDMs were abundant in metabolic pathways such as glucose metabolism. Our study found that after the secondary stimulation of MRL/lpr mice, the expression of PRRs in innate immune cells was changed, and IFN-related pathways were activated to release a large number of ISGs to promote the secondary response. At the same time, related metabolic modes such as glycolysis were enhanced, and epigenetic changes may occur. Therefore, SLE is brought on, maintained, and worsened by a variety of factors that work together to produce innate immune memory.
Collapse
Affiliation(s)
- Keyue Chen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tiyun Wu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Danyan Wang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Li
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangfeng Shen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Keiko Ozato, ; Rongqun Li,
| | - Rongqun Li
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Keiko Ozato, ; Rongqun Li,
| |
Collapse
|
9
|
Identification of Significant Genes and Pathways for the Chronic and Subacute Cutaneous Lupus Erythematosus via Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:9891299. [PMID: 36212172 PMCID: PMC9537011 DOI: 10.1155/2022/9891299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
Abstract
Background Chronic cutaneous lupus erythematosus (CCLE) and subacute cutaneous lupus erythematosus (SCLE) are both common variants of cutaneous lupus erythematosus (CLE) that mainly involve the skin and mucous membrane. Oral mucosal involvement is frequently observed in patients of CLE. Despite that they have different clinicopathological features, whether there is a significant difference in pathogenesis between them remains unclear. Herein, we investigated specific genes and pathways of SCLE and CCLE via bioinformatics analysis. Methods Microarray expression datasets of GSE109248 and GSE112943 were both retrieved from the GEO database. Differentially expressed genes (DEGs) between CCLE or SCLE skin tissues and health controls were selected by GEO2R. Common DEGs were picked out via the Venn diagram software. Then, functional enrichment and PPI network analysis were conducted, and the top 10 key genes were identified via Cytohubba. Results Totally, 176 DEGs of SCLE and 287 DEGs of CCLE were identified. The GO enrichment and KEGG analysis of DEGs of SCLE is significantly enriched in the response to virus, defense response to virus, response to IFN-gamma, cellular response to IFN-γ, type I IFN signaling pathway, chemokine activity, chemokine receptor binding, NOD-like receptor signaling pathway, etc. The GO enrichment and KEGG analysis of DEGs of CCLE is significantly enriched in the response to virus, regulation of multiorganism process, negative regulation of viral process, regulation of lymphocyte activation, chemokine receptor binding, CCR chemokine receptor binding, NOD-like receptor signaling pathway, etc. The top 10 hub genes of SCLE and CCLE, respectively, include STAT1, CXCL10, IRF7, ISG15, and RSAD2 and CXCL10, IRF7, IFIT3, CTLA4, and ISG15. Conclusion Our finding suggests that SCLE and CCLE have the similar potential key genes and pathways and majority of them belong to IFN signatures and IFN signaling pathway. Besides, the NOD-like receptor signaling pathway might also have an essential role in the pathogenesis of SCLE and CCLE. Together, the identified genes and signaling pathways have enhanced our understanding of the mechanism underlying the occurrence and development of both SCLE and CCLE.
Collapse
|
10
|
Zorn-Pauly L, von Stuckrad ASL, Klotsche J, Rose T, Kallinich T, Enghard P, Ostendorf L, Burns M, Doerner T, Meisel C, Schneider U, Unterwalder N, Burmester G, Hiepe F, Alexander T, Biesen R. Evaluation of SIGLEC1 in the diagnosis of suspected systemic lupus erythematosus. Rheumatology (Oxford) 2021; 61:3396-3400. [PMID: 34849605 DOI: 10.1093/rheumatology/keab875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/13/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To evaluate and compare the diagnostic accuracy of SIGLEC1, a surrogate marker of type I IFN, with established biomarkers in an inception cohort of systemic lupus erythematosus (SLE). METHODS SIGLEC1 was analyzed by flow cytometry in 232 patients referred to our institution with suspected SLE between October 2015 and September 2020. RESULTS SLE was confirmed in 76 of 232 patients (32.8%) according to the 2019 EULAR/ACR classification criteria and their SIGLEC1 values were significantly higher compared with patients without SLE (p< 0.0001). A sensitivity of 98.7%, a specificity of 82.1%, a negative predictive value (NPV) of 99.2% and a positive predictive value (PPV) of 72.8% were calculated for SIGLEC1. Adjusted to the highest reported prevalence of SLE, the NPV and PPV were > 99.9% and 0.1%, respectively. Using ROC analysis and Delong testing, the area under the curve (AUC) for SIGLEC1 (AUC = 0.95) was significantly higher than for ANA (AUC = 0.88, p= 0.031), C3 (AUC = 0.83, p= 0.001) and C4 (AUC = 0.83, p= 0.002) but not for anti-dsDNA antibodies (AUC = 0.90, p= 0.163). CONCLUSION IFN-I pathway activation is detectable in almost all newly diagnosed SLE patients. Thus, a negative test result for SIGLEC1 is powerful to exclude SLE in suspected cases.
Collapse
Affiliation(s)
- Lydia Zorn-Pauly
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Sae Lim von Stuckrad
- Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Jens Klotsche
- German Rheumatism Research Center Berlin-a Leibniz Institute (DRFZ), Berlin, Germany
| | - Thomas Rose
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tilmann Kallinich
- Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin-a Leibniz Institute (DRFZ), Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Intensive Care Medicine, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lennard Ostendorf
- German Rheumatism Research Center Berlin-a Leibniz Institute (DRFZ), Berlin, Germany.,Department of Nephrology and Intensive Care Medicine, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marie Burns
- German Rheumatism Research Center Berlin-a Leibniz Institute (DRFZ), Berlin, Germany
| | - Thomas Doerner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Meisel
- Institute for Medical Immunology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nadine Unterwalder
- Institute for Medical Immunology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerd Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin-a Leibniz Institute (DRFZ), Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Ramezankhani R, Minaei N, Haddadi M, Solhi R, Taleahmad S. The impact of sex on susceptibility to systemic lupus erythematosus and rheumatoid arthritis; a bioinformatics point of view. Cell Signal 2021; 88:110171. [PMID: 34662716 DOI: 10.1016/j.cellsig.2021.110171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Abstract
The unknown etiology of systemic autoimmune diseases, such as Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA), with a remarkable predominance of female, have prompted many researchers for unveiling the precise molecular mechanisms involved in this gender bias. In fact, depending on hormones and transcribed genes from sex chromosomes, at least, the initial mechanisms involved in pathogenesis might differ largely. With the aim of elucidating the above mechanisms, we have tried to specify the differentially expressed genes (DEGs) extracted from microarray libraries from both female and male SLE and RA patients. Subsequently, the androgen and estrogen receptor elements (ARE and ERE) among differentially expressed transcription factors (TFs) and the DEGs located on X or Y chromosomes have been determined. Moreover, the pathways regarding the common DEGs in both sexes are enriched. Our data revealed several ARE and ERE-containing genes (LCN2, LTF, RPL31, RPL9, RPS17, RPS24, RPS27L, S100A8, ABCA1, HIST1H2BD, ISG15, MAFB, GNLY, EVL, and HDC) to be associated with the related autoimmune disease and sex. Also, two DEGs (KDM5D and RPS4Y1) in SLE patients were determined to be on Y chromosome with one had been proved to be associated with autoantigens in SLE. Altogether, our data showed a number of plausible pathways in both autoimmune conditions together with the relevance of several sex-related genes in the mentioned diseases pathogenesis.
Collapse
Affiliation(s)
- Roya Ramezankhani
- Department of Applied Cell Sciences, Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACER, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Neda Minaei
- Department of Applied Cell Sciences, Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACER, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran
| | - Mahnaz Haddadi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran; Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
12
|
Interferon (IFN)-stimulated gene 15: A novel biomarker for lymphoma development in Sjögren's syndrome. J Autoimmun 2021; 123:102704. [PMID: 34298409 DOI: 10.1016/j.jaut.2021.102704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We investigated whether interferon (IFN) induced genes could serve as biomarkers for the detection of lymphoma development among patients with Sjögren's syndrome (SS). METHODS Total RNA was extracted from 98 labial minor salivary glands (LMSG) biopsies of SS patients [61 not complicated by lymphoma (SS-nL) and 37 complicated by Non-Hodgkin Lymphoma (NHL) (SS-L)] and 67 matched peripheral blood (PB) samples, as well as from 30 LMSG biopsies and 17 matched PB derived from sicca controls (SC). RNA sequencing was performed in LMSG biopsies of high and low risk SS patients for lymphoma development and SC. Expression analysis of type I (MX-1, IFIT-1, IFI44 and ISG-15) and type II IFN induced (CXCL9/MIG-1, GBP-1) genes was performed by real time PCR. RESULTS ISG-15 transcript levels were significantly higher in SS-L patients compared to SS-nL patients in both LMSG tissues and PB specimens. Additionally, MIG-1 was found to display higher expression values in LMSG tissues, but not in PB derived from SS-L patients compared to the SS-nL group. A coordinate expression in PB/LMSG of type I IFN (ISG-15, MX-1 and IFI44), but not type II IFN induced genes was also observed. CONCLUSION ISG-15 gene expression was able to distinguish SS-nL and SS-L at both periphery and tissue level and therefore could represent a novel biomarker for lymphoma development among SS patients. PB and LSMG seem to share a common transcriptional profile of type I IFN pathway.
Collapse
|
13
|
Wang Y, Ma Q, Huo Z. Identification of hub genes, pathways, and related transcription factors in systemic lupus erythematosus: A preliminary bioinformatics analysis. Medicine (Baltimore) 2021; 100:e26499. [PMID: 34160465 PMCID: PMC8238284 DOI: 10.1097/md.0000000000026499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ damage and the production of a variety of autoantibodies. The pathogenesis of SLE has not been fully defined, and it is difficult to treat. Our study aimed to identify candidate genes that may be used as biomarkers for the screening, diagnosis, and treatment of SLE. METHODS We used the GEO2R tool to identify the differentially expressed genes (DEGs) in SLE-related datasets retrieved from the Gene Expression Omnibus (GEO). In addition, we also identified the biological functions of the DEGs by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Additionally, we constructed protein-protein interaction (PPI) networks to identify hub genes, as well as the regulatory network of transcription factors related to DEGs. RESULTS Two datasets were identified for use from the GEO (GSE50772, GSE4588), and 34 up-regulated genes and 4 down-regulated genes were identified by GEO2R. Pathway analysis of the DEGs revealed enrichment of the interferon alpha/beta signaling pathway; GO analysis was mainly enriched in response to interferon alpha, regulation of ribonuclease activity. PPIs were constructed through the STRING database and 14 hub genes were selected and 1 significant module (score = 12.923) was obtained from the PPI network. Additionally, 11 key transcription factors that interacted closely with the 14 hub DEGs were identified from the gene transcription factor network. CONCLUSIONS Bioinformatic analysis is an effective tool for screening the original genomic data in the GEO database, and a large number of SLE-related DEGs were identified. The identified hub DEGs may be potential biomarkers of SLE.
Collapse
|
14
|
Al Ali F, Marr AK, Tatari-Calderone Z, Alfaki M, Toufiq M, Roelands J, Syed Ahamed Kabeer B, Bedognetti D, Marr N, Garand M, Rinchai D, Chaussabel D. Organizing gene literature retrieval, profiling, and visualization training workshops for early career researchers. F1000Res 2021. [DOI: 10.12688/f1000research.36395.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Developing the skills needed to effectively search and extract information from biomedical literature is essential for early-career researchers. It is, for instance, on this basis that the novelty of experimental results, and therefore publishing opportunities, can be evaluated. Given the unprecedented volume of publications in the field of biomedical research, new systematic approaches need to be devised and adopted for the retrieval and curation of literature relevant to a specific theme. Here we describe a hands-on training curriculum aimed at retrieval, profiling, and visualization of literature associated with a given topic. This curriculum was implemented in a workshop in January 2021. We provide supporting material and step-by-step implementation guidelines with the ISG15 gene literature serving as an illustrative use case. Through participation in such a workshop, trainees can learn: 1) to build and troubleshoot PubMed queries in order to retrieve the literature associated with a gene of interest; 2) to identify key concepts relevant to given themes (such as cell types, diseases, and biological processes); 3) to measure the prevalence of these concepts in the gene literature; 4) to extract key information from relevant articles, and 5) to develop a background section or summary on the basis of this information. Finally, trainees can learn to consolidate the structured information captured through this process for presentation via an interactive web application.
Collapse
|
15
|
Østvik AE, Svendsen TD, Granlund AVB, Doseth B, Skovdahl HK, Bakke I, Thorsvik S, Afroz W, Walaas GA, Mollnes TE, Gustafsson BI, Sandvik AK, Bruland T. Intestinal Epithelial Cells Express Immunomodulatory ISG15 During Active Ulcerative Colitis and Crohn's Disease. J Crohns Colitis 2020; 14:920-934. [PMID: 32020185 PMCID: PMC7392169 DOI: 10.1093/ecco-jcc/jjaa022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Intestinal epithelial cells [IECs] secrete cytokines that recruit immune cells to the mucosa and regulate immune responses that drive inflammation in inflammatory bowel disease [IBD]. However, experiments in patient-derived IEC models are still scarce. Here, we aimed to investigate how innate immunity and IEC-specific pattern recognition receptor [PRR] signalling can be involved in an enhanced type I interferon [IFN] gene signature observed in colon epithelium of patients with active IBD, with a special focus on secreted ubiquitin-like protein ISG15. METHODS Gene and protein expression in whole mucosa biopsies and in microdissected human colonic epithelial lining, in HT29 human intestinal epithelial cells and primary 3D colonoids treated with PRR-ligands and cytokines, were detected by transcriptomics, in situ hybridisation, immunohistochemistry, western blots, and enzyme-linked immunosorbent assay [ELISA]. Effects of IEC-secreted cytokines were examined in human peripheral blood mononuclear cells [PBMCs] by multiplex chemokine profiling and ELISA. RESULTS The type I IFN gene signature in human mucosal biopsies was mimicked in Toll-like receptor TLR3 and to some extent tumour necrosis factor [TNF]-treated human IECs. In intestinal biopsies, ISG15 expression correlated with expression of the newly identified receptor for extracellular ISG15, LFA-1 integrin. ISG15 was expressed and secreted from HT29 cells and primary 3D colonoids through both JAK1-pSTAT-IRF9-dependent and independent pathways. In experiments using PBMCs, we show that ISG15 releases IBD-relevant proinflammatory cytokines such as CXCL1, CXCL5, CXCL8, CCL20, IL1, IL6, TNF, and IFNγ. CONCLUSIONS ISG15 is secreted from primary IECs upon extracellular stimulation, and mucosal ISG15 emerges as an intriguing candidate for immunotherapy in IBD.
Collapse
Affiliation(s)
- Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway,Department of G2astroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Tarjei Dahl Svendsen
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway,Centre of Molecular Inflammation Research, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Berit Doseth
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Helene Kolstad Skovdahl
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Bakke
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway,Clinic of Medicine, St Olav’s University Hospital, Trondheim, Norway,Clinic of Laboratory Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Silje Thorsvik
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway,Department of G2astroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, Trondheim, Norway,Centre of Molecular Inflammation Research, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Wahida Afroz
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Gunnar Andreas Walaas
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Eirik Mollnes
- Centre of Molecular Inflammation Research, NTNU-Norwegian University of Science and Technology, Trondheim, Norway,Research Laboratory, Nordland Hospital, Bodo, Norway,K.G. Jebsen Thrombosis Research and Expertise Center, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway,Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Björn Inge Gustafsson
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway,Department of G2astroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway,Department of G2astroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, Trondheim, Norway,Centre of Molecular Inflammation Research, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway,Clinic of Medicine, St Olav’s University Hospital, Trondheim, Norway,Corresponding author: Torunn Bruland, PhD, Department of Clinical and Molecular Medicine [IKOM], Faculty of Medicine and Health Sciences [MH], NTNU-Norwegian University of Science and Technology, Prinsesse Kristinas gate 1, NO-7489 Trondheim, Norway. Tel.: +47 72825324; E-mail
| |
Collapse
|
16
|
Brant EJ, Rietman EA, Klement GL, Cavaglia M, Tuszynski JA. Personalized therapy design for systemic lupus erythematosus based on the analysis of protein-protein interaction networks. PLoS One 2020; 15:e0226883. [PMID: 32191711 PMCID: PMC7081981 DOI: 10.1371/journal.pone.0226883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022] Open
Abstract
We analyzed protein expression data for Lupus patients, which have been obtained from publicly available databases. A combination of systems biology and statistical thermodynamics approaches was used to extract topological properties of the associated protein-protein interaction networks for each of the 291 patients whose samples were used to provide the molecular data. We have concluded that among the many proteins that appear to play critical roles in this pathology, most of them are either ribosomal proteins, ubiquitination pathway proteins or heat shock proteins. We propose some of the proteins identified in this study to be considered for drug targeting.
Collapse
Affiliation(s)
- Elizabeth J. Brant
- Nephrology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Edward A. Rietman
- BINDS lab, College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Department of Mechanical and Industrial Engineering, University of Mass, Amherst, Massachusetts, United States of America
| | | | | | - Jack A. Tuszynski
- DIMEAS, Politecnico di Torino, Torino, Italy
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
17
|
Demirkaya E, Sahin S, Romano M, Zhou Q, Aksentijevich I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J Clin Med 2020; 9:E712. [PMID: 32151092 PMCID: PMC7141186 DOI: 10.3390/jcm9030712] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it's prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Sezgin Sahin
- Van Training and Research Hospital, Department of Paediatric Rheumatology, 65000 Van, Turkey;
| | - Micol Romano
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Pediatric Rheumatology, ASST-PINI-CTO, 20122 Milano, Italy
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hang Zhou 310058, China;
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
18
|
Benninghoff AD, Bates MA, Chauhan PS, Wierenga KA, Gilley KN, Holian A, Harkema JR, Pestka JJ. Docosahexaenoic Acid Consumption Impedes Early Interferon- and Chemokine-Related Gene Expression While Suppressing Silica-Triggered Flaring of Murine Lupus. Front Immunol 2019; 10:2851. [PMID: 31921124 PMCID: PMC6923248 DOI: 10.3389/fimmu.2019.02851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
Exposure of lupus-prone female NZBWF1 mice to respirable crystalline silica (cSiO2), a known human autoimmune trigger, initiates loss of tolerance, rapid progression of autoimmunity, and early onset of glomerulonephritis. We have previously demonstrated that dietary supplementation with the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) suppresses autoimmune pathogenesis and nephritis in this unique model of lupus flaring. In this report, we utilized tissues from prior studies to test the hypothesis that DHA consumption interferes with upregulation of critical genes associated with cSiO2-triggered murine lupus. A NanoString nCounter platform targeting 770 immune-related genes was used to assess the effects cSiO2 on mRNA signatures over time in female NZBWF1 mice consuming control (CON) diets compared to mice fed diets containing DHA at an amount calorically equivalent to human consumption of 2 g per day (DHA low) or 5 g per day (DHA high). Experimental groups of mice were sacrificed: (1) 1 d after a single intranasal instillation of 1 mg cSiO2 or vehicle, (2) 1 d after four weekly single instillations of vehicle or 1 mg cSiO2, and (3) 1, 5, 9, and 13 weeks after four weekly single instillations of vehicle or 1 mg cSiO2. Genes associated with inflammation as well as innate and adaptive immunity were markedly upregulated in lungs of CON-fed mice 1 d after four weekly cSiO2 doses but were significantly suppressed in mice fed DHA high diets. Importantly, mRNA signatures in lungs of cSiO2-treated CON-fed mice over 13 weeks reflected progressive amplification of interferon (IFN)- and chemokine-related gene pathways. While these responses in the DHA low group were suppressed primarily at week 5, significant downregulation was observed at weeks 1, 5, 9, and 13 in mice fed the DHA high diet. At week 13, cSiO2 treatment of CON-fed mice affected 214 genes in kidney tissue associated with inflammation, innate/adaptive immunity, IFN, chemokines, and antigen processing, mostly by upregulation; however, feeding DHA dose-dependently suppressed these responses. Taken together, dietary DHA intake in lupus-prone mice impeded cSiO2-triggered mRNA signatures known to be involved in ectopic lymphoid tissue neogenesis, systemic autoimmunity, and glomerulonephritis.
Collapse
Affiliation(s)
- Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences and The School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Melissa A. Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Preeti S. Chauhan
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Kristen N. Gilley
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Alperin JM, Ortiz-Fernández L, Sawalha AH. Monogenic Lupus: A Developing Paradigm of Disease. Front Immunol 2018; 9:2496. [PMID: 30459768 PMCID: PMC6232876 DOI: 10.3389/fimmu.2018.02496] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Monogenic lupus is a form of systemic lupus erythematosus (SLE) that occurs in patients with a single gene defect. This rare variant of lupus generally presents with early onset severe disease, especially affecting the kidneys and central nervous system. To date, a significant number of genes have been implicated in monogenic lupus, providing valuable insights into a very complex disease process. Throughout this review, we will summarize the genes reported to be associated with monogenic lupus or lupus-like diseases, and the pathogenic mechanisms affected by the mutations involved upon inducing autoimmunity.
Collapse
Affiliation(s)
- Jessie M Alperin
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lourdes Ortiz-Fernández
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|