1
|
Ruiz de la Bastida A, Langa S, Peirotén Á, Curiel JA, Fernández-González R, Maroto M, Arqués J, Gutiérrez-Adán A, Landete JM. Fermented Lignan-Enriched Soy Beverage Ameliorates the Metabolic Effects of a High-Fat Diet on Female Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5194-5207. [PMID: 39985458 DOI: 10.1021/acs.jafc.4c06947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Fermented vegetable beverages have potential beneficial effects on the health associated with the production of bioactive flavonoids and lignans by selected bacterial strains. Here, we studied the effects of a soy beverage and a soy beverage fermented by Bifidobacterium pseudocatenulatum INIA P815, both supplemented with lignan extracts, in a female mouse model on a high-fat diet followed for 16 weeks. The high-fat diet induced an increase in adipose tissue and plasma cholesterol as well as modified the fecal microbiota. Mice groups receiving any of the beverages showed a reduction in the mean area of ovarian fat tissue adipocytes and exhibited bioactive flavonoids and lignans in plasma and tissues, accompanied by a higher antioxidant activity in plasma. The group of mice subjected to the fermented beverage also demonstrated a lower increase in plasma cholesterol levels, an increase in short-chain fatty acid production, and higher levels of daidzein, genistein, enterolignans, and herbacetin in the plasma and organs. Moreover, the fertility of the mice that received the fermented beverage was also enhanced, resulting in a higher percentage of blastocysts per female mouse. Therefore, the consumption of the beverage fermented by B. pseudocatenulatum INIA P815 could be favoring the health of mice by ameliorating, to some extent, the effects of a high-fat diet.
Collapse
Affiliation(s)
- Ana Ruiz de la Bastida
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid 28040, Spain
| | - Susana Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid 28040, Spain
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid 28040, Spain
| | - José Antonio Curiel
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid 28040, Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid 28040, Spain
| | - María Maroto
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid 28040, Spain
| | - Juan Arqués
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid 28040, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid 28040, Spain
| | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid 28040, Spain
| |
Collapse
|
2
|
Ookoshi K, Sawane K, Fukumitsu S, Aida K. Availability of dietary secoisolariciresinol diglucoside on borderline blood cholesterol level in men: a randomized, parallel, controlled, double-blinded clinical trial. J Clin Biochem Nutr 2024; 74:261-266. [PMID: 38799144 PMCID: PMC11111469 DOI: 10.3164/jcbn.23-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 05/29/2024] Open
Abstract
Borderline low-density lipoprotein cholesterol levels (120-139 mg/dl) increase the risk of cardiovascular disease. Therefore, the use of functional dietary nutrients is expected to control blood low-density lipoprotein cholesterol levels. This study aimed to evaluate the effect of dietary secoisolariciresinol diglucoside on blood cholesterol in healthy adults with borderline low-density lipoprotein cholesterol levels. A randomized, parallel, controlled, double-blinded clinical trial was performed for participants with borderline low-density lipoprotein cholesterol levels, for 12 weeks with secoisolariciresinol diglucoside (60 mg/day) or placebo. Lipid profile [low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio, total cholesterol, and triglycerides] and liver disease risk markers were measured at weeks 0, 4, 8, and 12. Analyzing 36 participants in each group revealed a significant interaction between treatment and time, indicating reduced low-density lipoprotein cholesterol (p = 0.049) and total cholesterol (p = 0.020) levels in secoisolariciresinol diglucoside-receiving men but not women. However, no significant differences were observed in other markers regardless of gender. The results suggest that a daily intake of 60 mg of secoisolariciresinol diglucoside lowers low-density lipoprotein cholesterol and total cholesterol levels in men with borderline low-density lipoprotein cholesterol, proposing secoisolariciresinol diglucoside potential as a functional dietary nutrient for cardiovascular disease prevention. This study was registered in the UMIN-CTR database (UMIN000046202).
Collapse
Affiliation(s)
- Kouta Ookoshi
- Innovation Center, Central Research Laboratory, NIPPN Corporation, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Kento Sawane
- Innovation Center, Central Research Laboratory, NIPPN Corporation, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Satoshi Fukumitsu
- Innovation Center, Central Research Laboratory, NIPPN Corporation, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Kazuhiko Aida
- Innovation Center, Central Research Laboratory, NIPPN Corporation, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| |
Collapse
|
3
|
Sawane K, Nagatake T, Hosomi K, Kunisawa J. Anti-allergic property of dietary phytoestrogen secoisolariciresinol diglucoside through microbial and β-glucuronidase-mediated metabolism. J Nutr Biochem 2023; 112:109219. [PMID: 36375731 DOI: 10.1016/j.jnutbio.2022.109219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/03/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022]
Abstract
Phytoestrogens play pivotal roles in controlling not only the endocrine system but also inflammatory metabolic disorders. However, the effects of dietary phytoestrogens on allergic diseases and underlying mechanisms remain unclear. In this study, we revealed the unique metabolic conversion of phytoestrogen to exert anti-allergic properties, using an ovalbumin-induced allergic rhinitis mouse model. We found that dietary secoisolariciresinol diglucoside (SDG), a phytoestrogen abundantly present in flaxseed, alleviated allergic rhinitis by the microbial conversion to enterodiol (ED). We also found that ED circulated mainly in the glucuronide form (EDGlu) in blood, and deconjugation of EDGlu to ED aglycone occurred in the nasal passage; this activity was enhanced after the induction of allergic rhinitis, which was mediated by β-glucuronidase. We further found that IgE-mediated degranulation was inhibited by ED aglycone, but not by EDGlu, in a G protein-coupled receptor 30 (GPR30)-dependent manner. These results provide new insights into the anti-allergic properties of phytoestrogens and their metabolism in vivo for the development of novel therapeutic strategies against allergic rhinitis.
Collapse
Affiliation(s)
- Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan; Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, NIBIOHN
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, NIBIOHN
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, NIBIOHN; Graduate School of Medicine, Graduate School of Science and Graduate School of Dentistry, Osaka University, Osaka, Japan; Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Langyan S, Yadava P, Sharma S, Gupta NC, Bansal R, Yadav R, Kalia S, Kumar A. Food and nutraceutical functions of sesame oil: An underutilized crop for nutritional and health benefits. Food Chem 2022; 389:132990. [PMID: 35569244 DOI: 10.1016/j.foodchem.2022.132990] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Sesame is the oldest oilseed crop known to humanity, though it contributes a small share in the global vegetable oil production. Sesame oil contains nutrients, including lignans, tocopherols, phytosterols, natural antioxidants, and bioactive compounds. It provides various health benefits such as anti-lipogenic, hypo-cholesterolemic, anti-degenerative, and neural health-promoting properties. Being an under-utilized minor crop, it has not received enough research attention for its food and nutraceutical potential. The sesame crop is a potential candidate to maintain the diversity of food oils and harness its benefits for improving human health. The present review will provide detailed research on sesame oil contents, health effects, nutraceuticals, oil quality, and value addition strategies. Also, the sesame oil nutritional quality was compared with other vegetable oils, highlighting the potential health and nutrition-related benefits. The way forward for further sesame improvement through value addition traits was also discussed.
Collapse
Affiliation(s)
- Sapna Langyan
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India.
| | - Pranjal Yadava
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India.
| | - Sanjula Sharma
- Oilseed Section, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | | | - Ruchi Bansal
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India
| | - Rashmi Yadav
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India
| | | | - Ashok Kumar
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India
| |
Collapse
|
5
|
Iron Absorption in Celiac Disease and Nutraceutical Effect of 7-Hydroxymatairesinol. Mini-Review. Molecules 2020; 25:molecules25092041. [PMID: 32349426 PMCID: PMC7249079 DOI: 10.3390/molecules25092041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
Anemia is the main extra-gastrointestinal symptom in inflammatory bowel diseases (IBDs). Interleukin-6 (IL-6) and other cytokines are secreted and act in the microenvironment of the small intestine mucous membrane of IBD patients. Iron is essential for multiple cell functions and its homeostasis is regulated by the hepcidin–ferroportin axis. Hepcidin (HEPC) is mainly produced by the liver in response to iron needs but is also an acute phase protein. During inflammation, hepcidin is upregulated by IL-6 and is responsible for iron compartmentalization within cells, in turn causing anemia of inflammation. Tissues other than liver can produce hepcidin in response to inflammatory stimuli, in order to decrease iron efflux at a local level, then acting in an autocrine–paracrine manner. In IBDs and, in particular, in celiac disease (CeD), IL-6 might trigger the expression, upregulation and secretion of hepcidin in the small intestine, reducing iron efflux and exacerbating defective iron absorption. 7-Hydroxymatairesinol (7-HMR) belongs to the family of lignans, polyphenolic compounds produced by plants, and has nutraceutical antioxidant, anti-inflammatory and estrogenic properties. In this mini-review we revise the role of inflammation in IBDs and in particular in CeD, focusing our attention on the close link among inflammation, anemia and iron metabolism. We also briefly describe the anti-inflammatory and estrogenic activity of 7-HMR contained in foods that are often consumed by CeD patients. Finally, considering that HEPC expression is regulated by iron needs, inflammation and estrogens, we explored the hypothesis that 7-HMR consumption could ameliorate anemia in CeD using Caco-2 cells as bowel model. Further studies are needed to verify the regulation pathway through which 7-HMR may interfere with the local production of HEPC in bowel.
Collapse
|
6
|
Hunyadi A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev 2019; 39:2505-2533. [PMID: 31074028 DOI: 10.1002/med.21592] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 12/25/2022]
Abstract
Small molecule, dietary antioxidants exert a remarkably broad range of bioactivities, and many of these can be explained by the influence of antioxidants on the redox homeostasis. Such compounds help to modulate the levels of harmful reactive oxygen/nitrogen species, and therefore participate in the regulation of various redox signaling pathways. However, upon ingestion, antioxidants usually undergo extensive metabolism that can generate a wide range of bioactive metabolites. This makes it difficult, but otherwise a need, to identify the ones responsible for the different activities of antioxidants. By better understanding their ways of action, the use of antioxidants in therapy can be improved. This review provides a summary on the role of the in vivo metabolic changes and the oxidized metabolites on the mechanisms behind the bioactivity of antioxidants. A special attention is given to metabolites described as products of biomimetic oxidative chemical reactions, which can be considered as models of free radical scavenging. During such reactions a wide variety of metabolites are formed, and they can exert completely different specific bioactivities as compared to their parent antioxidants. This implies that exploring the free radical scavenging-related metabolite fingerprint of each antioxidant molecule, collectively defined here as the scavengome, will lead to a deeper understanding of the bioactivity of these compounds. Furthermore, this paper aims to be a working tool for systematic studies on oxidized metabolic fingerprints of antioxidants, which will certainly reveal an often-neglected segment of chemical space that is a treasury of bioactive compounds.
Collapse
Affiliation(s)
- Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary.,Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| |
Collapse
|
7
|
7-Hydroxymatairesinol improves body weight, fat and sugar metabolism in C57BJ/6 mice on a high-fat diet. Br J Nutr 2018; 120:751-762. [DOI: 10.1017/s0007114518001824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract7-Hydroxymatairesinol (7-HMR) is a plant lignan abundant in various concentrations in plant foods. The objective of this study was to test HMRLignan™, a purified form of 7-HMR, and the correspondingPicea abiesextract (total extractP. abies; TEP) as dietary supplements on a background of a high-fat diet (HFD)-induced metabolic syndrome in mice and in the 3T3-L1 adipogenesis model. Mice, 3 weeks old, were fed a HFD for 60 d. Subgroups were treated with 3 mg/kg body weight 7-HMR (HMRLignan™) or 10 mg/kg body weight TEP by oral administration. 7-HMR and TEP limited the increase in body weight (−11 and −13 %) and fat mass (−11 and −18 %) in the HFD-fed mice. Epididymal adipocytes were 19 and −12 % smaller and the liver was less steatotic (−62 and −65 %). Serum lipids decreased in TEP-treated mice (−11 % cholesterol, −23 % LDL and −15 % TAG) and sugar metabolism was ameliorated by both lignan preparations, as shown by a more than 70 % decrease in insulin secretion and insulin resistance. The expression of several metabolic genes was modulated by the HFD with an effect that was reversed by lignan. In 3T3-L1 cells, the 7-HMR metabolites enterolactone (ENL) and enterodiol (END) showed a 40 % inhibition of cell differentiation accompanied by the inhibited expression of the adipogenic genesPPARγ,C/EBPαandaP2. Furthermore, END and ENL caused a 10 % reduction in TAG uptake in HEPA 1–6 hepatoma cells. In conclusion, 7-HMR and TEP reduce metabolic imbalances typical of the metabolic syndrome and obesity in male mice, whereas their metabolites inhibit adipogenesis and lipid uptakein vitro.
Collapse
|
8
|
Zanella I, Biasiotto G, Holm F, di Lorenzo D. Cereal Lignans, Natural Compounds of Interest for Human Health? Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cereals are suggested to be the most important sources of lignan in the diets of western populations. Recent epidemiological studies show that European subpopulations in which the major source of lignans are cereals, display lower disease frequency regarding metabolic and cardiovascular diseases. The biological mechanisms of lignan are several. Beyond their antioxidant and anti-inflammatory actions at nutritional doses some lignans regulate the activity of specific nuclear receptors (NRs), such as the estrogen receptors (ERs), and also NRs that are central switches in glucose and fatty acid metabolism such as PPARα, PPARγ and LXRs, highlighting them as selective nuclear receptor modulators (SNRMs). These include enterodiol (END) and enterolactone (ENL), the metabolites produced by the gut microbiota from food lignans. The available knowledge suggests that given some additional research it should be possible to make ‘function' claims for a regular intake of lignans-rich foods related to maintaining a healthy metabolism.
Collapse
Affiliation(s)
- Isabella Zanella
- Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgio Biasiotto
- Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Finn Holm
- Foodgroup Denmark, Rugårdsvej 14 A1, Dk-8400 Ebeltoft, Denmark
| | - Diego di Lorenzo
- Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia, Italy
| |
Collapse
|